On Well Generated Triangulated Categories Marco Porta

Total Page:16

File Type:pdf, Size:1020Kb

On Well Generated Triangulated Categories Marco Porta On well generated triangulated categories Marco Porta To cite this version: Marco Porta. On well generated triangulated categories. Mathematics [math]. Université Paris- Diderot - Paris VII; Università degli studi di Milano, 2008. English. tel-00338033 HAL Id: tel-00338033 https://tel.archives-ouvertes.fr/tel-00338033 Submitted on 10 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE´ PARIS DIDEROT - PARIS 7 ECOLE´ DOCTORALE SCIENCES MATHEMATIQUES´ DE PARIS - CENTRE en cotutelle avec / in cotutela con UNIVERSITA` DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA “FEDERIGO ENRIQUES” Th`ese de Doctorat / Tesi di Dottorato MATHEMATIQUES´ / MATEMATICA Marco PORTA On well generated triangulated categories Soutenue le 1er f´evrier 2008, devant le jury compos´ede : M. Alberto CANONACO (Universit`adi Pavia) M. Denis-Charles CISINSKI (Universit´eParis 13) M. Bernhard KELLER (Universit´eParis 7) Directeur M. Carlos SIMPSON (Universit´ede Nice) Rapporteur M. Lambertus VAN GEEMEN (Universit`adi Milano) Co-directeur Rapporteur externe (absent `ala soutenance) M. Amnon NEEMAN (University of Canberra) 1 2 3 Remerciements Cette th`esen’existerait pas sans l’aide de certaines personnes. Chacune d’entre elles a contribu´e,de mani`erediff´erente mais essentielle, `ala r´eussitede ce travail. Je suis extrˆemement heureux d’avoir ici l’occasion de toutes les remercier. En premier lieu, je ressens un vif besoin de t´emoignerma profonde gratitude `aBernhard Keller, qui m’a suivi et soutenu pendant trois ans pour la pr´eparationet la r´edactionde cette th`ese.J’ai eu le privil`ege,`ases cˆot´es,de d´ecouvrirl’ampleur de sa culture, qui n’est pas que math´ematique,et de faire l’exp´eriencedans les jours difficiles de son soutien discret mais concret, et de son humanit´e.D`esle d´ebut,j’ai ´et´efascin´e(et contamin´e) par sa mani`ere de faire des maths. Le caract`erequi le d´efinitle mieux est l’´el´egance. Pour autant que je me souvienne, chacun de ses expos´es,chacune de ses remarques, observations ou d´emonstrations´etaitimpeccable, et “coulait” avec un naturel que je n’h´esiteraipas `aqualifier d’artistique. Et cela sans rien enlever `ala profondeur des id´ees et `al’´etenduede la vision math´ematique. Tout ceci pour dire que je ne r´eussisabsolument pas `apenser `alui comme `aun ‘professeur de math´ematiques’. Pour moi, il a ´et´eet il restera un maˆıtre dans le sens que les Orientaux donnent `a cette parole. De Bert van Geemen je ne peux pas ne pas me rappeler qu’il a ´et´ele premier math´ematicien`am’avoir souhait´ela bienvenue dans la communaut´e,en tant que pr´esident de la commission d’examen pour l’admission au XVIII`emedoctorat de math´ematiquesde l’Universit´ede Milan. Apr`esm’avoir accueilli parmi les math´ema- ticiens, moi qui venais de la Physique et ne connaissais personne dans le milieu, il m’a “soumis” `aquelques cours intensifs de topologie et de g´eom´etriealg´ebriqueque je me rappelle encore comme des mod`elesde rigueur et de clart´edidactiques. Pour cela, et pour m’avoir par la suite conseill´eet soutenu en tant que co-tuteur, je le remercie. Cette th`esetraite de ‘cat´egoriestriangul´eesbien engendr´ees’,qui ont ´et´einvent´ees par Amnon Neeman. Je suis heureux que ce travail lui ait fait plaisir. Je n’ai pas besoin de dire toute la dette intellectuelle que j’ai envers ses id´eesmagnifiques. Je le remercie pour avoir accept´ed’ˆetrel’un des rapporteurs et de faire partie du jury de soutenance. Pour les mˆemesraisons, je remercie aussi Carlos Simpson. Ainsi que pour les conversations math´ematiquesintenses et les conseils pr´ecieuxqu’il m’a donn´esau d´ebutde tout ce parcours. 4 Je suis tr`esreconnaissant envers plusieurs personnes qui ont eu, chacune `asa mani`ere,leur rˆoledans la r´ealisationde cette th`ese: Antonio Lanteri qui a ´et´eun excellent directeur du doctorat en math´ematiquesde l’Universit´ede Milan et qui a continu´e`ame suivre jusqu’`acette soutenance, mˆeme apr`esexpiration de son mandat; Georges Maltsiniotis qui m’a donn´el’opportunit´ed’exposer les id´eesde cette th`ese dans le cadre du s´eminaire“Alg`ebreet topologie homotopiques” `aJussieu, et avec lui Daniel Huybrechts, Max Karoubi, Bruno Kahn, Bruno Klinger et Fabien Morel qui, `atravers leurs cours et s´eminaires,m’ont aid´e`aaffiner mes int´erˆetsmath´ematiques; Alberto Canonaco et Denis-Charles Cisisnski qui ont accept´ede faire partie du jury de soutenance; Alberto Collino pour tout ce qu’il m’a enseign´eet pour m’avoir, le premier, fait tomber amoureux de la ‘g´eom´etrie’au sens large; ´egalement Mmes Wasse, Le Hou´ezec,Douchez, Del`uet M. Malaspina pour m’avoir tant de fois aid´e`ad´ebrouillerles probl`emesadministratifs complexes inh´erents au syst`emede cotutelle internationale; et l’Universit´eFranco-Italienne pour m’avoir accord´eune bourse Vinci 2006 qui m’a aid´e`afinancer mon s´ejouren France. Je me rappelle aussi avec plaisir mes coll`eguesdoctorants qui ont contribu´e`a cr´eerun climat d´etendupropice `ala recherche au septi`eme´etagede l’institut de math´ematiquesde Chevaleret: C´ecileArmana, Olivier Fouquet, Jo¨elRiou, Carmelo Vaccaro et bien d’autres. Ainsi que tous les amis math´ematiciensconnus ici ou l`ade par le monde grˆaceaux math´ematiques:Osamu Iyama, Satoshi Mochizuki, Go Yamashita ... Et finalement j’ai l’occasion de satisfaire une n´ecessit´eque je ressens depuis le d´ebutde cette aventure: remercier du fond du coeur Odile Nazart, ma ch`ere‘Odilia’. Mon unique crainte est de tomber dans la rh´etorique. Et pourtant, je n’exag`ere pas. Tu ne te rends peut-ˆetrepas r´eellement compte de ce que tu as fait pour moi pendant ces ann´ees.Non seulement tu as support´ele sourire aux l`evresque je sois toujours, comme tu dis, “le nez dans mes livres” ou “dans l’ordinateur”, mais tu m’as soutenu et encourag´eavec tant de conviction et de pers´ev´eranceque je n’arrive pas `ame rappeler tout cela sans ˆetreprofond´ement ´emu. Et que dire de notre si ch`ere‘Agnelli’, la tr`esch`ereMme Jacqueline Nazart, sinon qu’elle a ´et´epour moi une seconde maman, une seconde famille? Qui la connaˆıtsait que je n’exag`erepas! ’Merci’, maman Jacqueline, pour m’avoir soutenu et encourag´e,et pour m’avoir aid´e tr`esconcr`etement pour mon s´ejour`aParis. Un merci aussi `ames parents, pour tout ce qu’ils ont fait pour me permettre d’‘´etudier’,comme j’ai toujours aim´e;`amon fr`ereStefano, pour nous avoir souvent h´eberg´eset, simplement, pour ˆetrel`a;aux amis, en particulier Carlo et sa famille, `a Katia surtout; `aLaure Angladette et Mme Taslitsky, elles savent de quoi je parle. Enfin, je remercie avec tendresse mon grand-p`ere‘Mini’, qui `atrois ans m’a en- seign´el’“arithm´etique”,en me faisant jouer avec les nombres jusqu’`acent. Et avec lui, Chet Baker, John Coltrane et Wolfgang Amadeus Mozart, compagnons quasi quotidiens de toutes ces ann´ees. 5 Ringraziamenti Questa tesi non esisterebbe senza l’aiuto di alcune persone. Ognuna di loro ha contribuito in modo diverso, ma essenziale, alla riuscita di questo lavoro. Sono es- tremamente felice di avere qui l’occasione di ringraziarle tutte. In primo luogo sento l’urgenza di testimoniare la mia gratitudine pi`usincera e profonda a Bernhard Keller, che mi ha seguito e sostenuto lungo tre anni nella preparazione e la stesura del lavoro qui presentato. Di lui ho avuto la fortuna di ammirare la vasta e profonda cultura, non solo matematica, di sperimentare il sostegno discreto ma concreto nei giorni difficili e di sentire la calda umanit`a.Fin da subito sono stato affascinato (e conta- giato) dal suo modo di fare matematica. Il tratto che lo contraddistingue tra mille `e l’eleganza. Per quel che mi ricordo, ogni suo intervento, osservazione, dimostrazione, esposizione, ´estato caratterizzato da una impeccabilit`ae una naturalezza che non esito a definire artistiche, senza nulla togliere alla profondit`adelle idee e all’ampiezza della visione matematica. Tutto ci`oper dire che non riesco assolutamente a pensare a lui come a un ‘professore di matematica’. Per me `estato e rimarr`aun maestro nel senso che gli orientali danno a questo termine. Di Bert van Geemen non posso non ricordare che `estato il primo matematico ad avermi dato il benvenuto nella comunit`a,essendo presidente della commissione d’esame per l’ammissione al XVIII ciclo del dottorato in matematica dell’Universit`a di Milano. Dopo avermi accolto tra i matematici, io che venivo dalla Fisica e non conoscevo nessuno nell’ambiente, mi ha “esposto” ad alcuni corsi intensivi di topolo- gia e geometria algebrica che ricordo ancora come modelli di rigore e di chiarezza didattica. Per questo, e per avermi successivamente consigliato e sostenuto come co-tutor, lo ringrazio. Questa tesi tratta di ‘categorie triangolate ben generate’, che sono state inventate da Amnon Neeman. Sono felice che questo lavoro gli abbia fatto piacere. Inutile dire quale sia il debito intellettuale che ha nei confronti delle sue splendide idee. Lo ringrazio per aver accettato di essere uno dei “referees” e di far parte della commis- sione dell’esame finale.
Recommended publications
  • Classification of Subcategories in Abelian Categories and Triangulated Categories
    CLASSIFICATION OF SUBCATEGORIES IN ABELIAN CATEGORIES AND TRIANGULATED CATEGORIES ATHESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN MATHEMATICS UNIVERSITY OF REGINA By Yong Liu Regina, Saskatchewan September 2016 c Copyright 2016: Yong Liu UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Yong Liu, candidate for the degree of Doctor of Philosophy in Mathematics, has presented a thesis titled, Classification of Subcategories in Abelian Categories and Triangulated Categories, in an oral examination held on September 8, 2016. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. Henning Krause, University of Bielefeld Supervisor: Dr. Donald Stanley, Department of Mathematics and Statistics Committee Member: Dr. Allen Herman, Department of Mathematics and Statistics Committee Member: *Dr. Fernando Szechtman, Department of Mathematics and Statistics Committee Member: Dr. Yiyu Yao, Department of Computer Science Chair of Defense: Dr. Renata Raina-Fulton, Department of Chemistry and Biochemistry *Not present at defense Abstract Two approaches for classifying subcategories of a category are given. We examine the class of Serre subcategories in an abelian category as our first target, using the concepts of monoform objects and the associated atom spectrum [13]. Then we generalize this idea to give a classification of nullity classes in an abelian category, using premonoform objects instead to form a new spectrum so that there is a bijection between the collection of nullity classes and that of closed and extension closed subsets of the spectrum.
    [Show full text]
  • Non-Exactness of Direct Products of Quasi-Coherent Sheaves
    Documenta Math. 2037 Non-Exactness of Direct Products of Quasi-Coherent Sheaves Ryo Kanda Received: March 19, 2019 Revised: September 4, 2019 Communicated by Henning Krause Abstract. For a noetherian scheme that has an ample family of invertible sheaves, we prove that direct products in the category of quasi-coherent sheaves are not exact unless the scheme is affine. This result can especially be applied to all quasi-projective schemes over commutative noetherian rings. The main tools of the proof are the Gabriel-Popescu embedding and Roos’ characterization of Grothendieck categories satisfying Ab6 and Ab4*. 2010 Mathematics Subject Classification: 14F05 (Primary), 18E20, 16D90, 16W50, 13C60 (Secondary) Keywords and Phrases: Quasi-coherent sheaf, divisorial scheme, invertible sheaf, direct product, Gabriel-Popescu embedding, Grothendieck category Contents 1 Introduction 2038 Acknowledgments 2039 2 Gabriel-Popescu embedding and Roos’ theorem 2039 2.1 Preliminaries ............................2039 2.2 Gabriel-Popescu embedding ....................2043 2.3 Roos’ theorem ...........................2045 3 Divisorial noetherian schemes 2047 References 2054 Documenta Mathematica 24 (2019) 2037–2056 2038 Ryo Kanda 1 Introduction The class of Grothendieck categories is a large framework that includes • the category Mod R of right modules over a ring R, • the category QCoh X of quasi-coherent sheaves on a scheme X, and • the category of sheaves of abelian groups on a topological space. One of the significant properties of Mod R for rings R among Grothendieck categories is the exactness of direct products, which is known as Grothendieck’s condition Ab4*. This is immediately verified by direct computation, but it is also a consequence of the fact that Mod R has enough projectives.
    [Show full text]
  • On the Voevodsky Motive of the Moduli Space of Higgs Bundles on a Curve
    ON THE VOEVODSKY MOTIVE OF THE MODULI SPACE OF HIGGS BUNDLES ON A CURVE VICTORIA HOSKINS AND SIMON PEPIN LEHALLEUR Abstract We study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky's triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic. Contents 1. Introduction 1 1.1. Moduli of Higgs bundles and their cohomological invariants 1 1.2. Our results 2 2. Moduli of Higgs bundles and moduli of chains 4 2.1. Moduli of Higgs bundles 5 2.2. The scaling action on the moduli space of Higgs bundles 5 2.3. Moduli of chains 6 2.4. Variation of stability and Harder{Narasimhan stratification results 8 3. Voevodsky's category of effective motives and motives of stacks 8 3.1. Motives of schemes 8 3.2. Motives of smooth exhaustive stacks 9 4. Motivic non-abelian Hodge correspondence 10 5. Hecke correspondences and the stack of generically surjective chains 11 5.1. Motives of stacks of Hecke correspondences 11 5.2. Motive of the stack of generically surjective chains 12 6. The recursive description of the motive of the Higgs moduli space 13 6.1. Motivic consequences of wall-crossing and HN recursions 13 6.2.
    [Show full text]
  • Perpendicular Categories with Applications to Representations and Sheaves
    JOURNAL OF ALGEBRA 14, 273-343 (1991) Perpendicular Categories with Applications to Representations and Sheaves WERNER GEIGLE AND HELMUT LENZING Fachbereich Mathematik, Universitiit-GH Paderborn, D-4790 Paderborn, Germany Communicated by Walter Feit Received March 20, 1989 DEDICATED TO PROFESSORHIROYUKI TACHIKAWA ON THE OCCASION OF HIS 60TH BIRTHDAY This paper is concerned with the omnipresence of the formation of the sub- categories right (left) perpendicular to a subcategory of objects in an abelian category. We encounter these subcategories in various contexts: l the formation of quotient categories with respect to localizing subcategories (cf. Section 2); w the deletion of vertices and shrinking of arrows (see [37]) in the representa- tion theory of finite dimensional algebras (cf. Section 5); l the comparison of the representation theories of different extended Dynkin quivers (cf. Section 10); l the theory of tilting (cf. Sections 4 and 6); l the study of homological epimorphisms of rings (cf. Section 4); l the passage from graded modules to coherent sheaveson ‘a possibly weighted projective variety or scheme (cf. Section 7 and [21]); l the study of (maximal) Cohen-Macaulay modules over surface singularities (cf. Section 8); . the comparison of weighted projective lines for different weight sequences (cf. Section 9); l the formation of atline and local algebras attached to path algebras of extended Dynkin quivers, canonical algebras, and weighted projective lines (cf. Section 11 and [21] and the concept of universal localization in [40]). Formation of the perpendicular category has many aspects in common with localization and allows one to dispose of localization techniques in situations not accessible to any of the classical concepts of localization.
    [Show full text]
  • Classifying Finite Localizations of Quasicoherent Sheaves
    Algebra i analiz St. Petersburg Math. J. Tom 21 (2009), 3 Vol. 21 (2010), No. 3, Pages 433–458 S 1061-0022(10)01102-7 Article electronically published on February 26, 2010 CLASSIFYING FINITE LOCALIZATIONS OF QUASICOHERENT SHEAVES G. GARKUSHA In memory of Vera Puninskaya Abstract. Given a quasicompact, quasiseparated scheme X, a bijection between the tensor localizing subcategories of finite type in Qcoh(X) and the set of all subsets ⊆ \ ∈ Y X of the form Y = i∈Ω Yi,withX Yi quasicompact and open for all i Ω, is established. As an application, an isomorphism of ringed spaces ∼ (X, OX ) −→ (spec(Qcoh(X)), OQcoh(X)) is constructed, where (spec(Qcoh(X)), OQcoh(X)) is a ringed space associated with the lattice of tensor localizing subcategories of finite type. Also, a bijective correspon- dence between the tensor thick subcategories of perfect complexes Dper(X)andthe tensor localizing subcategories of finite type in Qcoh(X) is established. §1. Introduction In his celebrated paper [1] on Abelian categories, Gabriel proved that for any Noe- therian scheme X, the assignments ⊇D→ ⊇ →{ ∈ | ⊆ } (1.1) coh X suppX (x)andX U x coh X suppX (x) U x∈D induce bijections between (1) the set of all tensor Serre subcategories of coh X,and ⊆ ∈ (2) the set of all subsets U X of the form U = i∈Ω Yi, where, for all i Ω, Yi has a quasicompact open complement X \ Yi. As a consequence of this result, X can be reconstructed from its Abelian category, coh X, of coherent sheaves (see Buan–Krause–Solberg [2, §8]).
    [Show full text]
  • Types of Serre Subcategories of Grothendieck Categories
    TYPES OF SERRE SUBCATEGORIES OF GROTHENDIECK CATEGORIES JIAN FENG, PU ZHANG∗ Abstract. Every Serre subcategory of an abelian category is assigned a unique type. The type of a Serre subcategory of a Grothendieck category is in the list: (0, 0), (0, −1), (1, −1), (0, −2), (1, −2), (2, −1), (+∞, −∞); and for each (m, −n) in this list, there exists a Serre subcategory such that its type is (m, −n). This uses right (left) recollements of abelian categories, Tachikawa-Ohtake [TO] on strongly hereditary torsion pairs, and Geigle-Lenzing [GL] on localizing subcategories. If all the functors in a recollement of abelian categories are exact, then the recollement splits. Quite surprising, any left recollement of a Grothendieck category can be extended to a recollement; but this is not true for a right recollement. Thus, a colocalizing subcategory of a Grothendieck category is localizing; but the converse is not true. All these results do not hold in triangulated categories. Key words and phrases. the type of a Serre subcategory, right recollement, strongly hereditary torsion pair, quotient functor, localizing subcategory, Grothendieck category 1. Introduction Given a Serre subcategory S of an abelian category A with inclusion functor i : S → A and quotient functor Q : A → A/S, it is fundamental to know when it is localizing (resp. colocalizing), i.e., Q has a right (resp. left) adjoint ([S], [G]). By W. Geigle and H. Lenzing [GL], S is localizing if and only if there exists an exact sequence 0 → S1 → A → C → S2 → 0 with S1 ∈ S, S2 ∈ S, and C ∈ S⊥≤1 ; and if and only if the restriction Q : S⊥≤1 → A/S is an equivalence of categories.
    [Show full text]
  • CONSTRUCTION of T-STRUCTURES and EQUIVALENCES of DERIVED CATEGORIES
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 355, Number 6, Pages 2523{2543 S 0002-9947(03)03261-6 Article electronically published on January 30, 2003 CONSTRUCTION OF t-STRUCTURES AND EQUIVALENCES OF DERIVED CATEGORIES LEOVIGILDO ALONSO TARR´IO, ANA JEREM´IAS LOPEZ,´ AND MAR´IA JOSESOUTOSALORIO´ Abstract. We associate a t-structure to a family of objects in D( ), the A derived category of a Grothendieck category . Using general results on t- A structures, we give a new proof of Rickard's theorem on equivalence of bounded derived categories of modules. Also, we extend this result to bounded derived categories of quasi-coherent sheaves on separated divisorial schemes obtaining, in particular, Be˘ılinson's equivalences. Introduction One important observation in modern homological algebra is that sometimes equivalences of derived categories do not come from equivalences of the initial abelian categories. A remarkable example of this situation is that of complexes of holonomic regular -modules and complexes of locally constructible finite type sheaves of vector spacesD over an analytic variety. In fact, to a single regular holo- nomic -module there corresponds a full complex of constructible sheaves which are calledD \perverse sheaves". In turn, these sheaves are connected with intersection cohomology that allows us to recover Poincar´e duality for singular analytic spaces. It is a crucial fact that a (bounded) derived category Db may contain, as full subcategories, abelian categories that are not isomorphic to the initial one but whose (bounded) derived category is isomorphic to Db. These facts have been categorized by Be˘ılinson, Bernstein, Deligne and Gabber in [BBD] through the concept of t-structures.At-structure in a triangulated category T is given by functors which resemble the usual truncation functors in derived categories and provide as a by-product an abelian full subcategory of T,itsheart, together with a homological functor on T with values in .
    [Show full text]
  • The Observable Structure of Persistence Modules
    This is a repository copy of The observable structure of persistence modules. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94496/ Version: Accepted Version Article: Chazal, F, Crawley-Boevey, WW and de Silva, V (2016) The observable structure of persistence modules. Homology, Homotopy and Applications, 18 (2). pp. 247-265. ISSN 1532-0073 https://doi.org/10.4310/HHA.2016.v18.n2.a14 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE OBSERVABLE STRUCTURE OF PERSISTENCE MODULES FRED´ ERIC´ CHAZAL, WILLIAM CRAWLEY-BOEVEY, AND VIN DE SILVA Abstract. In persistent topology, q-tame modules appear as a natural and large class of persistence modules indexed over the real line for which a persistence diagram is de- finable.
    [Show full text]
  • Localization of Triangulated Categories and Derived Categories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 141, 463-483 (1991) Localization of Triangulated Categories and Derived Categories JUN-ICHI MIYACHI Department of Mathematics, Tokyo Gakugei University, Koganei-shi, Tokyo, 184, Japan Communicated by Kent R. Fuller Received June 12, 1989 INTRODUCTION The notion of quotient and localization of abelian categories by dense subcategories (i.e., Serre classes) was introduced by Gabriel, and plays an important role in ring theory [6, 131. The notion of triangulated categories was introduced by Grothendieck and developed by Verdier [9, 16) and is recently useful in representation theory [8,4, 143. The quotient of tri- angulated categories by epaisse subcategories is constructed in [16]. Both quotients were indicated by Grothendieck, and they resemble each other. In this paper, we will consider triangulated categories and derived categories from the point of view of localization of abelian categories. Verdier gave a condition which is equivalent to the one that a quotient functor has a right adjoint, and considered a relation between tpaisse sub- categories [16]. We show that localization of triangulated categories is similarly defined, and have a relation between localizations and Cpaisse subcategories. Beilinson, Bernstein, and Deligne introduced the notion of t-structure which is similar to torsion theory in abelian categories [2]. We, in particular, consider a stable t-structure, which is an epaisse subcategory, and deal with a correspondence between localizations of triangulated categories and stable r-structures. And then recollement, in the sense of [2], is equivalent to bilocalization.
    [Show full text]
  • On Abelian Categories Lemma 1.1. Let C Be a Full Subcategory of an Abelian Category, A
    HOMOLOGICAL ALGEBRA SEMINAR BLAKE FARMAN 1. [Wei95, Section 1.6]: More on Abelian Categories Lemma 1.1. Let C be a full subcategory of an abelian category, A. (1) C is additive if and only if C contains the zero object and C is closed under biproducts. (2) C is abelian and the inclusion functor {: C!A is exact if and only if C is additive and C is closed under taking kernels and cokernels. Remark 1.2. The usage of 'closed' in the second statement is ambiguous. There are two possible readings of closed. The first is the literal reading, which says that whenever f 2 C(X; Y ), taking the kernel, ker(f): K ! X, in A implies that K is actually an object of C. This seems overly restrictive (if not false), for reasons that will become clear in the proof. Instead, we take the second possible reading, which seems more appropriate in the cat- egorical setting. For any morphism f 2 C(X; Y ), denote by ker(f)A : K ! X and by 0 ker(f)C : K ! X the kernels taken in A and C, respectively. To say that C is closed under kernels is to say that there exists a unique isomorphism h 2 A(K0;K) making the diagram K0 9!h ker(f)A ker(f) f K C X Y commute. Closure under cokernels is formally dual. It should be noted that this says that we can always choose an object of K of C and a morphism K ! X that satisfies the universal property for kernels, not that all choices of a kernel have domain an object of C.
    [Show full text]
  • Arxiv:1912.00923V1 [Math.AG] 27 Nov 2019 Pc Over Space
    On localizing subcategories of derived categories of categories of quasi-coherent sheaves on Noetherian algebraic spaces Li Lu December 3, 2019 1 Introduction 1.1 Background Classification of localizing subcategories is quite an active subject widely studied by a number of authors (see, for example, [25], [14], [16], [1], [15], [27], [29], [9], [18], [3] and [12]). In [25], Neeman and Bokstedt state a remarkable theorem: Theorem 1.1 (Neeman-Bokstedt, 1992) Let R be a commutative Noetherian ring. We denote by supp−1(Φ) the subcategory of D(R) consisting of all R- complexes M • with supp(M •) ⊂ Φ. There is an inclusion-preserving bijection of sets o supp/ {localizing subcategories of D(R)} −1{subsets of Spec(R)}. supp Neeman and Bokstedt’s theorem is a beautiful result. Tarrıo, L´opez and Salorio in [29] proved a similar result for a Noetherian formal scheme. Theorem 1.2 (Tarrıo-L´opez-Salorio, [29], Theorem 4.12, 2004) For a Noethe- rian formal scheme X there is a bijection between the class of rigid localizing arXiv:1912.00923v1 [math.AG] 27 Nov 2019 subcategories of Dqct(X) and the set of all subsets of X. Our aim is to prove a similar result for a Noetherian separated algebraic space. 1.2 The Main theorem 1 Definition 1.3 Let S be a scheme contained in Schfppf . Let X be an algebraic space over S. • We say X is a locally Noetherian algebraic space if for every scheme U and every e´tale morphism U → X the scheme U is locally Noetherian.
    [Show full text]
  • Proper Equivariant Stable Homotopy Theory Dieter Degrijse Markus
    Proper Equivariant Stable Homotopy Theory Dieter Degrijse Markus Hausmann Wolfgang L¨uck Irakli Patchkoria Stefan Schwede Author address: Keylane, Copenhagen, Denmark Email address: [email protected] Department of Mathematical Sciences, Københavns Universitet, Denmark Email address: [email protected] Mathematisches Institut, Universitat¨ Bonn, Germany Email address: [email protected] Department of Mathematics, University of Aberdeen, UK Email address: [email protected] Mathematisches Institut, Universitat¨ Bonn, Germany Email address: [email protected] Contents Introduction 1 Chapter 1. Equivariant spectra 5 1.1. Orthogonal G-spectra 5 1.2. The stable model structure 12 1.3. The G-equivariant stable homotopy category 31 1.4. Change of groups 37 Chapter 2. Equivariant homotopy groups 59 2.1. G-equivariant homotopy groups 59 2.2. Equivariant homotopy groups as Mackey functors 69 2.3. Rational proper stable homotopy theory 75 Chapter 3. Proper equivariant cohomology theories 81 3.1. Excisive functors from G-spectra 81 3.2. Proper cohomology theories from G-spectra 102 3.3. Global versus proper stable homotopy types 110 3.4. Equivariant K-theory 118 Bibliography 133 Index 137 iii Abstract This monograph introduces a framework for genuine proper equivariant stable homotopy theory for Lie groups. The adjective `proper' alludes to the feature that equivalences are tested on compact subgroups, and that the objects are built from equivariant cells with compact isotropy groups; the adjective `genuine' indicates that the theory comes with appropriate transfers and Wirthm¨ullerisomorphisms, and the resulting equivariant cohomology theories support the analog of an RO(G)- grading. Our model for genuine proper G-equivariant stable homotopy theory is the category of orthogonal G-spectra; the equivalences are those morphisms that induce isomorphisms of equivariant stable homotopy groups for all compact subgroups of G.
    [Show full text]