Mechanism of Programmed Cell Death in the Blastocyst (Blastocyst Regulation of Embryonal Carcinoma/Preimplantation Development/Apoptosis) G

Total Page:16

File Type:pdf, Size:1020Kb

Mechanism of Programmed Cell Death in the Blastocyst (Blastocyst Regulation of Embryonal Carcinoma/Preimplantation Development/Apoptosis) G Proc. Nati. Acad. Sci. USA Vol. 86, pp. 3654-3658, May 1989 Cell Biology Mechanism of programmed cell death in the blastocyst (blastocyst regulation of embryonal carcinoma/preimplantation development/apoptosis) G. BARRY PIERCE*, ANDREA L. LEWELLYN, AND RALPH E. PARCHMENT Department of Pathology, University of Colorado School of Medicine, 4200 East Ninth Avenue, Denver, CO 80262 Communicated by David M. Prescott, February 13, 1989 (receivedfor review October 17, 1988) ABSTRACT The malignant growth potential ofembryonal carcinoma cells may be controlled by environmental factors. zP For example, embryonal carcinoma cells placed into normal blastocysts may not exhibit the continued growth expected of T malignant cells but rather may lose all aspects ofthe malignant phenotype and become apparently normal embryonic cells. E Loss of the malignant phenotype of embryonal carcinoma cells occurs early in these I jected blastocysts and has been used as the basis of assays to study the mechanisms of regulation of embryonal carcinoma by the blastocyst. In this regard, P19, an _G I~CM a embryonal carcinoma that makes midgestation chimeras, was b regulated by blastocele fluid plus contact with trophectoderm but not by blastocele fluid plus contact with inner cell mass FIG. 1. (a) Diagram of a mouse blastocyst 3.5 days after fertili- (ICM). In contrast, ECa 247, which makes trophectoderm, was zation. The zona pellucida (ZP) is a soft egg shell lined by 52 regulated by exposure to blastocele fluid plus contact with trophectodermal cells (T), which will form the placenta. The 12 1CM cells will form the embryo, but at this stage they have the potential trophectoderm or ICM. During the course of these experi- to form trophectoderm as well. (b) Diagram of a late stage blastocyst. ments, dead embryonal carcinoma and ICM cells were ob- Programmed cell death has occurred and one of the ICM cells has served, and blastocele fluid was then shown to kill ECa 247 and become apoptotic~~~~~~AC(AC). After apoptosis, the 1CM no longer has the normal ICM cells of early blastocysts with trophectodermal potential to differentiate trophectoderm; instead it differentiates a potential. P19 cells and ICM cells with potential to make the layer of endoderm (E). The blastocele cavity contains 1 nl of fluid. embryo were not killed by blastocele fluid. Programmed cell death occurs in the ICM of the blastocyst during the transition In the course of the current investigation, it was observed from early (when ICM has the potential to make trophecto- that P19 cells, unlike ECa 247 cells, were not regulated by derm) to late (when the ICM lacks the potential to make blastocele fluid plus contact with the 1CM. Furthermore, trophectoderm). It is postulated that this programmed cell some ECa 247 cells, but not P19 cells, were killed during death is designed to eliminate redundant 1CM cells with incubation in blastocele fluid. Blastocele fluid also selectively trophectodermal potential, and its mechanism of action is killed some ICM cells, after which the potential of the ICM mediated by epigenetic factors in blastocele fluid. to make trophectoderm was lost. Our ultimate goal is to ascertain the mechanism by which the blastocyst regulates embryonal carcinoma cells, which have MATERIALS AND METHODS been injected into the blastocele, to the point that they Eight-cell eggs at 2 days of pregnancy and blastocysts at 3.5 respond to embryonic signals as ifthey were normal inner cell days of pregnancy were obtained from 8-week-old CD-1 mass (ICM) cells as exemplified by the production of chi- (Charles River Breeding Laboratories) mice by flushing the meric mice (1-7). The blastocyst is a cystic stage of embry- oviducts or uteri, respectively, with a few drops of Eagle's onic development occurring in the mouse 3.5 days after minimal essential medium containing penicillin G (100 units/ fertilization (Fig. la). ml), streptomycin (100 Ag/ml), 0.1 mM nonessential amino We have previously shown that blastocele fluid plus con- acids, and 1 mM pyruvate (MEM). The eggs and blastocysts tact with trophectoderm are required for regulation of em- were held in MEM, with 10% heat-inactivated fetal bovine bryonal carcinoma (loss of malignant attributes such as the serum (MEM + 10) under washed mineral oil. ability to form colonies of malignant cells in vitro) (8). The methods for injecting blastocysts and producing tro- However, ECa 247, the embryonal carcinoma cells used in phectodermal vesicles have been described (8, 11). Briefly, that study, failed to produce chimeras when injected into cancer cells in a drop ofMEM + 10 under washed mineral oil blastocysts because they preferentially localized in and dif- were injected into blastocysts by using holding and injecting ferentiated into trophectoderm (9). It was decided to compare pipettes attached to micromanipulators. Only blastocysts the mechanism of regulation of an embryonal carcinoma that with a clearly visible cancer cell were used in the assay for makes chimeras to that of ECa 247. In contrast to ECa 247, cancer cell regulation as measured by abrogation of colony- ==60% of blastocysts injected with P19 cells develop into forming ability (8, 12). As for controls, the cancer cells were midgestation chimeras as evidenced by glucose phosphate cloned in 96-well Linbro plates, where they grew equally well isomerase assays, but most of them were abnormal and few as in the perivitelline space. For production of trophectoder- came to term (10). Nevertheless, the malignant phenotype mal vesicles containing an embryonal carcinoma cell, sepa- was at least partially suppressed during the early develop- rate drops of medium containing either blastocysts or cancer ment of these chimeras. cells were used to obviate transfer of contaminating embry- onal carcinoma cells. Blastocysts were injected with a cancer The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviation: ICM, inner cell mass. in accordance with 18 U.S.C. §1734 solely to indicate this fact. *To whom reprint requests should be addressed. 3654 Downloaded by guest on September 29, 2021 Cell Biology: Pierce et al. Proc. Natl. Acad. Sci. USA 86 (1989) 3655 cell, which was placed on the mural trophectoderm opposite Table 2. Effect of trophectodermal vesicles on colony formation the 1CM; the 1CM was then amputated with a 26-gauge of single P19 cells needle. If the tip of the needle was pressed into the bottom No. of colonies/no. of attempts of the plastic Petri dish, the edges of the trophectoderm were sealed to form a vesicle. When the vesicles reexpanded, P19 cells in those with a visible cancer cell were assayed for regulation of trophectodermal P19 cells colony formation (8). Exp. vesicles cultured alone To prepare giant blastocysts (13), the zonae pellucidae of 1 3/12 17/40 eight-cell eggs were removed by incubation in 0.25% Pronase 2 0/4 20/40 at 370C, after which the eggs were washed three times in 3 4/14 17/40 MEM + 10. Eight eight-cell eggs were fused in a small drop 4 1/6 27/40 of 0.1% phytohemagglutinin (Sigma) in MEM in 35-mm 5 3/10 25/40 bacteriologic Petri dishes and incubated for 1-2 min. The Total 11/46 (24%) 106/200 (53%) dishes were flooded with MEM + 10 to dilute the phytohe- P= 0.001. magglutin and were incubated at 370C in 100% humidity with 5% C02/95% air on a rocking platform (22 cycles per min). from the first one to avoid mixing of the cell types. A zona The resultant giant blastocysts were used after either 48 or 72 pellucida was oriented on a holding pipette so that the hole hr of incubation. through which the blastocyst had been evacuated faced the Zonae pellucidae, to be used as carriers of the cellular injecting pipette. Then, depending on the experiment, em- preparations to be studied in the giant blastocysts, were bryonal carcinoma cells alone or 2 embryonal carcinoma cells prepared from blastocysts, morulae, and abnormal eggs plus 12 ICM cells were injected through the hole into the unsuitable for other experiments. The blastocysts, attached cavity of the zona pellucida. One-half of the specimens were by gentle suction to holding pipettes, were penetrated by a incubated in MEM + 10 for 7 days in 5% C02/95% air with pipette through which the fluid and cells of the embryo were 100% humidity (controls), and half were injected into giant evacuated (see Fig. 2). The zonae pellucidae were flushed blastocysts. To this end, they were placed in a large drop of with MEM + 10 by inserting a pipette through the hole used MEM + 10 with the giant blastocysts. A giant blastocyst was to evacuate their contents and then stored at 4°C in MEM + attached to a holding pipette by gentle suction, and a trian- 10. In contrast to the method of Rossant (14), the method gular-shaped hole was made in its wall using three fine glass described here has the advantage of usually producing only needles. A zona pellucida carrying the cells to be tested was a single hole in the zona pellucida. attached by suction to a pipette and pushed through the Two lines of embryonal carcinoma were used. ECa 247, The which was derived from OTT6050 (15), is aneuploid (a triangular hole into the blastocele ofthe giant blastocyst. bimodal chromosome number of 57 and 74 chromosomes), preparations were placed in the incubator until the wound in grows well in vitro, and its neoplastic attributes including the giant blastocysts had healed and the blastocele had tumor and colony formation are regulated by the blastocyst re-formed. This usually took 1-3 hr. The expanded blasto- (11, 12).
Recommended publications
  • 3 Embryology and Development
    BIOL 6505 − INTRODUCTION TO FETAL MEDICINE 3. EMBRYOLOGY AND DEVELOPMENT Arlet G. Kurkchubasche, M.D. INTRODUCTION Embryology – the field of study that pertains to the developing organism/human Basic embryology –usually taught in the chronologic sequence of events. These events are the basis for understanding the congenital anomalies that we encounter in the fetus, and help explain the relationships to other organ system concerns. Below is a synopsis of some of the critical steps in embryogenesis from the anatomic rather than molecular basis. These concepts will be more intuitive and evident in conjunction with diagrams and animated sequences. This text is a synopsis of material provided in Langman’s Medical Embryology, 9th ed. First week – ovulation to fertilization to implantation Fertilization restores 1) the diploid number of chromosomes, 2) determines the chromosomal sex and 3) initiates cleavage. Cleavage of the fertilized ovum results in mitotic divisions generating blastomeres that form a 16-cell morula. The dense morula develops a central cavity and now forms the blastocyst, which restructures into 2 components. The inner cell mass forms the embryoblast and outer cell mass the trophoblast. Consequences for fetal management: Variances in cleavage, i.e. splitting of the zygote at various stages/locations - leads to monozygotic twinning with various relationships of the fetal membranes. Cleavage at later weeks will lead to conjoined twinning. Second week: the week of twos – marked by bilaminar germ disc formation. Commences with blastocyst partially embedded in endometrial stroma Trophoblast forms – 1) cytotrophoblast – mitotic cells that coalesce to form 2) syncytiotrophoblast – erodes into maternal tissues, forms lacunae which are critical to development of the uteroplacental circulation.
    [Show full text]
  • Pluripotency Factors Regulate Definitive Endoderm Specification Through Eomesodermin
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Pluripotency factors regulate definitive endoderm specification through eomesodermin Adrian Kee Keong Teo,1,2 Sebastian J. Arnold,3 Matthew W.B. Trotter,1 Stephanie Brown,1 Lay Teng Ang,1 Zhenzhi Chng,1,2 Elizabeth J. Robertson,4 N. Ray Dunn,2,5 and Ludovic Vallier1,5,6 1Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; 2Institute of Medical Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138648; 3Renal Department, Centre for Clinical Research, University Medical Centre, 79106 Freiburg, Germany; 4Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification. Importantly, the pluripotency factors NANOG, OCT4, and SOX2 have an essential function in this network by actively directing differentiation. Indeed, these transcription factors control the expression of EOMESODERMIN (EOMES), which marks the onset of endoderm specification. In turn, EOMES interacts with SMAD2/3 to initiate the transcriptional network governing endoderm formation. Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development.
    [Show full text]
  • The Nature of Programmed Cell Death
    Biological Theory https://doi.org/10.1007/s13752-018-0311-0 ORIGINAL ARTICLE The Nature of Programmed Cell Death Pierre M. Durand1 · Grant Ramsey2 Received: 14 March 2018 / Accepted: 10 October 2018 © Konrad Lorenz Institute for Evolution and Cognition Research 2018 Abstract In multicellular organisms, cells are frequently programmed to die. This makes good sense: cells that fail to, or are no longer playing important roles are eliminated. From the cell’s perspective, this also makes sense, since somatic cells in multicel- lular organisms require the cooperation of clonal relatives. In unicellular organisms, however, programmed cell death (PCD) poses a difficult and unresolved evolutionary problem. The empirical evidence for PCD in diverse microbial taxa has spurred debates about what precisely PCD means in the case of unicellular organisms (how it should be defined). In this article, we survey the concepts of PCD in the literature and the selective pressures associated with its evolution. We show that defini- tions of PCD have been almost entirely mechanistic and fail to separate questions concerning what PCD fundamentally is from questions about the kinds of mechanisms that realize PCD. We conclude that an evolutionary definition is best able to distinguish PCD from closely related phenomena. Specifically, we define “true” PCD as an adaptation for death triggered by abiotic or biotic environmental stresses. True PCD is thus not only an evolutionary product but must also have been a target of selection. Apparent PCD resulting from pleiotropy, genetic drift, or trade-offs is not true PCD. We call this “ersatz PCD.” Keywords Adaptation · Aging · Apoptosis · Price equation · Programmed cell death · Selection · Unicellular organisms Introduction in animal ontogeny, was made explicit several decades later (Glücksmann 1951; Lockshin and Williams 1964).
    [Show full text]
  • The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination
    | FLYBOOK DEVELOPMENT AND GROWTH The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination Adam C. Martin1 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 ORCID ID: 0000-0001-8060-2607 (A.C.M.) ABSTRACT A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Snapshot: BCL-2 Proteins J
    SnapShot: BCL-2 Proteins J. Marie Hardwick and Richard J. Youle Johns Hopkins, Baltimore, MD 21205, USA and NIH/NINDS, Bethesda, MD 20892, USA 404 Cell 138, July 24, 2009 ©2009 Elsevier Inc. DOI 10.1016/j.cell.2009.07.003 See online version for legend and references. SnapShot: BCL-2 Proteins J. Marie Hardwick and Richard J. Youle Johns Hopkins, Baltimore, MD 21205, USA and NIH/NINDS, Bethesda, MD 20892, USA BCL-2 family proteins regulate apoptotic cell death. BCL-2 proteins localize to intracellular membranes such as endoplasmic reticulum and mitochondria, and some fam- ily members translocate from the cytoplasm to mitochondria following a cell death stimulus. The prototypical family member Bcl-2 was originally identified at chromo- some translocation breakpoints in human follicular lymphoma and was subsequently shown to promote tumorigenesis by inhibiting cell death rather than by promoting cell-cycle progression. BCL-2 family proteins have traditionally been classified according to their function and their BCL-2 homology (BH) motifs. The general categories include multidomain antiapoptotic proteins (BH1-BH4), multidomain proapoptotic proteins (BH1-BH3), and proapoptotic BH3-only proteins (see Table 1). In the traditional view, anti-death BCL-2 family members in healthy cells hold pro-death BCL-2 family members in check. Upon receiving a death stimulus, BH3-only proteins inactivate the protective BCL-2 proteins, forcing them to release their pro-death partners. These pro-death BCL-2 family proteins homo-oligomerize to create pores in the mitochondrial outer membrane, resulting in cytochrome c release into the cytoplasm, which leads to caspase activation and cell death.
    [Show full text]
  • Cell Fate in the Early Mouse Embryo: Sorting out the Influence of Developmental History on Lineage Choice
    Reproductive BioMedicine Online (2011) 22, 521– 524 www.sciencedirect.com www.rbmonline.com COMMENTARY Cell fate in the early mouse embryo: sorting out the influence of developmental history on lineage choice Samantha A Morris Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; University of Cambridge, Department of Physiology, Development and Neurobiology, Downing Street, Cambridge CB2 3DY, UK E-mail address: [email protected]. Abstract In early mouse embryos the first cell-fate decision segregates two cell populations: the outer trophectoderm (TE) and inner cell mass (ICM). Cells are primarily directed to the ICM in two waves of asymmetric division at the 8–16-cell and 16–32-cell stage transition – the first and second waves, respectively. The ICM then diverges to become epiblast (EPI) which will generate the embryo/fetus and extra-embryonic primitive endoderm (PE). Two recent studies have aimed to address the developmental origins of these lineages. Morris et al. (2010) found that first-wave-internalized cells mainly generate EPI, whereas later internalized cells pro- vide PE. This trend was not reflected in an independent study (Yamanaka et al., 2010). From direct comparison of both datasets, it becomes clear that the key difference lies in the proportions of cells internalized in the two waves, impacting greatly upon fate. When the majority of ICM is derived from only the first wave, both EPI and PE must differentiate from the available cells and no pattern is observed. Frequently though, closer parity exists between cells dividing asymmetrically in the first and second waves, revealing the influence of developmental history upon fate.
    [Show full text]
  • Disruption of the HNF-4 Eene, Expressed in Visceral Endoderm, Leads to Cell Death in Embryonic Ectoderm and Impaired Gastrulation of Mouse Embryos
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Disruption of the HNF-4 eene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos William S. Chen,^'* Kada Manova,^'* Daniel C. Weinstein/''* Stephen A. Duncan,^ Andrew S. Plump,^ Vincent R. Prezioso/ Rosemary F. Bachvarova,^ and James E. Darnell Jr.^'^ ^Laboratory of Molecular Cell Biology, ^Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, New York 10021 USA; ^Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021 USA Expression of HNF-4, a transcription factor in the steroid hormone receptor superfamily, is detected only in the visceral endoderm of mouse embryos during gastrulation and is expressed in certain embryonic tissues from 8.5 days of gestation. To examine the role of HNF-4 during embryonic development, we disrupted the gene in embryonic stem cells and found that the homozygous loss of functional HNF-4 protein was an embryonic lethal. Cell death was evident in the embryonic ectoderm at 6.5 days when these cells normally initiate gastrulation. As assessed by expression of Bracbyury and HNF-3P, primitive streak formation and initial differentiation of mesoderm do occur, but with a delay of ~24 hr. Development of embryonic structures is severely impaired. These results demonstrate that the expression of HNF-4 in the visceral endoderm is essential for embryonic ectoderm survival and normal gastrulation. [Key Words: Transcription factor; gastrulation; HNF; embryonic development; mouse] Received June 28, 1994; revised version accepted August 18, 1994.
    [Show full text]
  • Sonic Hedgehog a Neural Tube Anti-Apoptotic Factor 4013 Other Side of the Neural Plate, Remaining in Contact with Midline Cells, RESULTS Was Used As a Control
    Development 128, 4011-4020 (2001) 4011 Printed in Great Britain © The Company of Biologists Limited 2001 DEV2740 Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis Jean-Baptiste Charrier, Françoise Lapointe, Nicole M. Le Douarin and Marie-Aimée Teillet* Institut d’Embryologie Cellulaire et Moléculaire, CNRS FRE2160, 49bis Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France *Author for correspondence (e-mail: [email protected]) Accepted 19 July 2001 SUMMARY In vertebrates the neural tube, like most of the embryonic notochord or a floor plate fragment in its vicinity. The organs, shows discreet areas of programmed cell death at neural tube can also be recovered by transplanting it into several stages during development. In the chick embryo, a stage-matched chick embryo having one of these cell death is dramatically increased in the developing structures. In addition, cells engineered to produce Sonic nervous system and other tissues when the midline cells, hedgehog protein (SHH) can mimic the effect of the notochord and floor plate, are prevented from forming by notochord and floor plate cells in in situ grafts and excision of the axial-paraxial hinge (APH), i.e. caudal transplantation experiments. SHH can thus counteract a Hensen’s node and rostral primitive streak, at the 6-somite built-in cell death program and thereby contribute to organ stage (Charrier, J. B., Teillet, M.-A., Lapointe, F. and Le morphogenesis, in particular in the central nervous system. Douarin, N. M. (1999). Development 126, 4771-4783). In this paper we demonstrate that one day after APH excision, Key words: Apoptosis, Avian embryo, Cell death, Cell survival, when dramatic apoptosis is already present in the neural Floor plate, Notochord, Quail/chick, Shh, Somite, Neural tube, tube, the latter can be rescued from death by grafting a Spinal cord INTRODUCTION generally induces an inflammatory response.
    [Show full text]
  • The Derivatives of Three-Layered Embryo (Germ Layers)
    HUMANHUMAN EMBRYOLOGYEMBRYOLOGY Department of Histology and Embryology Jilin University ChapterChapter 22 GeneralGeneral EmbryologyEmbryology FourthFourth week:week: TheThe derivativesderivatives ofof trilaminartrilaminar germgerm discdisc Dorsal side of the germ disc. At the beginning of the third week of development, the ectodermal germ layer has the shape of a disc that is broader in the cephalic than the caudal region. Cross section shows formation of trilaminar germ disc Primitive pit Drawing of a sagittal section through a 17-day embryo. The most cranial portion of the definitive notochord has formed. ectoderm Schematic view showing the definitive notochord. horizon =ectoderm hillside fields =neural plate mountain peaks =neural folds Cave sinks into mountain =neural tube valley =neural groove 7.1 Derivatives of the Ectodermal Germ Layer 1) Formation of neural tube Notochord induces the overlying ectoderm to thicken and form the neural plate. Cross section Animation of formation of neural plate When notochord is forming, primitive streak is shorten. At meanwhile, neural plate is induced to form cephalic to caudal end, following formation of notochord. By the end of 3rd week, neural folds and neural groove are formed. Neural folds fuse in the midline, beginning in cervical region and Cross section proceeding cranially and caudally. Neural tube is formed & invade into the embryo body. A. Dorsal view of a human embryo at approximately day 22. B. Dorsal view of a human embryo at approximately day 23. The nervous system is in connection with the amniotic cavity through the cranial and caudal neuropores. Cranial/anterior neuropore Neural fold heart Neural groove endoderm caudal/posterior neuropore A.
    [Show full text]
  • Mechanisms of Programmed Cell Death in the Developing Brain
    _TINS July 2000 [final corr.] 12/6/00 10:39 am Page 291 R EVIEW Mechanisms of programmed cell death in the developing brain Chia-Yi Kuan, Kevin A. Roth, Richard A. Flavell and Pasko Rakic Programmed cell death (apoptosis) is an important mechanism that determines the size and shape of the vertebrate nervous system. Recent gene-targeting studies have indicated that homologs of the cell-death pathway in the nematode Caenorhabditis elegans have analogous functions in apoptosis in the developing mammalian brain.However,epistatic genetic analysis has revealed that the apoptosis of progenitor cells during early embryonic development and apoptosis of postmitotic neurons at later stage of brain development have distinct roles and mechanisms.These results provide new insight on the significance and mechanism of neural cell death in mammalian brain development. Trends Neurosci. (2000) 23, 291–297 ELL DEATH has long been recognized to occur in homologs of ced-3 comprise a family of cysteine- Cmost neuronal populations during normal devel- containing, aspartate-specific proteases called caspases5. opment of the vertebrate nervous system (reviewed in The ced-4 homolog is identified as one of the apoptosis Ref. 1). Traditionally, the investigation of neural death protease-activating factors (APAFs)6. The mammalian in development focused on the role of target-derived homologs of ced-9 belong to a growing family of Bcl2 survival factors such as NGF and related neurotrophins proteins, which share the Bcl2-homology (BH) domain (see Ref. 2 for a review). However, in the past few years, and are either pro- or anti-apoptotic7. The cloning of the genetic analysis of programmed cell death in the egl-1 indicates that it is similar to the BH3-domain- nematode Caenorhabditis elegans has inspired new ap- containing, pro-apoptotic subfamily of Bcl2 proteins4.
    [Show full text]
  • Apoptosis: Programmed Cell Death
    BASIC SCIENCE FOR SURGEONS Apoptosis: Programmed Cell Death Nai-Kang Kuan BS; Edward Passaro, Jr, MD urrently there is much interest and excitement in the understanding of how cells un- dergo the process of apoptosis or programmed cell death. Understanding how, why, and when cells are instructed to die may provide insight into the aging process, au- toimmune syndromes, degenerative diseases, and malignant transformation. This re- viewC focuses on the development of apoptosis and describes the process of programmed cell death, some of the factors that incite or prevent its occurrence, and finally some of the diseases in which it may play a role. The hope is that in the not too distant future we may be able to modify or thwart the apoptotic process for therapeutic benefit. The notion that cells are eliminated or ab- tact with that target cell. In experiments, the sorbed in an orderly manner is not new. death or survival of neurons could be modu- What is new is the recognition that this is lated by the loss of NGF, by antibodies, or an important physiologic process.1 More by the addition of exogenous NGF. During than 40 years ago embryologists noted that development and maturation, many types during morphogenesis cells and tissues ofneuronsarebeingproducedinexcess.This were being deleted in a predictable fash- seemingly extravagant waste of excessive ion. During human development as on- neurons has several survival advantages for togeny recapitulates phylogeny, there is the theorganism.Forexampleneuronsthathave loss of branchial arches, the tail, the cloaca, found their way to the wrong target cell do and webbing between fingers.
    [Show full text]