Introduction Status and Plans in Europe in Canada in Asia Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Science at Boulby Underground Laboratory
Sean Paling STFC Boulby Underground Science Facility Hartlepool Nuclear Power Station Astroparticle Physics: the search for Dark Matter & beyond Earth and environmental science, Astrobiology and planetary exploration CYGNUS Directional Dark Matter search Deep Science at Boulby Underground Laboratory: Subterranean studies at the UK’s deep underground science facility Underground lab @ Boulby World antineutrino flux levels A WATer CHerenkov Monitor of ANtineutrinos Design, excavation, installation & operation 2019 to 2026(+) A 6kT Gd- loaded water detector looking at ~20 m anti-neutrinos from Hartlepool nuclear reactor • 3500 tons of gadoliniumVertices doped water within 50cm • 3000 photomultiplier tubes Funding: US (>$70M), UK (~£10M) • Signal: ~11 events/month/core confirmed in 2017 & 2018 respectively • ΔTBackground: ~30μs ~20 events/month NEW 6kT prototype detector: R&D for anti-neutrino monitoring of nuclear reactors for global nuclear non-proliferation purposes & more Deep Science @ Boulby Underground Laboratory… 1) About Boulby Mine and Boulby Underground Lab 2) Boulby Science Overview: • Astroparticle Physics & Low Background Science • Earth & Environmental Science • Astrobiology & Planetary Exploration Studies 3) The future: inc. AIT-NEO (WATCHMAN) Boulby Underground Laboratory The UK’s deep underground science facility operating in a working polyhalite & salt mine. 1.1km depth (2805 mwe). With low background surrounding rock-salt Operated by the UK’s Science & Technology Facilities Council (STFC) in partnership with the mine operators ICL Polyhalite Deepest mine in Britain Permian Evaporites Factor ~106 reduction in cosmic ray flux vs. surface A QUIET place in the Universe Boulby Geology & Mining Major local employer. Open since 1968. Originally mining potash (KCl) for fertiliser. Now first and only producers of polyhalite Excavations are in Salt (NaCl) & Potash (KCl) Permian evaporite layers left over from the Zechstein Sea. -
P> Pos(HEP2005)???
PoS(HEP2005)??? Longer term R&D on Neutrino beams and Neutrino Factories Ken Peach John Adams Institute for Accelerator Science University of Oxford and Royal Holloway Univerity of London Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK E-mail: [email protected] Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or π, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions. European Physical Society HEP2005 International Europhysics Conference on High Energy Physics EPS (July 21st-27th 2005) in Lisboa, Portugal PoS(HEP2005)??? 1. Introduction The “Standard Model” of particles and interactions provides an accurate description of huge volumes of data, from LEP, HERA, Tevatron, and experiments like the muon g-2. However, convincing evidence [1] for neutrino oscillations, where neutrinos created in a flavour eigenstate (e.g, as νe in the sun) are subsequently found to be a mixture of flavours, indicates that neutrinos have a mass (however small), while the Standard Model requires the neutrinos to be strictly massless. It is difficult to add a mass term for the neutrinos, in analogy to the quarks and charged leptons, and so neutrino oscillations require physics “beyond the Standard Model”. -
A Staged Muon Accelerator Facility for Neutrino
A STAGED MUON ACCELERATOR FACILITY FOR NEUTRINO AND COLLIDER PHYSICS* Jean-Pierre Delahaye, SLAC, Menlo Park, California Charles Ankenbrandt, Stephen Brice, Alan David Bross, Dmitri Denisov, Estia Eichten, Stephen Holmes, Ronald Lipton, David Neuffer, Mark Alan Palmer, Fermilab, Batavia, Illinois S. Alex Bogacz, JLAB, Newport News, Virginia Patrick Huber, Virginia Polytechnic Institute and State University, Blacksburg Daniel M. Kaplan, Pavel Snopok, Illinois Institute of Technology, Chicago, Illinois Harold G. Kirk, Robert B. Palmer, BNL, Upton, Long Island, New York Robert D. Ryne, LBNL, Berkeley, California Abstract THE BEAUTY AND CHALLENGES OF Muon-based facilities offer unique potential to provide MUON-BASED FACILITIES capabilities at both the Intensity Frontier with Neutrino Muon-based facilities [1] offer the unique potential to Factories and the Energy Frontier with Muon Colliders. provide the next generation of capabilities and world- They rely on a novel technology with challenging leading experimental support spanning physics at both the parameters, for which the feasibility is currently being Intensity and Energy Frontiers. Building on the evaluated by the Muon Accelerator Program (MAP). A foundation of PIP-II and its successor stages at FNAL [2], realistic scenario for a complementary series of staged muon accelerators can provide the next step with a high- facilities with increasing complexity and significant intensity and precise source of neutrinos to support a physics potential at each stage has been developed. It world-leading research program in neutrino physics. takes advantage of and leverages the capabilities already Furthermore, the infrastructure developed to support such planned for Fermilab, especially the strategy for long- an Intensity Frontier research program can also enable the term improvement of the accelerator complex being return of the U.S. -
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ [email protected] E-mail: ∗ [email protected] Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature. -
Nuclear Physics
Nuclear Physics Overview One of the enduring mysteries of the universe is the nature of matter—what are its basic constituents and how do they interact to form the properties we observe? The largest contribution by far to the mass of the visible matter we are familiar with comes from protons and heavier nuclei. The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. Although the fundamental particles that compose nuclear matter—quarks and gluons—are themselves relatively well understood, exactly how they interact and combine to form the different types of matter observed in the universe today and during its evolution remains largely unknown. Nuclear physicists seek to understand not just the familiar forms of matter we see around us, but also exotic forms such as those that existed in the first moments after the Big Bang and that exist today inside neutron stars, and to understand why matter takes on the specific forms now observed in nature. Nuclear physics addresses three broad, yet tightly interrelated, scientific thrusts: Quantum Chromodynamics (QCD); Nuclei and Nuclear Astrophysics; and Fundamental Symmetries: . QCD seeks to develop a complete understanding of how the fundamental particles that compose nuclear matter, the quarks and gluons, assemble themselves into composite nuclear particles such as protons and neutrons, how nuclear forces arise between these composite particles that lead to nuclei, and how novel forms of bulk, strongly interacting matter behave, such as the quark-gluon plasma that formed in the early universe. Nuclei and Nuclear Astrophysics seeks to understand how protons and neutrons combine to form atomic nuclei, including some now being observed for the first time, and how these nuclei have arisen during the 13.8 billion years since the birth of the cosmos. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
BOREXINO - Status and Calibration
BOREXINO - Status and Calibration International Workshop on "Double Beta Decay and Neutrinos" Osaka, June 12, 2007 Christian Grieb for the Borexino Collaboration Virginia Tech Borexino Collaboration • College de France (France) • Technische Unversität München (Germany) • JINR Dubna (Russia) • Kurchatov Institute Moscow (Russia) • MPI Heidelberg (Germany) • Jagellonian University Cracow (Poland) • INFN – Milano (Italy) • INFN – Genova (Italy) • INFN – Perugia (Italy) • INFN – LNGS (Italy) • Princeton Univeristy (USA) NSF funded • Virginia Tech (USA) } Borexino Christian Grieb, Virginia Tech, June 2007 Borexino • Designed to spectroscopically measure low energy solar neutrinos, especially 7Be • Liquid Scintillator Spectrometer • ν + e - → ν’ + e -’ • Charged Current • Neutral Current Borexino Christian Grieb, Virginia Tech, June 2007 Signal in Borexino 7 +++ −−− →→→ 7 +++ ννν Be e Li e Monochromatic E ννν=862 keV Φ 9 ν 2 SSM =4.8x10 /sec/cm ννν ννν e x Expected rate (LMA) is ~35 counts/day between 0.25-0.8 MeV Borexino Christian Grieb, Virginia Tech, June 2007 Science in Borexino • Measure 7Be solar neutrinos (0.25-0.8 MeV) • Measured vs MSW-LMA predicted event rate • 1/r^2 solar signature • Study CNO and pep (~1-2 pep ev/d) neutrinos (0.8-1.3 MeV) (rejection of 11 C 8B-neutrinos cosmogenic background – proven in CTF (SuperK, SNO) hep-ex/0601035) • Geoneutrinos (10 – 30 ev/year) • Supernova Neutrinos (~120 ev from GC 7 supernova) Be neutrinos (BOREXINO) • Double beta decay with Xenon? (Phys.Rev.Lett. 72:1411,1994) • ... Borexino Christian Grieb, Virginia Tech, June 2007 Publications (since 2002) • The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment. • J. Benziger et al. Feb 2007 physics/0702162 • CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep-underground production of cosmogenic C11 in an organic liquid scintillator • H. -
Session: Neutrino Astronomy
Session: Neutrino Astronomy Chair: Takaaki Kajita, Institute for Cosmic Ray Research, Univ. of Tokyo Basic natures of neutrinos Neutrino was introduced in 1930 by W. Pauli in order to save the energy conservation law in nuclear beta decay processes, in which the emitted electron exhibits a continuous energy spectrum. It was assumed that the penetration power of neutrinos is much higher than that of the gamma rays. More than 20 years later, the existence of neutrinos was experimentally confirmed by an experiment that measured neutrinos produced by a nuclear power reactor. Since then, the basic nature of neutrinos has been understood through various theoretical and experimental studies: Neutrinos interact with matter extremely weakly. The number of neutrino species is three. They are called electron-neutrino, muon-neutrino and tau-neutrino. In addition, recent neutrino experiments discovered that neutrinos have very small masses. Observing the Universe by neutrinos (1) Because of the extremely high penetration power of neutrinos, neutrinos produced at the center of a star easily penetrate to the outer space. Theories of astrophysics predict that there are various processes that neutrinos play an essential role at the center of stars. For example, the Sun is generating its energy by nuclear fusion processes in the central region. In these processes, low energy electron neutrinos with various energy spectra are generated. Thus the observation of solar neutrinos directly probes the nuclear fusion reactions in the Sun. Another example is the supernova explosion. While the optical measurements observe an exploding star, what is happening in the central region of the star is the collapse of the core of a massive star. -
Carsten Rott Curriculum Vitae Feb 2018
Carsten Rott Curriculum Vitae Feb 2018 Department of Physics, Sungkyunkwan University, Suwon 16419, Korea Tel: +82-31-290-5902 E-mail:[email protected] Experimental astro-particle physics, particle physics, geophysics, neutri- Research nos physics Focus Languages German, English; Elementary: French, Japanese, and Korean Employment 2017 { 2018 Honorary Fellow at Wisconsin IceCube Particle Astrophysics Center (WIPAC) (Sabbatical), University of Wisconsin Madison, USA 2017 { now Associate Professor, Sungkyunkwan University, Korea 2013 { 2017 Assistant Professor, Sungkyunkwan University, Korea 2016 Visiting Researcher (3-month), University of Tokyo, Japan 2009 { 2013 Senior Fellow of the Center for Cosmology and AstroParticle Physics (CCAPP) (5-year term), The Ohio State University, USA 2008 { 2009 CCAPP Fellow (3-year term), The Ohio State University, USA 2005 { 2008 Postdoctoral Fellow, Pennsylvania State University, USA Education 1998 { 2004 Purdue University, Indiana, USA Ph.D in Experimental Particle Physics (December 2004) Title : \Search for Scalar Bottom Quarks from Gluino Decays" at CDF Thesis Adviser : Prof. Daniela Bortoletto 1995 { 1998 Universit¨atHannover, Hannover, Germany Honors and Awards 2011 Recipient of NSF Antarctica Service Medal 2005 \Fermilab's Result of the Week" (FermiNews, August 11, 2005) 2004 George W. Tautfest Award, Purdue University 1998 { 1999 University of Hannover { Purdue University direct exchange fellowship Funds and Grants 2017 { present NRF Midscale Research Fund (PI), Korea { NRF-2017R1A2B2003666 2017 { present Foreign Facility Fund (PI of 7 sub-PIs) { NRF-2017K1A3A7A09015973 2016 { present NRF SRC Korea Neutrino Research Center (KNRC) (Co-I), Korea 2016 { 2017 NRF Individual Researcher (PI), Korea { NRF-2016R1D1A1B03931688 2013 { present BrainKorea (BK21plus) participant, Korea 2013 { 2016 NRF Individual Researcher (PI), Korea { NRF-2013R1A1A1007068 2013 { 2014 SKKU Intramural Faculty Fund Award, Korea 2013 { 2014 Fermi GI Cycle 6 (Co-I with Prof. -
An International Scoping Study of a Neutrino Factory and Super-Beam
ISS/2005/01 13 th July 2005 An international scoping study of a Neutrino Factory and super-beam facility Executive summary This document presents a plan for an international scoping study of a future accelerator neutrino complex. The physics case for the facility will be evaluated and options for the accelerator complex and neutrino detection systems will be studied. The principal objective of the study will be to lay the foundations for a full conceptual-design study of the facility. The plan for the scoping study has been prepared in collaboration by the international community that wishes to carry it out; the ECFA/BENE network in Europe, the Japanese NuFact-J collaboration, the US Muon Collider and Neutrino Factory Collaboration and the UK Neutrino Factory collaboration. CCLRC’s Rutherford Appleton Laboratory will be the ‘host laboratory’ for the study. The study will be directed by a Programme Committee advised by a Stakeholders Board. The the international scoping study was launched at NuFact05 in Frascati on the 26 th June 2005. The conclusions of the study will be presented at NuFact06 and published in a written report in September 2006. 1. Introduction 1.1 Overview The recent discovery of neutrino oscillations [1] implies that neutrinos are massive and that the Standard Model is incomplete. These observations may have profound astrophysical consequences; in particular CP violation in the lepton sector may underpin the mechanism by which antimatter was removed from the early universe. The far-reaching implications of neutrino oscillations justify a dedicated experimental programme while the search for leptonic-CP violation requires the development of well-characterised, high-energy neutrino beams of extremely high intensity. -
Large Large-Scale Neutrino Detectors No Detectors
LARGE-SCALE NEUTRINO DETECTORS input for the 2020 update of the European Strategy for Particle Physics from the Institute for Nuclear Research of the Russian Academy of Sciences Contact person: Prof. Leonid Kravchuk, Director, INR RAS, 60th October Anniversary prospect 7A, 117312, Moscow, Russia Tel.: +7 495 8504201 e-mail: [email protected] Abstract: We propose a multi-purpose neutrino observatory comprising two very large detectors solving different problems at the intersection of particle physics, astrophysics and Earth science. Baikal-GVD will work jointly with KM3NET and IceCube in the Global Neutrino Network, aiming at the detection and study of high-energy astrophysical neutrinos. The new Baksan neutrino telescope (NBNT) will inherit from its smaller precursor, Borexino, but will become the only large-scale neutrino detector geographically located in Europe. Thanks to the unique low-background conditions at Baksan, determined by a combination of depth and of location far from artificial nuclear reactors, it will be the best instrument in the world to measure the CNO solar neutrino flux, at the same time addressing a wide range of other problems. Moscow, December 13, 2018 Comprehensive overview Development of many areas in modern physics, astrophysics and related fields is closely related to the neutrino studies. Neutrinos may bring the key to the way the Standard Model (SM) should be extended: in fact, it is the neutrino oscillations which violate the SM conservation laws (lepton numbers of individual generations) and give the only laboratory proof of the SM incompleteness. The discovery of the oscillations in the solar neutrinos gave a bright example of the application of astrophysical results to understanding of basic properties of elementary particles.