Genetics: Early Online, published on July 24, 2017 as 10.1534/genetics.117.1125 A gene implicated in activation of retinoic acid receptor targets is a novel renal agenesis gene in humans. Patrick D. Brophy, *1 Maria Rasmussen,†1 Mrutyunjaya Parida, ‡1 Greg Bonde, § Benjamin W. Darbro, * Xiaojing Hong, ‡ Jason C. Clarke, * Kevin A. Peterson, ** James Denegre, ** Michael Schneider, †† Caroline R. Sussman, ‡‡ Lone Sunde, † Dorte L. Lildballe, † Jens Michael Hertz, §§ Robert A. Cornell, §, Stephen A. Murray, ** J. Robert Manak*‡ 1Co-first authors *Department of Pediatrics, University of Iowa, Iowa City, IA, 52242. †Department of Clinical Genetics, Aarhus University Hospital, Skejby, Denmark ‡Department of Biology, University of Iowa, Iowa City, IA, 52242. §Department of Anatomy and Cell Biology, University of Iowa, IA, 52242. **The Jackson Laboratory, Bar Harbor, ME, 04609. ††Medical Genetics, Carle Foundation Hospital and Physician Group, Urbana, IL, 61801. ‡‡Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, 55905. §§Department of Clinical Genetics, Odense University Hospital, Denmark IRB # 200711705 Whole exome sequencing data available in the Sequence Read Archive (SRA) database (accession number SRP112780) 1 Copyright 2017. Running Title: GREB1L, a novel renal agenesis gene Key Words: GREB1L, retinoic acid, renal agenesis, CAKUT, whole exome sequencing Corresponding author: J. Robert Manak, PhD 459 Biology Building, Dept. of Biology University of Iowa 129 E. Jefferson St. Iowa City, IA 52242 Ph. 319-335-0180
[email protected] 2 ABSTRACT Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end stage renal disease.