Role of Environmental Estrogens and Acquired Endocrine Resistance in Breast Cancer and Implications for Treatment with Novel Antiestrogens

Total Page:16

File Type:pdf, Size:1020Kb

Role of Environmental Estrogens and Acquired Endocrine Resistance in Breast Cancer and Implications for Treatment with Novel Antiestrogens Role of Environmental Estrogens and Acquired Endocrine Resistance in Breast Cancer and Implications for Treatment with Novel Antiestrogens by Thomas Lorenzo Gonzalez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Toxicology) in the University of Michigan 2018 Doctoral Committee: Assistant Professor Justin A. Colacino, Co-Chair Associate Professor James M. Rae, Co-Chair Professor Rita Loch-Caruso Professor Bhramar Mukherjee Professor Rudy J. Richardson Thomas L. Gonzalez [email protected] ORCID iD: 0000-0003-4497-3106 © Thomas L. Gonzalez 2018 Dedication To my grandparents ii Acknowledgements First, I would like to thank my mentor, Dr. James Rae, for his guidance and unwavering support throughout the duration of my graduate work. From day one, Dr. Rae provided a research environment which allowed me to mature as a scientist, while encouraging me to explore and investigate my own scientific ideas. His commitment to supporting my academic growth has led me to seek out rewarding collaborations with other researchers and develop skills beyond what I expected of myself. I am grateful for his personal investment into my research career and I look forward to continuing our relationship both as colleagues and as friends. Moreover, I am very appreciative of the valuable guidance and time that I have spent working closely with Dr. Justin Colacino who played a critical role in helping me pursue my proposed research ideas during my training. Thank you to each of my committee members Dr. Bhramar Mukherjee, Dr. Rita Loch-Caruso, and Dr. Rudy J. Richardson for the invaluable support and guidance with my dissertation research. Thank you to Dr. Mukherjee and her graduate student, Jonathan Boss, for their expertise with statistical analysis and data interpretation. Thank you to Dr. Loch-Caruso for her valuable academic and professional guidance in the field of toxicology all these years. Thank you to Dr. Richardson for taking the time to help me understand and utilize computational toxicology techniques in my own research. I would also like to thank the members of the Rae lab, especially Dr. Jose Larios and Christina Gersch. Both Jose and Christina have both made substantial time investments iii throughout my training as a bench scientist and were individuals whom I know could reach out to for advice or help in the lab. Thank you to Siqi Sun and Molly Hancock for their time and commitment to the PROTAC project and being great students to work with. Thank you to Dr. Daniel Hayes and Dr. Erin Cobain for sharing with me their clinical expertise with me in the field of breast cancer research. A special thanks to my family, especially my parents Larry and Maria, who have provided unconditional love and support throughout my entire academic career. Lastly, I want to thank Breanna Johnson for being my foundation of support and encouragement all these years. This work is supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number T32ES007062, R01ES028802, and P30ES017885, including the Breast Cancer Research Foundation, the Michigan Lifestage Environmental Exposures and Disease (M-LEEaD) Center Pilot Project Grant, the Rackham Graduate Student Research Grant, and the Rackham Merit Fellowship Program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Finally, I would also like to thank NSF International (Ann Arbor, MI) for their technical support and assistance for analyzing samples used in this dissertation. iv Table of Contents Dedication ...................................................................................................................................... ii Acknowledgements ...................................................................................................................... iii List of Figures .............................................................................................................................. vii List of Tables ................................................................................................................................ ix List of Abbreviations .................................................................................................................... x Abstract ......................................................................................................................................... xi Chapter I. Introduction ................................................................................................................ 1 Human Physiology of Steroid Hormones ................................................................................... 2 Adrenal Control Systems ........................................................................................................ 2 Adrenal Steroidogenesis ......................................................................................................... 3 Gonadal Control Systems ....................................................................................................... 3 Gonadal Steroidogenesis ......................................................................................................... 4 Transport of E2 in the Blood .................................................................................................. 6 Nuclear receptors .................................................................................................................... 7 The Estrogen Receptor ................................................................................................................ 8 ERß ......................................................................................................................................... 8 ERα66 ..................................................................................................................................... 9 Other ERα Isoforms and GPR30 .......................................................................................... 10 Environmental Estrogens and Anti-androgenic Endocrine Disrupting Compounds ................ 12 Phthalates .............................................................................................................................. 14 DDT and its Analogs ............................................................................................................ 15 Methoxychlor ........................................................................................................................ 17 UV-filters .............................................................................................................................. 17 Bisphenols ............................................................................................................................. 18 Parabens ................................................................................................................................ 20 The Role of Estrogen and the ER Pathway in Breast Cancer ................................................... 22 Tumor Cell Subtypes in Breast Cancer ................................................................................. 23 Discovering the Relationship Between Breast Cancer and Estrogen ................................... 24 Types of Antiestrogens ......................................................................................................... 26 Endocrine Therapy Resistance and Recurrence in Breast Cancer ........................................ 26 Rationale for Thesis .................................................................................................................. 29 References ................................................................................................................................. 32 Chapter II. Metabolites of n-Butylparaben and iso-Butylparaben Exhibit Estrogenic Properties in MCF-7 and T47D Human Breast Cancer Cell Lines ....................................... 54 Introduction ............................................................................................................................... 54 Materials and Methods .............................................................................................................. 56 v Results ....................................................................................................................................... 60 Discussion ................................................................................................................................. 65 References ................................................................................................................................. 83 Chapter III. Homology Models of Mouse and Rat Estrogen Receptor-α Ligand-Binding Domain Created by In Silico Mutagenesis of a Human Template: Molecular Docking with 17ß-Estradiol, Diethylstilbestrol, and Paraben Analogs ......................................................... 89 Introduction ............................................................................................................................... 89 Materials and Methods .............................................................................................................. 92 Results ....................................................................................................................................... 99 Discussion ..............................................................................................................................
Recommended publications
  • (Cyp19a1b-GFP) Zebrafish Embryos
    Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos Franc¸ois Brion1, Yann Le Page2, Benjamin Piccini1, Olivier Cardoso1, Sok-Keng Tong3, Bon-chu Chung3, Olivier Kah2* 1 Unite´ d’Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en- Halatte, France, 2 Universite´ de Rennes 1, Institut de Recherche Sante´ Environnement & Travail (IRSET), INSERM U1085, BIOSIT, Campus de Beaulieu, Rennes France, 3 Taiwan Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan Abstract The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.
    [Show full text]
  • DDT and Its Derivatives Have Remained in the Environment
    International Journal of Molecular Sciences Review A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment Ayami Matsushima Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan; [email protected]; Tel.: +81-92-802-4159 Received: 20 March 2018; Accepted: 2 May 2018; Published: 5 May 2018 Abstract: Huge numbers of chemicals are released uncontrolled into the environment and some of these chemicals induce unwanted biological effects, both on wildlife and humans. One class of these chemicals are endocrine-disrupting chemicals (EDCs), which are released even though EDCs can affect not only the functions of steroid hormones but also of various signaling molecules, including any ligand-mediated signal transduction pathways. Dichlorodiphenyltrichloroethane (DDT), a pesticide that is already banned, is one of the best-publicized EDCs and its metabolites have been considered to cause adverse effects on wildlife, even though the exact molecular mechanisms of the abnormalities it causes still remain obscure. Recently, an industrial raw material, bisphenol A (BPA), has attracted worldwide attention as an EDC because it induces developmental abnormalities even at low-dose exposures. DDT and BPA derivatives have structural similarities in their chemical features. In this short review, unclear points on the molecular mechanisms of adverse effects of DDT found on alligators are summarized from data in the literature, and recent experimental and molecular research on BPA derivatives is investigated to introduce novel perspectives on BPA derivatives. Especially, a recently developed BPA derivative, bisphenol C (BPC), is structurally similar to a DDT derivative called dichlorodiphenyldichloroethylene (DDE).
    [Show full text]
  • Tamoxifen As the First Targeted Long-Term Adjuvant Therapy for Breast
    V C Jordan Adjuvant tamoxifen therapy for 21:3 R235–R246 Review breast cancer Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer Correspondence V Craig Jordan should be addressed to V C Jordan Departments of Oncology and Pharmacology, Lombardi Comprehensive Cancer Center, Georgetown University Email Medical Center, Washington, District of Columbia 20057, USA [email protected] Abstract Tamoxifen is an unlikely pioneering medicine in medical oncology. Nevertheless, the medicine Key Words has continued to surprise us, perform, and save lives for the past 40 years. Unlike any other " breast medicine in oncology, it is used to treat all stages of breast cancer, ductal carcinoma in situ,and " endocrine therapy male breast cancer and pioneered the use of chemoprevention by reducing the incidence of breast cancer in women at high risk and induces ovulation in subfertile women! The impact of tamoxifen is ubiquitous. However, the power to save lives from this unlikely success story came from the first laboratory studies which defined that ‘longer was going to be better’ when tamoxifen was being considered as an adjuvant therapy. This is that success story, with a focus on the interdependent components of: excellence in drug discovery, investment in self-selecting young investigators, a conversation with Nature, a conversation between the laboratory and the clinic, and the creation of the Oxford Overview Analysis. Each of these Endocrine-Related Cancer factors was essential to propel the progress of tamoxifen to evolve as an essential part of the fabric of society. Endocrine-Related Cancer (2014) 21, R235–R246 Introduction ‘Science is adventure, discovery, new horizons, insight into our and invariably unsuccessful (except for childhood world, a means of predicting the future and enormous power leukemia).
    [Show full text]
  • Optimization of Food Matrices Enriched with Bioactive Compounds from Fruits and Vegetables
    UNIVERSITÀ DEGLI STUDI DI FOGGIA PhD Course in “HEALTH FOOD INNOVATION AND MANAGEMENT” (XXXI CYCLE) Coordinator: Prof. Matteo Alessandro Del Nobile OPTIMIZATION OF FOOD MATRICES ENRICHED WITH BIOACTIVE COMPOUNDS FROM FRUITS AND VEGETABLES Tutor: PhD student: Dr. Amalia Conte Dr. Valeria Marinelli Co-tutor: Prof.ssa Claudia Piccoli 2017 - 2018 Index Abstract ................................................................................................................................ 1 1. INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Current Food System ........................................................................ 5 1.2 Food sustainability ........................................................................................................ 7 1.3 Waste management ....................................................................................................... 9 1.3.1 Food Waste .......................................................................................................... 13 1.3.2 Food waste or by-products? ................................................................................. 16 1.4 Valorisation of food by-products ............................................................................... 23 1.5 Extraction techniques of bioactive compounds ........................................................ 25 1.6 Microencapsulation of bioactive compound ............................................................
    [Show full text]
  • Final Detailed Review Paper on In
    FINAL DETAILED REVIEW PAPER ON IN UTERO/LACTATIONAL PROTOCOL EPA Contract Number 68-W-01-023 Work Assignments 1-8 and 2-8 July 14, 2005 Prepared For: Gary E. Timm Work Assignment Manager U.S. Environmental Protection Agency Endocrine Disruptor Screening Program Washington, DC By: Battelle 505 King Avenue Columbus, OH 43201 AUTHORS Rochelle W. Tyl, Ph.D., DABT Julia D. George, Ph.D. Research Triangle Institute Research Triangle Park, North Carolina TABLE OF CONTENTS Page List of Abbreviations .................................................................. iv 1.0 EXECUTIVE SUMMARY ........................................................ 1 2.0 INTRODUCTION .............................................................. 2 2.1 Developing and Implementing the Endocrine Disruptor Screening Program ......... 2 2.2 The Validation Process .................................................. 3 2.3 Purpose of the DRP ..................................................... 5 2.4 Objective of the in Utero/lactational Protocol Within the EDSP .................... 5 2.5 Methodology Used in this Analysis .......................................... 6 2.6 Definitions ............................................................. 7 3.0 SCIRNTIFIC BASIS OF THE IN UTERO/LACTATIONAL PROTOCOL .................... 8 3.1 Background ........................................................... 8 3.2 Sexual Developm ent in Mam mals ......................................... 11 3.2.1 Both Sexes .................................................... 13 3.2.2 Males ........................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,623.422 B2 Hansen Et Al
    USOO8623422B2 (12) United States Patent (10) Patent No.: US 8,623.422 B2 Hansen et al. (45) Date of Patent: *Jan. 7, 2014 (54) COMBINATION TREATMENT WITH 5,668,161 A 9/1997 Talley et al. STRONTUM FOR THE PROPHYLAXIS 5,681,842 A 10, 1997 Dellaria et al. AND/OR TREATMENT OF CARTILAGE 5,686.460 A 11/1997 Nicolai et al. AND/OR BONE CONDITIONS 5,686,470 A 11/1997 Weier et al. 5,696,431 A 12/1997 Giannopoulos et al. 5,707,980 A 1/1998 Knutson (75) Inventors: Christian Hansen, Vedback (DK); 5,719,163 A 2f1998 Norman et al. Henrik Nilsson, Copenhagen (DK); 5,750,558 A 5/1998 Brooks et al. Stephan Christgau, Gentofte (DK) 5,753,688 A 5/1998 Talley et al. 5,756,530 A 5/1998 Lee et al. (73) Assignee: Osteologix A/S, Copenhagen (DK) 5,756,531 A 5/1998 Brooks et al. 5,760,068 A 6/1998 Talley et al. (*) Notice: Subject to any disclaimer, the term of this 5,776,967 A 7/1998 Kreft et al. patent is extended or adjusted under 35 5,776,984. A 7/1998 Dellaria et al. U.S.C. 154(b) by 558 days. 5,783,597 A 7/1998 Beers et al. This patent is Subject to a terminal dis 5,807,873 A 9, 1998 Nicolai et al. claimer. 5,824,699 A 10, 1998 Kreft et al. 5,830,911 A 11/1998 Failli et al. 5,840,924 A 11/1998 Desmond et al.
    [Show full text]
  • I USING HIGH THROUGHPUT SCREENING for PREDICTIVE
    USING HIGH THROUGHPUT SCREENING FOR PREDICTIVE MODELING OF REPRODUCTIVE TOXICITY Matthew T. Martin A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Environmental Sciences and Engineering. Chapel Hill 2011 Approved by: Ivan Rusyn, M.D. Ph.D. David J. Dix, Ph.D Richard S. Judson, Ph.D. Alexander Tropsha, Ph.D. Avram Gold, Ph.D. i © 2011 Matthew T. Martin ALL RIGHTS RESERVED ii ABSTRACT MATTHEW T. MARTIN: Using High Throughput Screening For Predictive Modeling of Reproductive Toxicity (Under the direction of Dr. David J. Dix) Traditional reproductive toxicity testing is inefficient, animal intensive and expensive with under a thousand chemicals ever tested among the tens of thousands of chemicals in our environment. Screening hundreds of chemicals through hundreds high-throughput biological assays generated a validated model predictive of rodent reproductive toxicity with potential application toward large-scale chemical testing prioritization and chemical testing decision- making. Chemical classification for model development began with the uniform capturing of the available animal reproductive toxicity test information utilizing an originally developed relational database and reproductive toxicity ontology. Similarly, quantitative high- throughput screening data were consistently processed, analyzed and stored in a relational database with gene and pathway mapping information. Chemicals with high quality in vivo and in vitro data comprised the training, test, external and forward validation chemical sets used to develop and assess the predictive model based on eight selected features generally targeting known modes of reproductive toxicity action.
    [Show full text]
  • Influence of Environmental Endocrine Disruptors on Gonadal Steroidogenesis
    Reproductive toxicology of endocrine disruptors Effects of cadmium, phthalates and phytoestrogens on testicular steroidogenesis David Gunnarsson Department of Molecular Biology Umeå University Umeå, Sweden 2008 Detta verk skyddas enligt lagen om upphovsrätt (URL 1960:729) Copyright © 2008 by David Gunnarsson ISBN: 978-91-7264-631-5 Printed by Arkitektkopia, Umeå, 2008 2 TABLE OF CONTENTS ABSTRACT 5 ABBREVIATIONS 6 LIST OF PAPERS 7 INTRODUCTION 8 History and mechanisms of endocrine disruption 8 Trends in male reproductive health and the possible impact of endocrine disruptors 11 Cadmium (Cd) 14 Cd exposure 14 Cd toxicokinetics 16 Reproductive effects of Cd: insights from animal models 18 Possible reproductive effects in humans 20 Phthalates 21 Phthalate exposure 22 Prenatal and neonatal exposure 23 Phthalate metabolism 24 Reproductive effects of phthalates: insights from animal models 26 Possible reproductive effects in humans 29 Phytoestrogens 29 Phytoestrogen exposure 30 Phytoestrogen metabolism 32 Reproductive effects of phytoestrogens: insights from animal models 33 Possible reproductive effects in humans 36 Regulation of testicular steroidogenesis 37 AIMS OF THIS THESIS 40 RESULTS AND DISCUSSION 41 Effects of Cd on the initial steps in gonadotropin-dependent testosterone synthesis (Paper I) 41 Induction of testicular PGF2 by Cd: protective effects of Zn (Paper II) 42 Cd induces GAPDH gene expression but does not influence the expression of adrenergic receptors in the testis (Paper III) 45 3 Stimulatory effect of MEHP on basal gonadal
    [Show full text]
  • Estrogen Stimulation of P450 Cholesterol Side-Chain Cleavage Activity in Cultures of Human Placental Syncytiotrophoblasts'
    BIOLOGY OF REPRODUCTION 56, 272-278 (1997) Estrogen Stimulation of P450 Cholesterol Side-Chain Cleavage Activity in Cultures of Human Placental Syncytiotrophoblasts' Jeffery S. Babischkin,3 Randall W. Grimes,3 Gerald J. Pepe, 4 and Eugene D. Albrecht2,3 Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology,' Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201 Department of Physiology Eastern Virginia Medical School, Norfolk, Virginia 23501 ABSTRACT biochemical differentiation of the latter cells that is mani- fested as an increase in expression of the LDL receptor and Downloaded from https://academic.oup.com/biolreprod/article/56/1/272/2760805 by guest on 29 September 2021 The present study determined whether estrogen has a role in regulating the P450 cholesterol side-chain cleavage enzyme P450,,, enzyme system. (P450_cc) and/or de novo/deesterification cholesterol pathways Recently, we reported that LDL uptake was increased in involved in progesterone biosynthesis within human syncytiotro- human syncytiotrophoblast cells cultured with estrogen [7] phoblasts. Human placental syncytiotrophoblasts were cultured and suggested that estrogen also regulates key steps in the for 48 h with estradiol, and P450,,,cc activity was determined by placental progesterone pathway in human pregnancy. How- the formation of progesterone from 25-hydroxycholesterol. Es- ever, it remains to be determined whether estrogen also reg- tradiol at 10 7 or 10 6 M and 25-hydroxycholesterol increased
    [Show full text]
  • NF-B—An Important Player in Xenoestrogen Signaling in Immune
    cells Review NF-κB—An Important Player in Xenoestrogen Signaling in Immune Cells Karolina Nowak * , Ewa Jabło ´nskaand Wioletta Ratajczak-Wrona Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; [email protected] (E.J.); [email protected] (W.R.-W.) * Correspondence: [email protected] Abstract: The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
    [Show full text]
  • Methoxychlor As a Model for Environmental Estrogens
    Critical Reviews in Toxicology ISSN: 1040-8444 (Print) 1547-6898 (Online) Journal homepage: http://www.tandfonline.com/loi/itxc20 Methoxychlor as a Model for Environmental Estrogens Audrey M. Cummings To cite this article: Audrey M. Cummings (1997) Methoxychlor as a Model for Environmental Estrogens, Critical Reviews in Toxicology, 27:4, 367-379 To link to this article: http://dx.doi.org/10.3109/10408449709089899 Published online: 25 Sep 2008. Submit your article to this journal Article views: 76 View related articles Citing articles: 8 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=itxc20 Download by: [University of Lethbridge] Date: 26 September 2015, At: 00:46 Critical Reviews in Toxicology, 27(4):367-379 ( 1997) Methoxychlor as a Model for Environmental Estrogens Audrey M. Cummings * Endocrinology Branch, Reproductive Toxicology Division, NHEERL, USEPA, Research Triangle Park, NC * Address all correspondence to: Audrey M. Cummings MD-72, NHEERL, USEPA, Research Triangle Park, NC 277 1 1 ABSTRACT: Estrogens can have a variety of physiological effects, especially on the reproductive system. Chemicals with estrogenic activity that are present in the environment may thus be considered potentially hazardous to development and/or reproduction. Methoxychlor is one such chemical, a chlorinated hydrocarbon pesticide with proestrogenic activity. Metabolism of the chemical either in vivo or using liver microsomes produces 2,2-bis(p-hydroxyphenyl)- 1,l,l -trichloroethane (HPTE), the active estrogenic form, and the delineation of this mechanism is reviewed herein. When administered in vivo, methoxychlor has adverse effects on fertility, early pregnancy, and in utero development in females as well as adverse effects on adult males such as altered social behavior following prenatal exposure to methoxychlor.
    [Show full text]
  • Research and Practice for Fall Injury Control in the Workplace: Proceedings of International Conference on Fall Prevention and Protection
    NIOSH Bibliography of Communication and DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention National Institute for Occupational Safety and Health NIOSH BIBLIOGRAPHY OF COMMUNICATION AND RESEARCH PRODUCTS 2011 A Listing of NIOSH Publications for Calendar Year 2011 Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Washington, DC April 2012 ii FOREWORD We strive for excellence in our scientific endeavors and in the publications of our work. This bibliography is our effort to provide the best scientific information possible to maintain and improve safety and health at work. I believe that this bibliography reflects and reinforces the NIOSH values of relevance, quality, and impact, and it demonstrates the consistent commitment of NIOSH and our partners to all workers as they face challenges to be safe and healthy while contributing to our nation’s productivity. Please explore these products further and distribute them freely in workplaces and to our colleagues in the occupational safety and health community. John Howard, M.D. Director, National Institute for Occupational Safety and Health 111 iv CONTENTS I. Journal Articles...............................................................................................................................................1 II. Books or Book Chapters ............................................................................................................................ 43 III. NIOSH
    [Show full text]