General Relativity

Total Page:16

File Type:pdf, Size:1020Kb

General Relativity PX436: General Relativity Gareth P. Alexander University of Warwick email: [email protected] office: D1.09, Zeeman building http://go.warwick.ac.uk/px436 Wednesday 6th December, 2017 Contents Preface iii Books and other reading iv 1 Gravity and Relativity2 1.1 Gravity........................................2 1.2 Special Relativity...................................6 1.2.1 Notation....................................8 1.3 Geometry of Minkowski Space-Time........................ 10 1.4 Particle Motion.................................... 12 1.5 The Stress-Energy-Momentum Tensor....................... 14 1.6 Electromagnetism................................... 15 1.6.1 The Transformation of Electric and Magnetic Fields........... 17 1.6.2 The Dynamical Maxwell Equations..................... 17 1.6.3 The Stress-Energy-Momentum Tensor................... 20 Problems.......................................... 23 2 Differential Geometry 27 2.1 Manifolds....................................... 27 2.2 The Metric...................................... 29 2.2.1 Lorentzian Metrics.............................. 31 2.3 Geodesics....................................... 32 2.4 Angles, Areas, Volumes, etc.............................. 35 2.5 Vectors, 1-Forms, Tensors.............................. 36 2.6 Curvature....................................... 39 2.7 Covariant Derivative................................. 46 2.7.1 Continuity, Conservation and Divergence................. 47 2.8 Summary....................................... 49 Problems.......................................... 50 3 Einstein's General Theory of Relativity 55 4 The Schwarzschild Solution 60 4.1 Derivation of the Metric............................... 60 4.2 The Event Horizon.................................. 62 4.3 Kruskal-Szekeres Coordinates............................ 64 4.4 The Classical Tests of General Relativity...................... 66 4.4.1 Precession of Perihelia............................ 67 4.4.2 Gravitational Lensing............................ 68 Problems.......................................... 72 i 5 Gravitational Collapse and Black Holes 77 5.1 Gravitational Collapse................................ 77 5.2 The Kerr Black Hole................................. 79 5.2.1 Geodesics of the Kerr Metric........................ 80 5.2.2 Event Horizon and Ergoregion....................... 81 5.3 Observational Evidence for Black Holes...................... 82 Problems.......................................... 84 6 Gravitational Waves 87 6.1 Linearised General Relativity............................ 87 6.2 The Graviton is a Spin 2 Particle.......................... 89 6.3 Gravitational Radiation............................... 91 6.4 Inspiral { the fate of binary systems........................ 93 6.5 Observations of Gravitational Waves........................ 94 6.5.1 Hulse-Taylor Binary............................. 94 6.5.2 LIGO and VIRGO Collaborations..................... 95 Problems.......................................... 97 7 Cosmology 100 7.1 de Sitter Universe and Cosmological Constant................... 100 7.2 The Friedmann-Lema^ıtre-Robertson-Walker Metric................ 101 7.3 Dark Energy and Λ-CDM.............................. 105 Problems.......................................... 107 Solutions to selected problems 109 ii Preface The aim of this course is to give an account of gravity and general relativity, as I understand it. I hope that you will find the subject as fascinating as I did when I was an undergraduate. The first four weeks of the course will be devoted to an exposition of the theoretical foun- dations of general relativity leading to a derivation of the Einstein equations. This will be divided in equal parts into a discussion of the stress-energy-momentum tensor { the source of gravitation { and curvature { its influence in the gravitational field. For the remaining six weeks we will study the predictions and implications of the Einstein equations, covering the classical tests { the motion of celestial bodies and gravitational lensing {, stellar collapse and black holes, gravitational waves and cosmology. The topics chosen, and emphasis of presenta- tion, reflect my own knowledge and expertise and lie very much in the tradition of theoretical physics. At the same time, I have tried to promote and give preference to those parts of the theory that either have been tested against experiment and observation, or are the focus of current experiments. General relativity is a theory of the structure of space and time and as such makes consid- erable use of (pseudo-)Riemannian geometry. It is lamentable that though geometry is taught at school before one learns calculus, it is essentially ignored in university level physics courses until one meets general relativity. This is to the diminishment of both subjects and makes the presentation of both in a course such as this difficult. It is my conviction that the essential ideas can be gained from the example of surfaces, of widespread relevance to physics in their own right, which have the benefit of being directly visualisable. In addition to emphasising this, I have also tried to adopt a more modern approach than in many textbooks, using intrinsic descriptions in preference to the old-fashioned tensor calculus. These lecture notes have been written in an informal and colloquial style. At times the presentation is quite detailed; at others I have taken liberties. As a general rule, there is more material in these notes than I will be able to cover in the lectures, although not too much more. What may appear in the exam should be inferred from the official syllabus and what I say in lectures rather than the fullness of these lecture notes. In preparing these notes I discovered that images taken by NASA are generally not copyrighted and can be used freely for personal or educational purposes. This is a most wonderful thing and I am grateful to be able to use their inspiring images to illustrate these lecture notes. Their image galleries can be found at this url http://www.nasa.gov/multimedia/imagegallery/index.html. I am grateful to the students who took the course in previous years for their feedback and suggestions, and to my colleagues who read my notes and spotted mistakes or points for improvement, especially Nick d'Ambrumenil and George Rowlands. I shamelessly copy Newton in his Principia (1687): I heartily beg that what I have here done may be read with candour; and that the defects in a subject so difficult be not so much reprehended as kindly supplied, and investigated by new endeavours of my readers. iii Books and other reading There are lots of good books. You are encouraged to read as many as you can. Some with particular relevance to the course are listed below. 1. A. Einstein, The Meaning of Relativity, Princeton University Press, Princeton, 1945. In 1921 Einstein visited the United States and gave a series of lectures at Princeton on his theory of relativity. This text is a reissue of those lectures. Einstein's theory of relativity is universally viewed as amongst the most beautiful and remarkable scientific achievements in recorded history. It is a joy to be able to read his own presentation of it. An electronic copy of the book is freely available at this url https://www.gutenberg.org/files/36276/ 36276-pdf.pdf. 2. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields: Volume 2 of the Course of Theoretical Physics, 4th edition, Butterworth-Heinemann, Oxford, 1975. A wonderful account with the highest standard of theoretical physics. It is moderately dated and gives a traditional `tensor calculus' approach to the differential geometry, but thereafter the treatment of physical consequences of the theory is excellent. If you consider yourself a theorist, then this is the book I would like to recommend. 3. M.P. Hobson, G.P. Efstathiou, and A.N. Lasenby, General Relativity: An Introduction for Physicists, Cambridge University Press, Cambridge, 2006. This was the previous lecturer, Elizabeth Stanway's, recommended textbook. Being written relatively re- cently it is modern in style and up to date. It should go without saying that it can still be recommended highly. 4. J.B. Hartle, Gravity: An Introduction to Einstein's General Relativity, Addison Wesley, 2002. Hartle's text is one of the more recent ones and it shows in the style of presentation and how up to date the applications and examples are. I am sure some of you will really like it. 5. B. Schutz, A First Course in General Relativity, 2nd edition, Cambridge University Press, Cambridge, 2009. A standard reference for undergraduate courses in general relativity that is often enthusiastically recom- mended. 6. C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W.H. Freeman, 1973. The big black coffee table, as it is affectionately known, is perhaps the most widely recommended text at advanced level. Written by three who did so much to advance general relativity, and geometrical thinking in particular, it is a classic. Its major drawback, however, is its length; 1279 pages. 7. R.M. Wald, General Relativity, Chicago University Press, Chicago, 1984. One of the most widely recommended texts for graduate courses in the US, this is the book that I first read when learning general relativity. It has a more modern style than most, which is what attracted me, adopting an `abstract index notation' that I believe was advocated by Penrose. iv 8. W. Rindler, Relativity: Special, General, and Cosmological, 2nd edition, Oxford University Press,
Recommended publications
  • The Future of Fundamental Physics
    The Future of Fundamental Physics Nima Arkani-Hamed Abstract: Fundamental physics began the twentieth century with the twin revolutions of relativity and quantum mechanics, and much of the second half of the century was devoted to the con- struction of a theoretical structure unifying these radical ideas. But this foundation has also led us to a number of paradoxes in our understanding of nature. Attempts to make sense of quantum mechanics and gravity at the smallest distance scales lead inexorably to the conclusion that space- Downloaded from http://direct.mit.edu/daed/article-pdf/141/3/53/1830482/daed_a_00161.pdf by guest on 23 September 2021 time is an approximate notion that must emerge from more primitive building blocks. Further- more, violent short-distance quantum fluctuations in the vacuum seem to make the existence of a macroscopic world wildly implausible, and yet we live comfortably in a huge universe. What, if anything, tames these fluctuations? Why is there a macroscopic universe? These are two of the central theoretical challenges of fundamental physics in the twenty-½rst century. In this essay, I describe the circle of ideas surrounding these questions, as well as some of the theoretical and experimental fronts on which they are being attacked. Ever since Newton realized that the same force of gravity pulling down on an apple is also responsible for keeping the moon orbiting the Earth, funda- mental physics has been driven by the program of uni½cation: the realization that seemingly disparate phenomena are in fact different aspects of the same underlying cause. By the mid-1800s, electricity and magnetism were seen as different aspects of elec- tromagnetism, and a seemingly unrelated phenom- enon–light–was understood to be the undulation of electric and magnetic ½elds.
    [Show full text]
  • Higher-Dimensional Black Holes: Hidden Symmetries and Separation
    Alberta-Thy-02-08 Higher-Dimensional Black Holes: Hidden Symmetries and Separation of Variables Valeri P. Frolov and David Kubizˇn´ak1 1 Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 ∗ In this paper, we discuss hidden symmetries in rotating black hole spacetimes. We start with an extended introduction which mainly summarizes results on hid- den symmetries in four dimensions and introduces Killing and Killing–Yano tensors, objects responsible for hidden symmetries. We also demonstrate how starting with a principal CKY tensor (that is a closed non-degenerate conformal Killing–Yano 2-form) in 4D flat spacetime one can ‘generate’ 4D Kerr-NUT-(A)dS solution and its hidden symmetries. After this we consider higher-dimensional Kerr-NUT-(A)dS metrics and demonstrate that they possess a principal CKY tensor which allows one to generate the whole tower of Killing–Yano and Killing tensors. These symmetries imply complete integrability of geodesic equations and complete separation of vari- ables for the Hamilton–Jacobi, Klein–Gordon, and Dirac equations in the general Kerr-NUT-(A)dS metrics. PACS numbers: 04.50.Gh, 04.50.-h, 04.70.-s, 04.20.Jb arXiv:0802.0322v2 [hep-th] 27 Mar 2008 I. INTRODUCTION A. Symmetries In modern theoretical physics one can hardly overestimate the role of symmetries. They comprise the most fundamental laws of nature, they allow us to classify solutions, in their presence complicated physical problems become tractable. The value of symmetries is espe- cially high in nonlinear theories, such as general relativity. ∗Electronic address: [email protected], [email protected] 2 In curved spacetime continuous symmetries (isometries) are generated by Killing vector fields.
    [Show full text]
  • Wave Extraction in Numerical Relativity
    Doctoral Dissertation Wave Extraction in Numerical Relativity Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayrischen Julius-Maximilians-Universitat¨ Wurzburg¨ vorgelegt von Oliver Elbracht aus Warendorf Institut fur¨ Theoretische Physik und Astrophysik Fakultat¨ fur¨ Physik und Astronomie Julius-Maximilians-Universitat¨ Wurzburg¨ Wurzburg,¨ August 2009 Eingereicht am: 27. August 2009 bei der Fakultat¨ fur¨ Physik und Astronomie 1. Gutachter:Prof.Dr.Karl Mannheim 2. Gutachter:Prof.Dr.Thomas Trefzger 3. Gutachter:- der Dissertation. 1. Prufer¨ :Prof.Dr.Karl Mannheim 2. Prufer¨ :Prof.Dr.Thomas Trefzger 3. Prufer¨ :Prof.Dr.Thorsten Ohl im Promotionskolloquium. Tag des Promotionskolloquiums: 26. November 2009 Doktorurkunde ausgehandigt¨ am: Gewidmet meinen Eltern, Gertrud und Peter, f¨urall ihre Liebe und Unterst¨utzung. To my parents Gertrud and Peter, for all their love, encouragement and support. Wave Extraction in Numerical Relativity Abstract This work focuses on a fundamental problem in modern numerical rela- tivity: Extracting gravitational waves in a coordinate and gauge independent way to nourish a unique and physically meaningful expression. We adopt a new procedure to extract the physically relevant quantities from the numerically evolved space-time. We introduce a general canonical form for the Weyl scalars in terms of fundamental space-time invariants, and demonstrate how this ap- proach supersedes the explicit definition of a particular null tetrad. As a second objective, we further characterize a particular sub-class of tetrads in the Newman-Penrose formalism: the transverse frames. We establish a new connection between the two major frames for wave extraction: namely the Gram-Schmidt frame, and the quasi-Kinnersley frame. Finally, we study how the expressions for the Weyl scalars depend on the tetrad we choose, in a space-time containing distorted black holes.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Einstein's Mistakes
    Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous.
    [Show full text]
  • Von Richthofen, Einstein and the AGA Estimating Achievement from Fame
    Von Richthofen, Einstein and the AGA Estimating achievement from fame Every schoolboy has heard of Einstein; fewer have heard of Antoine Becquerel; almost nobody has heard of Nils Dalén. Yet they all won Nobel Prizes for Physics. Can we gauge a scientist’s achievements by his or her fame? If so, how? And how do fighter pilots help? Mikhail Simkin and Vwani Roychowdhury look for the linkages. “It was a famous victory.” We instinctively rank the had published. However, in 2001–2002 popular French achievements of great men and women by how famous TV presenters Igor and Grichka Bogdanoff published they are. But is instinct enough? And how exactly does a great man’s fame relate to the greatness of his achieve- ment? Some achievements are easy to quantify. Such is the case with fighter pilots of the First World War. Their achievements can be easily measured and ranked, in terms of their victories – the number of enemy planes they shot down. These aces achieved varying degrees of fame, which have lasted down to the internet age. A few years ago we compared1 the fame of First World War fighter pilot aces (measured in Google hits) with their achievement (measured in victories); and we found that We can estimate fame grows exponentially with achievement. fame from Google; Is the same true in other areas of excellence? Bagrow et al. have studied the relationship between can this tell us 2 achievement and fame for physicists . The relationship Manfred von Richthofen (in cockpit) with members of his so- about actual they found was linear.
    [Show full text]
  • Introduction to General Relativity
    INTRODUCTION TO GENERAL RELATIVITY Gerard 't Hooft Institute for Theoretical Physics Utrecht University and Spinoza Institute Postbox 80.195 3508 TD Utrecht, the Netherlands e-mail: [email protected] internet: http://www.phys.uu.nl/~thooft/ Version November 2010 1 Prologue General relativity is a beautiful scheme for describing the gravitational ¯eld and the equations it obeys. Nowadays this theory is often used as a prototype for other, more intricate constructions to describe forces between elementary particles or other branches of fundamental physics. This is why in an introduction to general relativity it is of importance to separate as clearly as possible the various ingredients that together give shape to this paradigm. After explaining the physical motivations we ¯rst introduce curved coordinates, then add to this the notion of an a±ne connection ¯eld and only as a later step add to that the metric ¯eld. One then sees clearly how space and time get more and more structure, until ¯nally all we have to do is deduce Einstein's ¯eld equations. These notes materialized when I was asked to present some lectures on General Rela- tivity. Small changes were made over the years. I decided to make them freely available on the web, via my home page. Some readers expressed their irritation over the fact that after 12 pages I switch notation: the i in the time components of vectors disappears, and the metric becomes the ¡ + + + metric. Why this \inconsistency" in the notation? There were two reasons for this. The transition is made where we proceed from special relativity to general relativity.
    [Show full text]
  • Cracking the Einstein Code: Relativity and the Birth of Black Hole Physics, with an Afterword by Roy Kerr / Fulvio Melia
    CRA C K I N G T H E E INSTEIN CODE @SZObWdWbgO\RbVS0W`bV]T0ZOQY6]ZS>VgaWQa eWbVO\/TbS`e]`RPg@]gS`` fulvio melia The University of Chicago Press chicago and london fulvio melia is a professor in the departments of physics and astronomy at the University of Arizona. He is the author of The Galactic Supermassive Black Hole; The Black Hole at the Center of Our Galaxy; The Edge of Infinity; and Electrodynamics, and he is series editor of the book series Theoretical Astrophysics published by the University of Chicago Press. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2009 by The University of Chicago All rights reserved. Published 2009 Printed in the United States of America 18 17 16 15 14 13 12 11 10 09 1 2 3 4 5 isbn-13: 978-0-226-51951-7 (cloth) isbn-10: 0-226-51951-1 (cloth) Library of Congress Cataloging-in-Publication Data Melia, Fulvio. Cracking the Einstein code: relativity and the birth of black hole physics, with an afterword by Roy Kerr / Fulvio Melia. p. cm. Includes bibliographical references and index. isbn-13: 978-0-226-51951-7 (cloth: alk. paper) isbn-10: 0-226-51951-1 (cloth: alk. paper) 1. Einstein field equations. 2. Kerr, R. P. (Roy P.). 3. Kerr black holes—Mathematical models. 4. Black holes (Astronomy)—Mathematical models. I. Title. qc173.6.m434 2009 530.11—dc22 2008044006 To natalina panaia and cesare melia, in loving memory CONTENTS preface ix 1 Einstein’s Code 1 2 Space and Time 5 3 Gravity 15 4 Four Pillars and a Prayer 24 5 An Unbreakable Code 39 6 Roy Kerr 54 7 The Kerr Solution 69 8 Black Hole 82 9 The Tower 100 10 New Zealand 105 11 Kerr in the Cosmos 111 12 Future Breakthrough 121 afterword 125 references 129 index 133 PREFACE Something quite remarkable arrived in my mail during the summer of 2004.
    [Show full text]
  • "Eternal" Questions in the XX-Century Theoretical Physics V
    Philosophical roots of the "eternal" questions in the XX-century theoretical physics V. Ihnatovych Department of Philosophy, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine e-mail: [email protected] Abstract The evolution of theoretical physics in the XX century differs significantly from that in XVII-XIX centuries. While continuous progress is observed for theoretical physics in XVII-XIX centuries, modern physics contains many questions that have not been resolved despite many decades of discussion. Based upon the analysis of works by the founders of the XX-century physics, the conclusion is made that the roots of the "eternal" questions by the XX-century theoretical physics lie in the philosophy used by its founders. The conclusion is made about the need to use the ideas of philosophy that guided C. Huygens, I. Newton, W. Thomson (Lord Kelvin), J. K. Maxwell, and the other great physicists of the XVII-XIX centuries, in all areas of theoretical physics. 1. Classical Physics The history of theoretical physics begins in 1687 with the work “Mathematical Principles of Natural Philosophy” by Isaac Newton. Even today, this work is an example of what a full and consistent outline of the physical theory should be. It contains everything necessary for such an outline – definition of basic concepts, the complete list of underlying laws, presentation of methods of theoretical research, rigorous proofs. In the eighteenth century, such great physicists and mathematicians as Euler, D'Alembert, Lagrange, Laplace and others developed mechanics, hydrodynamics, acoustics and nebular mechanics on the basis of the ideas of Newton's “Principles”.
    [Show full text]
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • Non-Conservation of Carter in Black Hole Spacetimes
    Non-conservation of Carter in black hole spacetimes Alexander Granty, Eanna´ E.´ Flanagany y Department of Physics, Cornell University, Ithaca, NY 14853 Abstract. Freely falling point particles in the vicinity of Kerr black holes are subject to a conservation law, that of their Carter constant. We consider the conjecture that this conservation law is a special case of a more general conservation law, valid for arbitrary processes obeying local energy momentum conservation. Under some fairly general assumptions we prove that the conjecture is false: there is no conservation law for conserved stress-energy tensors on the Kerr background that reduces to conservation of Carter for a single point particle. arXiv:1503.05164v2 [gr-qc] 16 Jun 2015 Non-conservation of Carter in black hole spacetimes 2 The validity of conservation laws in physics can depend on the type of interactions being considered. For example, baryon number minus lepton number, B − L, is an exact conserved quantity in the Standard Model of particle physics. However, it is no longer conserved when one enlarges the set of interactions under consideration to include those of many grand unified theories [1], or those that occur in quantum gravity [2]. The subject of this note is the conserved Carter constant for freely falling point particles in black hole spacetimes [3]. As is well known, this quantity is not associated with a spacetime symmetry or with Noether's theorem. Instead it is obtained from a symmetric tensor Kab which obeys the Killing tensor equation r(aKbc) = 0 [4], via a b a K = Kabk k , where k is four-momentum.
    [Show full text]
  • Gravitational Redshift/Blueshift of Light Emitted by Geodesic
    Eur. Phys. J. C (2021) 81:147 https://doi.org/10.1140/epjc/s10052-021-08911-5 Regular Article - Theoretical Physics Gravitational redshift/blueshift of light emitted by geodesic test particles, frame-dragging and pericentre-shift effects, in the Kerr–Newman–de Sitter and Kerr–Newman black hole geometries G. V. Kraniotisa Section of Theoretical Physics, Physics Department, University of Ioannina, 451 10 Ioannina, Greece Received: 22 January 2020 / Accepted: 22 January 2021 / Published online: 11 February 2021 © The Author(s) 2021 Abstract We investigate the redshift and blueshift of light 1 Introduction emitted by timelike geodesic particles in orbits around a Kerr–Newman–(anti) de Sitter (KN(a)dS) black hole. Specif- General relativity (GR) [1] has triumphed all experimental ically we compute the redshift and blueshift of photons that tests so far which cover a wide range of field strengths and are emitted by geodesic massive particles and travel along physical scales that include: those in large scale cosmology null geodesics towards a distant observer-located at a finite [2–4], the prediction of solar system effects like the perihe- distance from the KN(a)dS black hole. For this purpose lion precession of Mercury with a very high precision [1,5], we use the killing-vector formalism and the associated first the recent discovery of gravitational waves in Nature [6–10], integrals-constants of motion. We consider in detail stable as well as the observation of the shadow of the M87 black timelike equatorial circular orbits of stars and express their hole [11], see also [12]. corresponding redshift/blueshift in terms of the metric physi- The orbits of short period stars in the central arcsecond cal black hole parameters (angular momentum per unit mass, (S-stars) of the Milky Way Galaxy provide the best current mass, electric charge and the cosmological constant) and the evidence for the existence of supermassive black holes, in orbital radii of both the emitter star and the distant observer.
    [Show full text]