Conformal Cartographic Representations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Mollweide Projection and the ICA Logo Cartotalk, October 21, 2011 Institute of Geoinformation and Cartography, Research Group Cartography (Draft Paper)
Mollweide Projection and the ICA Logo CartoTalk, October 21, 2011 Institute of Geoinformation and Cartography, Research Group Cartography (Draft paper) Miljenko Lapaine University of Zagreb, Faculty of Geodesy, [email protected] Abstract The paper starts with the description of Mollweide's life and work. The formula or equation in mathematics known after him as Mollweide's formula is shown, as well as its proof "without words". Then, the Mollweide map projection is defined and formulas derived in different ways to show several possibilities that lead to the same result. A generalization of Mollweide projection is derived enabling to obtain a pseudocylindrical equal-area projection having the overall shape of an ellipse with any prescribed ratio of its semiaxes. The inverse equations of Mollweide projection has been derived, as well. The most important part in research of any map projection is distortion distribution. That means that the paper continues with the formulas and images enabling us to get some filling about the liner and angular distortion of the Mollweide projection. Finally, the ICA logo is used as an example of nice application of the Mollweide projection. A small warning is put on the map painted on the ICA flag. It seams that the map is not produced according to the Mollweide projection and is different from the ICA logo map. Keywords: Mollweide, Mollweide's formula, Mollweide map projection, ICA logo 1. Introduction Pseudocylindrical map projections have in common straight parallel lines of latitude and curved meridians. Until the 19th century the only pseudocylindrical projection with important properties was the sinusoidal or Sanson-Flamsteed. -
An Efficient Technique for Creating a Continuum of Equal-Area Map Projections
Cartography and Geographic Information Science ISSN: 1523-0406 (Print) 1545-0465 (Online) Journal homepage: http://www.tandfonline.com/loi/tcag20 An efficient technique for creating a continuum of equal-area map projections Daniel “daan” Strebe To cite this article: Daniel “daan” Strebe (2017): An efficient technique for creating a continuum of equal-area map projections, Cartography and Geographic Information Science, DOI: 10.1080/15230406.2017.1405285 To link to this article: https://doi.org/10.1080/15230406.2017.1405285 View supplementary material Published online: 05 Dec 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tcag20 Download by: [4.14.242.133] Date: 05 December 2017, At: 13:13 CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2017 https://doi.org/10.1080/15230406.2017.1405285 ARTICLE An efficient technique for creating a continuum of equal-area map projections Daniel “daan” Strebe Mapthematics LLC, Seattle, WA, USA ABSTRACT ARTICLE HISTORY Equivalence (the equal-area property of a map projection) is important to some categories of Received 4 July 2017 maps. However, unlike for conformal projections, completely general techniques have not been Accepted 11 November developed for creating new, computationally reasonable equal-area projections. The literature 2017 describes many specific equal-area projections and a few equal-area projections that are more or KEYWORDS less configurable, but flexibility is still sparse. This work develops a tractable technique for Map projection; dynamic generating a continuum of equal-area projections between two chosen equal-area projections. -
Rcosmo: R Package for Analysis of Spherical, Healpix and Cosmological Data Arxiv:1907.05648V1 [Stat.CO] 12 Jul 2019
CONTRIBUTED RESEARCH ARTICLE 1 rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data Daniel Fryer, Ming Li, Andriy Olenko Abstract The analysis of spatial observations on a sphere is important in areas such as geosciences, physics and embryo research, just to name a few. The purpose of the package rcosmo is to conduct efficient information processing, visualisation, manipulation and spatial statistical analysis of Cosmic Microwave Background (CMB) radiation and other spherical data. The package was developed for spherical data stored in the Hierarchical Equal Area isoLatitude Pixelation (Healpix) representation. rcosmo has more than 100 different functions. Most of them initially were developed for CMB, but also can be used for other spherical data as rcosmo contains tools for transforming spherical data in cartesian and geographic coordinates into the HEALPix representation. We give a general description of the package and illustrate some important functionalities and benchmarks. Introduction Directional statistics deals with data observed at a set of spatial directions, which are usually positioned on the surface of the unit sphere or star-shaped random particles. Spherical methods are important research tools in geospatial, biological, palaeomagnetic and astrostatistical analysis, just to name a few. The books (Fisher et al., 1987; Mardia and Jupp, 2009) provide comprehensive overviews of classical practical spherical statistical methods. Various stochastic and statistical inference modelling issues are covered in (Yadrenko, 1983; Marinucci and Peccati, 2011). The CRAN Task View Spatial shows several packages for Earth-referenced data mapping and analysis. All currently available R packages for spherical data can be classified in three broad groups. The first group provides various functions for working with geographic and spherical coordinate systems and their visualizations. -
The Gaussian Curvature 13/09/2007 Renzo Mattioli
The Gaussian Curvature 13/09/2007 Renzo Mattioli The Gaussian Curvature Map Renzo Mattioli (Optikon 2000, Roma*) *Author is a full time employee of Optikon 2000 Spa (Int.: C3) Historical background: Theorema Egregium by Carl Friderich Gauss Refractive On Line 2007 1 The Gaussian Curvature 13/09/2007 Renzo Mattioli Historical background: C.F. Gauss (1777-1855) was professor of mathematics in Göttingen (D). Has developed theories adopted in – Analysis – Number theory – Differential Geometry – Statistic (Guaussian distribution) – Physics (magnetism, electrostatics, optics, Astronomy) "Almost everything, which the mathematics of our century has brought forth in the way of original scientific ideas, attaches to the name of Gauss.“ Kronecker, L. Gaussian Curvature of a surface (Definition) Gaussian curvature is the product of steepest and flattest local curvatures, at each point. Negative GC Zero GC Positive GC Refractive On Line 2007 2 The Gaussian Curvature 13/09/2007 Renzo Mattioli Gauss’ Theorema Egregium (1828) Gaussian curvature (C1 x C2) of a flexible surface is invariant. (non-elastic isometric distortion) C1=0 C1=0 C2>0 C2=0 C1 x C2 = 0 C1 x C2 = 0 Gauss’ Theorema Egregium Gaussian curvature is an intrinsic property of surfaces C1 C2 C1 C2 Curvature Gaussian Curvature Gaussian C2 C2 C1 x C2 C1 x C2 C1 C1 Refractive On Line 2007 3 The Gaussian Curvature 13/09/2007 Renzo Mattioli Gauss’ Theorema Egregium • “A consequence of the Theorema Egregium is that the Earth cannot be displayed on a map without distortion. The Mercator projection… preserves angles but fails to preserve area.” (Wikipedia) The Gaussian Map in Corneal Topography Refractive On Line 2007 4 The Gaussian Curvature 13/09/2007 Renzo Mattioli Proposed by B.Barsky et al. -
The Riemann Mapping Theorem Christopher J. Bishop
The Riemann Mapping Theorem Christopher J. Bishop C.J. Bishop, Mathematics Department, SUNY at Stony Brook, Stony Brook, NY 11794-3651 E-mail address: [email protected] 1991 Mathematics Subject Classification. Primary: 30C35, Secondary: 30C85, 30C62 Key words and phrases. numerical conformal mappings, Schwarz-Christoffel formula, hyperbolic 3-manifolds, Sullivan’s theorem, convex hulls, quasiconformal mappings, quasisymmetric mappings, medial axis, CRDT algorithm The author is partially supported by NSF Grant DMS 04-05578. Abstract. These are informal notes based on lectures I am giving in MAT 626 (Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at Stony Brook. We will start with brief introduction to conformal mapping focusing on the Schwarz-Christoffel formula and how to compute the unknown parameters. In later chapters we will fill in some of the details of results and proofs in geometric function theory and survey various numerical methods for computing conformal maps, including a method of my own using ideas from hyperbolic and computational geometry. Contents Chapter 1. Introduction to conformal mapping 1 1. Conformal and holomorphic maps 1 2. M¨obius transformations 16 3. The Schwarz-Christoffel Formula 20 4. Crowding 27 5. Power series of Schwarz-Christoffel maps 29 6. Harmonic measure and Brownian motion 39 7. The quasiconformal distance between polygons 48 8. Schwarz-Christoffel iterations and Davis’s method 56 Chapter 2. The Riemann mapping theorem 67 1. The hyperbolic metric 67 2. Schwarz’s lemma 69 3. The Poisson integral formula 71 4. A proof of Riemann’s theorem 73 5. Koebe’s method 74 6. -
5–21 5.5 Miscellaneous Projections GMT Supports 6 Common
GMT TECHNICAL REFERENCE & COOKBOOK 5–21 5.5 Miscellaneous Projections GMT supports 6 common projections for global presentation of data or models. These are the Hammer, Mollweide, Winkel Tripel, Robinson, Eckert VI, and Sinusoidal projections. Due to the small scale used for global maps these projections all use the spherical approximation rather than more elaborate elliptical formulae. 5.5.1 Hammer Projection (–Jh or –JH) The equal-area Hammer projection, first presented by Ernst von Hammer in 1892, is also known as Hammer-Aitoff (the Aitoff projection looks similar, but is not equal-area). The border is an ellipse, equator and central meridian are straight lines, while other parallels and meridians are complex curves. The projection is defined by selecting • The central meridian • Scale along equator in inch/degree or 1:xxxxx (–Jh), or map width (–JH) A view of the Pacific ocean using the Dateline as central meridian is accomplished by running the command pscoast -R0/360/-90/90 -JH180/5 -Bg30/g15 -Dc -A10000 -G0 -P -X0.1 -Y0.1 > hammer.ps 5.5.2 Mollweide Projection (–Jw or –JW) This pseudo-cylindrical, equal-area projection was developed by Mollweide in 1805. Parallels are unequally spaced straight lines with the meridians being equally spaced elliptical arcs. The scale is only true along latitudes 40˚ 44' north and south. The projection is used mainly for global maps showing data distributions. It is occasionally referenced under the name homalographic projection. Like the Hammer projection, outlined above, we need to specify only -
Manifolds and Riemannian Geometry Steinmetz Symposium
Manifolds and Riemannian Geometry Steinmetz Symposium Daniel Resnick, Christina Tonnesen-Friedman (Advisor) 14 May 2021 2 What is Differential Geometry? Figure: Surfaces of different curvature. Differential geometry studies surfaces and how to distinguish between them| and other such objects unique to each type of surface. Daniel Resnick (Union College) Manifolds and Riemannian Geometry 14 May 2021 2 / 16 3 Defining a Manifold We begin by defining a manifold. Definition A topological space M is locally Euclidean of dimension n if every point p 2 M has a neighborhood U such that there is a homeomorphism φ from U to an open subset of Rn. We call the pair (U; φ : U ! Rn) a chart. Definition A topological space M is called a topological manifold if the space is Hausdorff, second countable, and locally Euclidean. Daniel Resnick (Union College) Manifolds and Riemannian Geometry 14 May 2021 3 / 16 4 The Riemann Metric Geometry deals with lengths, angles, and areas, and \measurements" of some kind, and we will encapsulate all of these into one object. Definition The tangent space Tp(M) is the vector space of every tangent vector to a point p 2 M. Definition (Important!) A Riemann metric on a manifold to each point p in M of an inner product h ; ip on the tangent space TpM; moreover, the assignment p 7! h ; i is required to be C 1 in the following sense: if X and Y are C 1 vector fields on M, then 1 p 7! hXp; Ypip is a C function on M.A Riemann manifold is a pair (M; h ; i) consisting of the manifold M together with the Riemann metric h ; i on M. -
Carl Friedrich Gauss
GENERAL I ARTICLE Carl Friedrich Gauss D Surya Ramana D Surya Ramana is a Carl Friedrich Gauss, whose mathematical work in the 19th junior research fellow century earned him the title of Prince among Mathematicians ,1 at the Institute of was born into the family of Gebhard Dietrich Gauss, a bricklayer Mathematical Sciences, at the German town of Brunswick, on 30 April 1777. Chennai. He works in the area of analytic number theory. Gauss was a child prodigy whose calculating prowess showed itself fairly early in his life. Stories of his childhood are full of anecdotes involving his abilities that first amazed his mother, then his teachers at school and much more recently his biographers to the present day. For instance, when he was barely ten years old he surprised his teachers by calculating the sum of the first hundred natural numbers using the fact that they So varied was the mathe f<lrmed an arithmetical progression. matical work of Gauss that this article is limited in scope by While his talents impressed his mother Dorothea, they caused the author's own special a great deal of anxiety to his father. Apparently afraid of losing interests. a hand that would otherwise ply some useful trade, he very reluctantly permitted his son to enroll in a gymnasium (high school) at Brunswick. Gauss studied here from 1788-1791. Perhaps conscious of the fact that his father would not sponsor his studies anymore, Gauss began to look for a patron who would finance his education beyond the gymnasium. Encouraged by his teachers and his mother, Gauss appeared in the court of Duke Carl Wilhelm Ferdinand of Brunswick to demonstrate his computational abilities. -
The Chazy XII Equation and Schwarz Triangle Functions
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 095, 24 pages The Chazy XII Equation and Schwarz Triangle Functions Oksana BIHUN and Sarbarish CHAKRAVARTY Department of Mathematics, University of Colorado, Colorado Springs, CO 80918, USA E-mail: [email protected], [email protected] Received June 21, 2017, in final form December 12, 2017; Published online December 25, 2017 https://doi.org/10.3842/SIGMA.2017.095 Abstract. Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120{348] showed that the Chazy XII equation y000 − 2yy00 + 3y02 = K(6y0 − y2)2, K 2 C, is equivalent to a projective-invariant equation for an affine connection on a one-dimensional complex manifold with projective structure. By exploiting this geometric connection it is shown that the Chazy XII solution, for certain values of K, can be expressed as y = a1w1 +a2w2 +a3w3 where wi solve the generalized Darboux{Halphen system. This relationship holds only for certain values of the coefficients (a1; a2; a3) and the Darboux{Halphen parameters (α; β; γ), which are enumerated in Table2. Consequently, the Chazy XII solution y(z) is parametrized by a particular class of Schwarz triangle functions S(α; β; γ; z) which are used to represent the solutions wi of the Darboux{Halphen system. The paper only considers the case where α + β +γ < 1. The associated triangle functions are related among themselves via rational maps that are derived from the classical algebraic transformations of hypergeometric functions. The Chazy XII equation is also shown to be equivalent to a Ramanujan-type differential system for a triple (P;^ Q;^ R^). -
Basics of the Differential Geometry of Surfaces
Chapter 20 Basics of the Differential Geometry of Surfaces 20.1 Introduction The purpose of this chapter is to introduce the reader to some elementary concepts of the differential geometry of surfaces. Our goal is rather modest: We simply want to introduce the concepts needed to understand the notion of Gaussian curvature, mean curvature, principal curvatures, and geodesic lines. Almost all of the material presented in this chapter is based on lectures given by Eugenio Calabi in an upper undergraduate differential geometry course offered in the fall of 1994. Most of the topics covered in this course have been included, except a presentation of the global Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and Hilbert’s theorem on surfaces of constant negative curvature. What is a surface? A precise answer cannot really be given without introducing the concept of a manifold. An informal answer is to say that a surface is a set of points in R3 such that for every point p on the surface there is a small (perhaps very small) neighborhood U of p that is continuously deformable into a little flat open disk. Thus, a surface should really have some topology. Also,locally,unlessthe point p is “singular,” the surface looks like a plane. Properties of surfaces can be classified into local properties and global prop- erties.Intheolderliterature,thestudyoflocalpropertieswascalled geometry in the small,andthestudyofglobalpropertieswascalledgeometry in the large.Lo- cal properties are the properties that hold in a small neighborhood of a point on a surface. Curvature is a local property. Local properties canbestudiedmoreconve- niently by assuming that the surface is parametrized locally. -
AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry. -
Bibliography of Map Projections
AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOlOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List" Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in Books of the U.S. Geological Survey are available over the terest (such as leaflets, pamphlets, booklets), single copies of Earthquakes counter at the following Geological Survey Public Inquiries Offices, all & Volcanoes, Preliminary Determination of Epicenters, and some mis of which are authorized agents of the Superintendent of Documents: cellaneous reports, including some of the foregoing series that have gone out of print at the Superintendent of Documents, are obtainable by mail from • WASHINGTON, D.C.--Main Interior Bldg., 2600 corridor, 18th and C Sts., NW.