Carbonaceous Chondrite Impact Melts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physical Properties of Martian Meteorites: Porosity and Density Measurements
Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability. -
Magnetite Biomineralization and Ancient Life on Mars Richard B Frankel* and Peter R Buseckt
Magnetite biomineralization and ancient life on Mars Richard B Frankel* and Peter R Buseckt Certain chemical and mineral features of the Martian meteorite with a mass distribution unlike terrestrial PAHs or those from ALH84001 were reported in 1996 to be probable evidence of other meteorites; thirdly, bacterium-shaped objects (BSOs) ancient life on Mars. In spite of new observations and up to several hundred nanometers long that resemble fos interpretations, the question of ancient life on Mars remains silized terrestrial microorganisms; and lastly, 10-100 nm unresolved. Putative biogenic, nanometer magnetite has now magnetite (Fe304), pyrrhotite (Fel_xS), and greigite (Fe3S4) become a leading focus in the debate. crystals. These minerals were cited as evidence because of their similarity to biogenic magnetic minerals in terrestrial Addresses magnetotactic bacteria. *Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407, USA; e-mail: [email protected] The ancient life on Mars hypothesis has been extensively tDepartments of Geology and Chemistry/Biochemistry, Arizona State challenged, and alternative non-biological processes have University, Tempe, Arizona 85287-1404, USA; e-mail: [email protected] been proposed for each of the four features cited by McKay et al. [4]. In this paper we review the current situa tion regarding their proposed evidence, focusing on the Abbreviations putative biogenic magnetite crystals. BCM biologically controlled mineralization BIM biologically induced mineralization BSO bacterium-shaped object Evidence for and against ancient Martian life PAH polycyclic aromatic hydrocarbon PAHs and BSOs Reports of contamination by terrestrial organic materials [5°,6°] and the similarity of ALH84001 PAHs to non-bio genic PAHs in carbonaceous chondrites [7,8] make it Introduction difficult to positively identify PAHs of non-terrestrial, bio A 2 kg carbonaceous stony meteorite, designated genic origin. -
Fine-Grained Antarctic Micrometeorites and Weathered Carbonaceous Chondrites As Possible Analogues of Ceres Surface: Implications on Its Evolution
EPSC Abstracts Vol. 12, EPSC2018-1024, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Fine-grained Antarctic micrometeorites and weathered carbonaceous chondrites as possible analogues of Ceres surface: implications on its evolution. Jacopo Nava (1), Cristian Carli (2), Ernesto Palomba (2), Alessandro Maturilli (3) and Matteo Massironi (1) (1) Università degli studi di Padova – Dipartimento di Geoscienze, Padova, Italy ([email protected]) (2) IAPS-INAF, Istituto Nazionale di Astrofisica e Planetologia Spaziali, Roma, Italy (3) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany. Abstract more weathered and are mainly made of jarosite plus Fe-carbonates and Fe-K sulfides. All of these IR spectra of several micrometeorites (MMs) and samples show the constant presence of carbon Antarctic weathered carbonaceous chondrites compound, which can be poorly graphitized C. (AWCCs) have been acquired and compared to Ceres Phyllosilicates are rare. For what concerns the spectra. We propose these samples as possible AWCCs we found the CM2 sample GRA 98005 with analogues of Ceres. This allowed us to define a more weathering grade Ce that had one side exposed to the precise composition of Ceres and to suggest a Antarctic environment, and is thus heavily altered, possible evolution of this body. and one side that has been preserved with a pristine composition. Spectra on the pristine side are flat and almost featureless. On the contrary spectra of the 1. Introduction weathered side tend to have a shape close to the average Ceres spectra. This meteorite, on the Ceres is an icy body with a surface composition close weathered side, is dominated by Fe-oxides, Ca-Fe to the carbonaceous chondrites (CCs) [1] that carbonates, anidrite and gypsum plus enstatite and suffered aqueous alteration [2] and geothermal forsterite. -
Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars
AQUEOUS ALTERATION IN MARTIAN METEORITES: COMPARING MINERAL RELATIONS IN IGNEOUS-ROCK WEATHERING OF MARTIAN METEORITES AND IN THE SEDIMENTARY CYCLE OF MARS MICHAEL A. VELBEL Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115 USA e-mail: [email protected] ABSTRACT: Many of the minerals observed or inferred to occur in the sediments and sedimentary rocks of Mars, from a variety of Mars-mission spacecraft data, also occur in Martian meteorites. Even Martian meteorites recovered after some exposure to terrestrial weathering can preserve preterrestrial evaporite minerals and useful information about aqueous alteration on Mars, but the textures and textural contexts of such minerals must be examined carefully to distinguish preterrestrial evaporite minerals from occurrences of similar minerals redistributed or formed by terrestrial processes. Textural analysis using terrestrial microscopy provides strong and compelling evidence for preterrestrial aqueous alteration products in a numberof Martian meteorites. Occurrences of corroded primary rock-forming minerals and alteration products in meteorites from Mars cover a range of ages of mineral–water interaction, from ca. 3.9 Ga (approximately mid-Noachian), through one or more episodes after ca. 1.3 Ga (approximately mid–late Amazonian), through the last half billion years (late Amazonian alteration in young shergottites), to quite recent. These occurrences record broadly similar aqueous corrosion processes and formation of soluble weathering products over a broad range of times in the paleoenvironmental history of the surface of Mars. Many of the same minerals (smectite-group clay minerals, Ca-sulfates, Mg-sulfates, and the K-Fe–sulfate jarosite) have been identified both in the Martian meteorites and from remote sensing of the Martian surface. -
Finegrained Precursors Dominate the Micrometeorite Flux
Meteoritics & Planetary Science 47, Nr 4, 550–564 (2012) doi: 10.1111/j.1945-5100.2011.01292.x Fine-grained precursors dominate the micrometeorite flux Susan TAYLOR1*, Graciela MATRAJT2, and Yunbin GUAN3 1Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755–1290, USA 2University of Washington, Seattle, Washington 98105, USA 3Geological & Planetary Sciences MC 170-25, Caltech, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 15 May 2011; revision accepted 22 September 2011) Abstract–We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2–8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries. -
The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. -
Meteorites on Ice
PSRD: Antarctic Meteorites http://www.psrd.hawaii.edu/Nov01/metsOnIce.html posted November 7, 2001 Meteorites on Ice --- Antarctic meteorites provide a continuous and readily available supply of extraterrestrial materials, stimulating new research and ideas in cosmochemistry, planetary geology, astronomy, and astrobiology. Written by Linda M.V. Martel Hawai'i Institute of Geophysics and Planetology Annual collections of meteorites from Antarctica are a steady source of new non-microscopic extraterrestrial material including lunar and Martian samples and rare and unusual flotsam from asteroids. This article summarizes research on new kinds of Antarctic meteorites that is not simply changing how meteorites are classified but causing a revolution in our knowledge of the materials and processes in the solar nebula, our solar system, and the formation of asteroids, planets, and ultimately our world. When the 2001-2002 Antarctic Search for Meteorites (ANSMET) field party begins scouting for meteorites on the ice this season, we will be continuing a 25-year tradition of exploration along the Transantarctic Mountains. As a new ANSMET meteorite hunter, I will report to PSRD on this season's search and recovery of specimens and how studies of Antarctic meteorites are unraveling the secrets of solar system formation. Reference: U. S. Antarctic Search for Meteorites program. Finding Rocks That Fall From Outer Space The U. S. Antarctic Search for Meteorites (ANSMET) program is a collaborative effort of the National Science Foundation (NSF), NASA, and the Smithsonian Institution. Field collection is supported currently by a grant from the NSF Office of Polar Programs to Principal Investigator Dr. Ralph Harvey at Case Western Reserve University in Cleveland, Ohio. -
Subject Index.Fm
Meteoritics & Planetary Science 38, Nr 12, 1877–1878 (2003) http://meteoritics.org Annual Subject Index 26Al-26Mg relative ages 939 CM chondrites 813 Frictional melting 1521 26Mg excess 5 Coalescence 49 Geochemistry, brachinites 1601 40Ar-39Ar dating 555, 887 Cometary meteorites 1045 Geochemistry, Mars 1849 Ablation 1023 Comets 457, 1283 Grain 49 Accretion 1399 Cosmic dust flux 1351 Grain boundary 1669, 1679 Accretionary rims 813 Continuous flow isotope ratio mass Graphite 767 Acfer 182 spectrometer 1255 Hebe, asteroid 711 Achondrite(s) 95, 145, 157 Copernicus secondary craters 13 HH064 145 Achondrites, brachinites 1601 Complex impact structure 445 Hibonite 5 Achondrites, differentiated 1485 Core formation 1425 Hughes 030 5 Achondrites, primitive 1485 Cosmic-ray exposure ages 1243, 1485 Hydrated minerals 1383 Aenigmatite 725 Cosmic-ray exposure history 157 Hydrogen 357 Ages, 39Ar-40Ar 341, 1601 Cosmic spherules 329 Hydrothermal alteration 365 Airwave 989 Composition of meteorites 1005 Ice flow 1319 Albite 725 Cosmogenic nuclides 157 IDPs 1585 Allan Hills icefield 1319 Cratering 905 IDPs/chondrites 1283 ALH 84001 109, 849, 1697 Crater clusters 905 IIIAB Alkaline-rich clasts Crater fill deposits 1437 IIIAB iron meteorites 117 26Al 35 Creep 427 Impact 747 Amino acids 399 Cretaceous-tertiary boundary 1299 Impact basins 565 Amorphous carbon 767 Crust 895 Impact breccia 1079 Annealing 1499, 1507 Crustal magnetization 565 Impact crater(s) 1137, 1299, 1341, 1551 Antarctic meteorite(s) 109, 831 Cumulate(s) 529, 1753 Impact cratering 13, 1255, -
Team Studies Rare Meteorite Possibly from the Outer Asteroid Belt 20 December 2012
Team studies rare meteorite possibly from the outer asteroid belt 20 December 2012 The asteroid approached on an orbit that still points to the source region of CM chondrites. From photographs and video of the fireball, Jenniskens calculated that the asteroid approached on an unusual low-inclined almost comet-like orbit that reached the orbit of Mercury, passing closer to the sun than known from other recorded meteorite falls. "It circled the sun three times during a single orbit of Jupiter, in resonance with that planet," Jenniskens said. Based on the unusually short time that the asteroid was exposed to cosmic rays, there was not much time to go slower or faster around the sun. That puts the original source asteroid very (Phys.org)—Scientists found treasure when they close to this resonance, in a low inclined orbit. studied a meteorite that was recovered April 22, 2012 at Sutter's Mill, the gold discovery site that "A good candidate source region for CM chondrites led to the 1849 California Gold Rush. Detection of now is the Eulalia asteroid family, recently the falling meteorites by Doppler weather radar proposed as a source of primitive C-class asteroids allowed for rapid recovery so that scientists could in orbits that pass Earth," adds Jenniskens. study for the first time a primitive meteorite with little exposure to the elements, providing the most pristine look yet at the surface of primitive asteroids. An international team of 70 researchers reported in today's issue of Science that this meteorite was classified as a Carbonaceous-Mighei or CM-type carbonaceous chondrite and that they were able to identify for the first time the source region of these meteorites. -
The Amino Acid Composition of the Sutterв•Žs Mill CM2 Carbonaceous
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2014 The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron Burton 1NASA Johnson Space Center, [email protected] Daniel Glavin NASA Goddard Space Flight Center Jamie Elsila NASA Goddard Space Flight Center Jason Dworkin NASA Goddard Space Flight Center Peter Jenniskens SETI Institute, NASA Ames Research Center See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/nasapub Burton, Aaron; Glavin, Daniel; Elsila, Jamie; Dworkin, Jason; Jenniskens, Peter; and Yin, Qing-Zhu, "The minoa acid composition of the Sutter’s Mill CM2 carbonaceous chondrite" (2014). NASA Publications. 134. http://digitalcommons.unl.edu/nasapub/134 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Aaron Burton, Daniel Glavin, Jamie Elsila, Jason Dworkin, Peter Jenniskens, and Qing-Zhu Yin This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/nasapub/134 Meteoritics & Planetary Science 1–13 (2014) doi: 10.1111/maps.12281 The amino acid composition of the Sutter’s Mill CM2 carbonaceous chondrite Aaron S. BURTON1* , Daniel P. GLAVIN2, Jamie E. ELSILA2, Jason P. DWORKIN2, Peter JENNISKENS3,4, and Qing-Zhu YIN5 1NASA Johnson Space Center, 2101 Space Center Parkway, Houston, Texas 77058, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA 3SETI Institute, 189 Bernardo Avenue, Mountain View, California 94043, USA 4NASA Ames Research Center, Moffett Field, California 94035, USA 5Department of Earth and Planetary Sciences, University of California at Davis, Davis, California 95616, USA *Corresponding author. -
Ancient Martian Life in Allan Hills 84001? Status of Some Current Controversies
Workshop on the Issue of Martian Meteorites 7043.pdf ANCIENT MARTIAN LIFE IN ALLAN HILLS 84001? STATUS OF SOME CURRENT CONTROVERSIES. A. H. Treiman, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston TX 77058, USA ([email protected]). Four lines of evidence were taken to suggest that ALH Also, it is possible that the elongate magnetites formed at 84001 contained traces of ancient martian life preserved in high T, but after the carbonates formed [5]. Magnetites are its carbonate mineral masses [1]: abundance of organic also present in void spaces in the carbonate, either as the compounds (PAHs), disequilibrium mineral assemblages, product of decarbonation at high T [21] or as entrapped from morphology of sub-micron magnetite crystals, and presence the aqueous fluid that deposited the carbonates [22]. of objects comparable in size and shape to bacteria. This Summary. There is no consensus on the formation T or evidence is predicated on the carbonate globules having mechanism of carbonate masses. The bulk of evidence, in formed at temperatures conducive to life. Here, I review my opinion, is not consistent with T>400°C [4,6,7]. At pres- evidence on carbonate formation temperature, martian ori- ent, there seems no way to tell whether the carbonates gin of organic compounds, and bacteria-shaped objects. formed at moderate or low T: hotter or colder than ~150°C. Formation Temperature: A precondition for signs of Organic Matter: McKay et al. [1] presented evidence life associated with the carbonate masses [1] is that the that the carbonate pancakes in ALH 84001 are enriched in masses formed at T amenable to life (as we know it) [2], polycyclic aromatic hydrocarbons, PAHs, which are organic <~150°C. -
METEORITE ALLAN HILLS (ALH) 84001: IMPLICATIONS for MARS' INHABITATION and HABITABILITY. Allan H. Treiman. Lunar and Planetary
The First Billion Years: Habitability 2019 (LPI Contrib. No. 2134) 1032.pdf METEORITE ALLAN HILLS (ALH) 84001: IMPLICATIONS FOR MARS’ INHABITATION AND HABITABILITY. Allan H. Treiman. Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston TX 77058 <[email protected]> Introduction: Meteorite ALH 84001, home to ed. The bacteria-shaped objects are, most likely, arte- putative signs of ancient martian life, is the most in- facts produced by gold-coating (for SEM analysis) of tensely studied martian sample. As such, it provided ridges on a weathered mineral surface [15]. evidence (albeit a single point) on potentially habita- Magnetite Grains. The carbonate globules in ALH ble conditions on early Mars, and a case study in what 84001 contain a variety of submicron grains of mag- sorts of evidence might be acceptable as signs of ex- netite, which are concentrated in clearly defined lay- traterrestrial life. ers. A quarter of these magnetites were suggested as ALH 84001 & Mars Life: The meteorite ALH biosignatures, based on their size distribution, shapes 84001 is an orthopyroxenite – composed primarily of [16] and compositions [17], all seen as distinctive of that mineral with lesser chromite, augite, glass of pla- grains from magnetotactic bacteria However, these gioclase- and silica-rich compositions, olivine, and magnetite grains are not of the distinctive magneto- apatite; it was first classified as an diogenite (asteroi- tactic shape [18], their size distribution is consistent dal), and was later recognized as Martian [1]. It in- with inorganic processes [19], and their compositions cludes disc-shaped and hemispherical globules of are consistent with abiotic formation [20].