Chapter 49 Resuscitation Guidelines

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 49 Resuscitation Guidelines Resuscitation Guidelines Chapter 49 RESUSCITATION GUIDELINES † NICHOLAS T. TARMEY, FRCA,* AND R. SCOTT FRAZER, FFARCSI INTRODUCTION EXISTING GUIDELINES Cardiac Arrest Guidelines Trauma Resuscitation Guidelines Prehospital Resuscitation Guidelines EVIDENCE FOR MILITARY TRAUMATIC CARDIORESPIRATOry ARREST AREAS OF CONTROVERSY Epinephrine and Other Vasopressors Intubation, Ventilation, and Chest Compressions Capnometry as a Guide to Resuscitation SUMMARY *Lieutenant Colonel, Royal Army Medical Corps, Department of Critical Care, Ministry of Defence Hospital Unit Portsmouth, Queen Alexandra Hospital, Southwick Hill Road, Portsmouth PO6 3LY, United Kingdom †Colonel, Late Royal Army Medical Corps, Consultant in Anaesthesia, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham B15 2WB, United Kingdom 551 Combat Anesthesia: The First 24 Hours INTRODUCTION Cardiorespiratory arrest following trauma occurs still, although these two phases may be indistinguish- in 1% to 4% of patients transported to major civilian able on initial examination. trauma centers, where it is associated with a very poor There is a lack of robust evidence for the optimal overall prognosis.1–4 Resuscitation from cardiorespi- management of TCRA, in both civilian and mili- ratory arrest in the military setting presents a unique tary settings. In the absence of widely accepted, challenge, with a number of important differences evidence-based guidelines, military practice has from civilian practice. The military population suffers been guided by a combination of generic guide- a high incidence of blast and penetrating trauma as the lines for cardiac arrest, limited civilian guidelines cause of arrest,5 and care is often delivered in a range on prehospital resuscitation, and guidelines for of hostile environments. The military setting may also resuscitative thoracotomy. A recent observational have significant constraints on medical resources, study from a United Kingdom (UK) field hospital in limiting the extent of available treatment. In enduring Afghanistan has provided some additional evidence operations, however, resources may sometimes exceed on predictors of survivability following TCRA.7 those available to the civilian sector. Although survival is rare for these patients, as in Traumatic cardiorespiratory arrest (TCRA), defined civilian practice, good outcomes can be achieved as the loss of central pulses and respiratory effort fol- with timely, appropriate interventions, but these lowing trauma, represents the final common pathway require access to significant resources. This chapter before death due to exsanguination, pneumothorax, will review the evidence for current guidelines and, cardiac injury, brain injury, or asphyxia.6 In the case in the context of experience from current conflicts, of exsanguination, a period of profound hypotension suggest modifications to these guidelines for mil- with nonpalpable pulses may precede cardiac stand- itary TCRA. EXISTING GUIDELINES Cardiac Arrest Guidelines • Do not delay transfer for unproven interven- tions such as spinal immobilization. Currently, the only internationally recognized • Standard cardiopulmonary resuscitation guidelines for the treatment of cardiac arrest are those (CPR) should not delay the treatment of re- produced by the European Resuscitation Council versible causes. and adopted by both the Resuscitation Council (UK) • Chest compressions are still considered “the and the American Heart Association.6 Although the standard of care in cardiac arrest irrespective core adult resuscitation algorithm (Figure 49-1) offers of aetiology,” but they are of limited value in simplicity and standardization, it was produced prin- hypovolemia and cardiac tamponade. cipally for cardiac arrest from primary cardiac causes, • Pericardiocentesis is not recommended, not from trauma (the pediatric algorithm is also shown, because it is usually ineffective and delays in Figure 49-2, for reference). Consequently, the guide- thoracotomy. lines are mostly based on evidence from nontrauma • For tension pneumothorax, anterior or lateral resuscitation and place the greatest emphasis on early thoracostomy is more effective than needle defibrillation for ventricular fibrillation or pulseless decompression and quicker than inserting a ventricular tachycardia, cardiac rhythms rarely en- chest tube. countered in TCRA.7 • For assisted ventilation, it may be useful to The 2010 update of the European Resuscitation limit tidal volumes and respiratory rate in or- Council guidelines does, however, include a useful der to reduce the effect of raised intrathoracic discussion of TCRA in the “Special Circumstances” pressure on venous return. section.8 Here, the authors recognize the lack of ro- • The role of vasopressors in TCRA remains bust evidence for the treatment of TCRA and make unclear. a number of recommendations relevant to military resuscitation, including: Trauma Resuscitation Guidelines • Undertake only life-saving interventions at the A number of sources of guidelines are available scene, with immediate transfer to the nearest to military clinical staff; however, it must be rec- hospital. ognized that even the currently published military 552 Resuscitation Guidelines Unresponsive? Not breathing or only occasional gasps Call Resuscitation Team CPR 30:2 Attach defibrillator/monitor Minimise interruptions Assess rhythm Shockable Non-shockable (VF/Pulseless VT) (PEA/Asystole) Return of 1 Shock Spontaneous Circulation • IMMEDIATE POST CARDIAC Immediately resume: Immediately resume: • ARREST TREATMENT CPR for 2 min CPR for 2 min • Use ABCDE approach Minimise interruptions • Controlled oxygenation and Minimise interruptions • ventilation • 12-lead ECG • Treat precipitating cause • Temperature control/ • Therapeutic hypothermia • DURING CPR • REVERSIBLE CAUSES • Ensure high-quality CPR: rate, depth, recoil • Hypoxia • Plan actions before interrupting CPR • Hypovolaemia • Give oxygen • Hypo-/hyperkalaemia/metabolic • Consider advanced airway and capnography • Hypothermia • Continuous chest compressions when advanced • Thrombosis - coronary or pulmonary • airway in place • Tamponade - cardiac • Vascular access (intravenous, intraosseous) • Toxins • Give adrenaline every 3–4 min • Tension pneumothorax • Correct reversible causes Figure 49-1. Adult Advanced Life Support algorithm. Copyright European Resuscitation Council—www.erc.edu—2012/003. ABCDE: airway, breathing, circulation, disability, exposure CPR: cardiopulmonary resuscitation ECG: electrocardiogram VF: ventricular fibrillation VT: ventricular tachycardia PEA: pulseless electrical activity Reproduced with permission from: Nolan JP, Soar J, Zideman DA, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010;81:1232. 553 Combat Anesthesia: The First 24 Hours Unresponsive? Not breathing or only occasional gasps CPR (5 initial breaths then 15:2) Call Attach defibrillator/monitor Resuscitation Team Minimise interruptions (1 min CPR first, if alone) Assess rhythm Shockable Non-shockable (VF/Pulseless VT) (PEA/Asystole) Return of 1 Shock 4 J/Kg spontaneous circulation Immediately resume: • IMMEDIATE POST CARDIAC Immediately resume: CPR for 2 min • ARREST TREATMENT CPR for 2 min Minimise interruptions • Use ABCDE approach Minimise interruptions • Controlled oxygenation and • ventilation • Investigations • Treat precipitating cause • Temperature control • Therapeutic hypothermia? • DURING CPR • REVERSIBLE CAUSES • Ensure high-quality CPR: rate, depth, recoil • Hypoxia • Plan actions before interrupting CPR • Hypovolaemia • Give oxygen • Hypo-/hyperkalaemia/metabolic • Vascular access (intravenous, intraosseous) • Hypothermia • Give adrenaline every 3–5 min • Tension pneumothorax • Consider advanced airway and capnography • Toxins • Continuous chest compressions when advanced • Tamponade - cardiac • airway in place • Thromboembolism • Correct reversible causes Figure 49-2. Pediatric Advanced Life Support algorithm. Copyright European Resuscitation Council—www.erc.edu— 2012/003. ABCDE: airway, breathing, circulation, disability, exposure CPR: cardiopulmonary resuscitation ECG: electrocardiogram VF: ventricular fibrillation VT: ventricular tachycardia PEA: pulseless electrical activity Reproduced with permission from: Nolan JP, Soar J, Zideman DA, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 1. Executive summary. Resuscitation. 2010;81:1249. 554 Resuscitation Guidelines guidance is based on civilian data. Sources include Write Walking yes injured T3 the following: Or if in combat no not Survivor return to The American College of Surgeons’ Advanced injured reception Trauma Life Support (ATLS) fighting force Breathing Airway no Under ATLS is a well-recognized approach to trauma opening effective DEAD resuscitation, aimed at members of a civilian emer- no procedures enemy fire gency department trauma team.9 Although the course NOT under effective enemy fire: provides a widely accepted paradigm for managing yes OK Call for assistance to carry out BLS trauma patients, there is little specific guidance on the management of TCRA. Starts to breathe: Write 3 T1 Roll to /4 prone position Battlefield Advanced Trauma Life Support (BATLS) Catastrophic Write T1 BATLS is a course designed by the UK Defence limb bleeding yes use tourniquet Medical Services (UK DMS) to provide standardized no training in emergency trauma care for military prac- 10 Write titioners. BATLS adapts civilian practice for the
Recommended publications
  • Neurological and Neurourological Complications of Electrical Injuries
    REVIEW ARTICLE Neurologia i Neurochirurgia Polska Polish Journal of Neurology and Neurosurgery 2021, Volume 55, no. 1, pages: 12–23 DOI: 10.5603/PJNNS.a2020.0076 Copyright © 2021 Polish Neurological Society ISSN 0028–3843 Neurological and neurourological complications of electrical injuries Konstantina G. Yiannopoulou1, Georgios I. Papagiannis2, 3, Athanasios I. Triantafyllou2, 3, Panayiotis Koulouvaris3, Aikaterini I. Anastasiou4, Konstantinos Kontoangelos5, Ioannis P. Anastasiou6 1Neurological Department, Henry Dunant Hospital Centre, Athens, Greece 2Orthopaedic Research and Education Centre “P.N. Soukakos”, Biomechanics and Gait Analysis Laboratory “Sylvia Ioannou”, “Attikon” University Hospital, Athens, Greece 31st Department of Orthopaedic Surgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece 4Medical School of Athens, National and Kapodistrian University of Athens, Athens, Greece 51st Department of Psychiatry, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece 61st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece ABSTRACT Electrical injury can affect any system and organ. Central nervous system (CNS) complications are especially well recognised, causing an increased risk of morbidity, while peripheral nervous system (PNS) complications, neurourological and cognitive and psychological abnormalities are less predictable after electrical injuries. PubMed was searched for English language clinical observational, retrospective,
    [Show full text]
  • Managing the Trauma Patient Presenting with the Lethal Trial
    PRACTICE DEVELOPMENT IN ORTHOPAEDICS AND TRAUMA Managing the trauma patient presenting with the lethal trial Nicola Credland University of Hull Practice development in orthopaedics and trauma It is essential that orthopaedic and trauma practitioners develop and maintain their own skills and knowledge in order to help improve and deliver quality care for patients. The utilisation of research in practice development is an important part of the process for nurses endeavouring to deliver evidence based practice to improve care and service user experience. This new series entitled 'Practice development in orthopaedics and trauma' aims to showcase initiatives and innovations in practice development that have transformed delivery of quality care around the world and to provide readers with brief summaries of current thinking in relation to clinical issues that are common features of orthopaedic and trauma nursing practice. The feature will provide readers with a summary of an evidence base with the aim of empowering them to initiate discussion with colleagues and question their own practice. There will be associated CPD activities incorporating self-directed learning that will enhance the series and provide nurses with an opportunity to extend their learning. The International Journal of Orthopaedic and Trauma Nursing invites contributions from clinical staff, educators and students normally of between 1000 and 2500 words. Items may focus on, but are not restricted to, best practice and practice development initiatives relating to clinical care issues, implementation of research findings and education and development of the workforce in the clinical environment. INTRODUCTION Musculoskeletal injury brings with it a pattern of physical trauma that can result in death in the hours, days and months that follow.
    [Show full text]
  • Case Report Myelopathy and Amnesia Following Accidental Electrical Injury
    Spinal Cord (2002) 40, 253 ± 255 ã 2002 International Spinal Cord Society All rights reserved 1362 ± 4393/02 $25.00 www.nature.com/sc Case Report Myelopathy and amnesia following accidental electrical injury J Kalita*,1, M Jose1 and UK Misra1 1Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow, India Objective: Documentation of MRI and neurophysiological changes following accidental electrical injury. Setting: Tertiary care referral teaching hospital at Lucknow, India. Results: A 30-year-old lady developed amnesia and spastic paraparesis with loss of pin prick sensation below the second thoracic spinal segment following electrocution. Her spinal MRI was normal and cranial MRI revealed T2 hyperintensity in the right putamen. Peroneal, sural and electromyography were normal. Tibial central sensory conduction time was normal but central motor conduction time to lower limbs and right upper limb was prolonged. Conclusion: Neurophysiological study and MRI may help in understanding the pathophy- siological basis of neurological sequelae following electrical injury. Spinal Cord (2002) 40, 253 ± 255. DOI: 10.1038/sj/sc/3101275 Keywords: electrical injury; MRI; evoked potential; myelopathy; amnesia Introduction Rural electri®cation has received great attention from across the road. Her hands were wet, the road was the government for improving agricultural and small ¯ooded with water and the wire was conducting AC of scale industry development in India. This has inherent 11 000 V. Immediately, she had fallen down and the hazards because of the ignorance of villagers and poor wire stuck to her chest. The current ¯ow was maintenance of electrical cables. This results in several discontinued after about 5 min and she was discovered electrical accidents caused by the touching of live wires.
    [Show full text]
  • Prognostic Factors for Outcome and Survival After Laparotomy in Patients with Pancreatic Trauma: One Single-Center Experience
    Prognostic Factors for Outcome and Survival after Laparotomy in Patients with Pancreatic Trauma: One Single-center Experience. Chao Yang Jinling hospital Baochen Liu Jinling hospital Cuili Wu Jinling hospital Yongle Wang jinling hospital Kai Wang jinling hospital Weiqin Li Jinling hospital weiwei ding ( [email protected] ) Jinling hospital https://orcid.org/0000-0002-5026-689X Research Keywords: pancreatic trauma, prognosis, risk factor, logistic regression analysis Posted Date: April 9th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-21555/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/13 Abstract Background: Pancreatic trauma results in signicant morbidity and mortality. Few studies have investigated the postoperative prognostic factors in patients with pancreatic trauma after surgery. Methods: A retrospective study was conducted on 152 consecutive patients with pancreatic trauma who underwent surgery in Jinling Hospital, a national referral trauma center in China, from January 2012 to December 2019. Univariate and binary logistic regression analyses were performed to identify the perioperative clinical parameters that may affect the morbidity of the patients. Results: A total of 184 patients with pancreatic trauma were admitted during the study period, and 32 patients with nonoperative management were excluded. The remaining 152 patients underwent laparotomy due to pancreatic trauma. Sixty-four patients were referred from other centers due to postoperative complications. Abdominal bleeding caused by pancreatic leakage ( 10 of all deaths) and severe intra-abdominal infection (12 of all deaths) were the major causes of mortality. Twenty-eight (77.8%) of the 36 patients who had damage control laparotomy survived.
    [Show full text]
  • Instructor Guide for Tactical Field Care 3C Communication, Evacuation Prioroties and Cpr 180801 1
    INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3C COMMUNICATION, EVACUATION PRIOROTIES AND CPR 180801 1 Tactical Combat Casualty Care for Medical Personnel August 2017 Next, we will discuss communication, evacuation priorities, and 1. (Based on TCCC-MP Guidelines 170131) CPR in TFC. Tactical Field Care 3c Communication, Evacuation Priorities and CPR Disclaimer “The opinions or assertions contained herein are the private views of the authors and are not to be construed 2. as official or as reflecting the views of the Departments Read the text. of the Army, Air Force, Navy or the Department of Defense.” - There are no conflict of interest disclosures. LEARNING OBJECTIVES Terminal Learning Objective • Communicate combat casualty care items effectively in Tactical Field Care. Enabling Learning Objectives 3. Read the text. • Identify the importance and techniques of communication with a casualty in Tactical Field Care. • Identify the importance and techniques of communicating casualty information with unit tactical leadership. INSTRUCTOR GUIDE FOR TACTICAL FIELD CARE 3C COMMUNICATION, EVACUATION PRIOROTIES AND CPR 180801 2 LEARNING OBJECTIVES Enabling Learning Objectives • Identify the importance and techniques of communicating casualty information with evacuation assets or receiving facilities. 4. Read the text. • Identify the relevant tactical and casualty data involved in communicating casualty information. • Identify the evacuation urgencies recommended in the TCCC TACEVAC “Nine Rules of Thumb” and the JTS evacuation guidelines • Identify the information requirements and format of the 9-Line MEDEVAC Request. LEARNING OBJECTIVES Terminal Learning Objective • Describe cardiopulmonary resuscitation (CPR) considerations in Tactical Field Care. Enabling Learning Objectives 5. Read the text. • Identify considerations for cardiopulmonary resuscitation in tactical field care.
    [Show full text]
  • When Trauma Means a Stoma
    10083-06_WJ3305-Steele.qxd 9/5/06 3:25 PM Page 491 J Wound Ostomy Continence Nurs. 2006;33(5):491-500. Published by Lippincott Williams & Wilkins O OSTOMY CARE When Trauma Means a Stoma Susan E. Steele Trauma is a leading cause of death and disability. When trau- injuries were sustained can assist the nurse in planning care matic injuries require ostomy surgery, the wound, ostomy, and and identifying the potential for complications during the continence nurse acts as a crucial part of the trauma team. This recovery period. Traumatic injuries occur when the human literature review describes mechanisms of injury associated body is exposed to physical forces causing tissue destruc- with creation of a stoma, key aspects of wound, ostomy, and tion. In most trauma situations, the physical forces are continence nursing care in trauma populations and presents kinetic in nature, and injury occurs when the energy of suggestions for future research. movement is transformed into other forms of energy, such as compression, shearing, and cavitation.4 Trauma nurses categorize mechanisms of injury into two broad cate- rauma affects all ages, races, and socio-economic classes gories: blunt injuries in which the skin surface is unbroken Tand ranks globally as a leading cause of morbidity and and penetrating injuries, which include a break in the skin mortality for all age groups except for persons aged 60 years integrity.5,6 In both mechanisms of injury, the mass of the or older.1 In 2003, more than 105,000 deaths in the United object striking the body and the velocity of the strike de- States were attributed to unintentional injuries.2 In that termine the amount of kinetic energy to which the body is same year, nearly half a million U.S.
    [Show full text]
  • Guidelines for BLS/ALS Medical Providers Current As of March 2019
    Tactical Emergency Casualty Care (TECC) Guidelines for BLS/ALS Medical Providers Current as of March 2019 DIRECT THREAT CARE (DTC) / HOT ZONE Guidelines: 1. Mitigate any immediate threat and move to a safer position (e.g. initiate fire attack, coordinated ventilation, move to safe haven, evacuate from an impending structural collapse, etc). Recognize that threats are dynamic and may be ongoing, requiring continuous threat assessments. 2. Direct the injured first responder to stay engaged in the operation if able and appropriate. 3. Move patient to a safer position: a. Instruct the alert, capable patient to move to a safer position and apply self-aid. b. If the patient is responsive but is injured to the point that he/she cannot move, a rescue plan should be devised. c. If a patient is unresponsive, weigh the risks and benefits of an immediate rescue attempt in terms of manpower and likelihood of success. Remote medical assessment techniques should be considered to identify patients who are dead or have non-survivable wounds. 4. Stop life threatening external hemorrhage if present and reasonable depending on the immediate threat, severity of the bleeding and the evacuation distance to safety. Consider moving to safety prior to application of the tourniquet if the situation warrants. a. Apply direct pressure to wound, or direct capable patient to apply direct pressure to own wound and/or own effective tourniquet. b. Tourniquet application: i. Apply the tourniquet as high on the limb as possible, including over the clothing if present. ii. Tighten until cessation of bleeding and move to safety.
    [Show full text]
  • Damage Control Surgery
    SAJS EditorialTrauma Damage control surgery Damage control surgery (DCS) has been one of the major pathic with a firmly established ‘vicious cycle’. Timmermans advances in trauma surgery over the past two decades and is et al. in this edition of SAJS have evaluated the factors pre- now a well-established surgical strategy in the management dicting mortality in DCS and have proposed specific criteria of the severely injured and shocked patient. DCS refers to a for DCS.12 They advise that DCS should be initiated when conscious decision by the surgeon to minimise operative time the pH is <7.20, the base excess worse than minus 10.5 and in a seriously injured patient when the combined effects of the core temperature less than 35OC. When a major injury is the magnitude of the injury and the markedly altered physi- recognised, however, the surgeon should not wait for these ological state of the patient preclude an immediate and safe criteria to be reached. These data provide uniformity and definitive operative procedure. DCS encompasses a change specific criteria as to when DCS should be undertaken. in the surgical mindset with realisation of the need in the The second stage of DCS is the initial operation. The severely injured and shocked patient to halt and reverse the surgeon should do the minimum required to rapidly control lethal cascade of events that include hypothermia, acidosis exsanguination (suture, ligation, temporary vascular shunt and coagulopathy, a sequence which has been termed the or packing) and to prevent spillage of gastro-intestinal con- ‘triad of death’.
    [Show full text]
  • Electrocution Death: Exit Mark Injury Use in the Suggestion of Body Posture During Forensic Investigation
    Electrocution Death: Exit Mark Injury use in the Suggestion of Body Posture during Forensic Investigation Pudji Hardjanto1,4 Simon Martin Manyanza Nzilibili1,3 Ahmad Yudianto1,2 1Forensic Science Program, Post Graduate School Universitas Airlangga, 4-6 Airlangga Rd., 60286 Surabaya – Indonesia. 2Department of Forensic and Medico-legal, Faculty of Medicine, Universitas Airlangga, Surabaya – Indonesia 3Ministry of Health, Community Development, Gender Elderly and Children, Dodoma – Tanzania. 4Criminal Investigative Unit, Polrestabes Surabaya, Indonesia. Keywords: Body Posture, Electrocution, Exit Injury, Forensic Reconstruction Abstract: Since then, electrocution and forensic investigation of electric death associated with criminal offenses have established the importance of mark injuries. The marks (entry and exit) came into significance as they were/are used to establish fatality and extent of electric power electrocuted. Unlike entry, exit injury has presented attention to scientists on its adequate and vital use in explaining forensic incident despite being infrequent. To enrich forensic understanding and make use of this “silent witness – exit mark”, this study used four cases of related scenario. Three of the four cases were literature-based cases and one case involved in investigation. By interpreting the cases, this paper argued that exit injury contains useful information that can be related to posture of the body before electrocution. This paper thereby suggested the presence of the exit injury to be related to body posture, sole plantar exit injury in particular (stood position). This would help investigators and scientists to determine the immediate probable position and state of victim before electrocution. Furthermore, the suggestion would assist reconstruction processes that seek to find out the event originality through responding to fundamental and core principle tools of incidence investigation, CoPRRR, and the 6Ws.
    [Show full text]
  • Electrical Injuries: a Review for the Emergency Clinician Czuczman AD, Zane RD
    7ddekdY_d]0 <DGI8:K@:< >L@;<C@E<JLG;8K< M`j`k nnn%\Yd\[`Z`e\%e\k&^l`[\c`e\j kf[Xp]fipfli ]i\\jlYjZi`gk`fe Electrical Injuries: A Review October 2009 Volume 11, Number 10 For The Emergency Clinician Authors Amanda Dumler Czuczman, MD As usual, the emergency department is hopping. Two minutes before change Harvard Medical School, The Massachusetts General and Brigham and Women’s Hospitals, Boston, MA of shift, a trauma patient rolls in—an electrician in his mid-30s brought in by his coworkers. The patient, who was found unconscious near the genera- Richard D. Zane, MD tor he was repairing, is awake and alert but amnesic, with burns over his Vice Chair, Department of Emergency Medicine, Harvard Medical School chest and both arms. His vital signs are within normal limits. A number of Peer Reviewers management questions enter your mind, including the need for a cardiac Mary Ann Cooper, MD evaluation and hospital admission. As you begin formulating a plan, the Emerita Professor, University of Illinois at Chicago, Chicago, IL nurse tells you that a young woman has arrived after “getting shocked” by her hair dryer, which she was using while standing on a wet bathroom floor. Brian J. Daley, MD, MBA, FACS Professor of Surgery, Department of Surgery, University of She has no obvious injuries or complaints other than very mild erythema Tennessee Medical Center at Knoxville, Knoxville, TN of her right palm. The nurse asks if you want to order an ECG or send any CME Objectives blood tests. Upon completion of this article, you should be able to: It is unusual to have 2 electrical injuries in a single night.
    [Show full text]
  • Neuropsychological, Psychological, and Injury Variables Associated with Post-Traumatic Stress Disorder in Individuals Who Suffered an Electrical Injury
    Loyola University Chicago Loyola eCommons Dissertations Theses and Dissertations 2013 Neuropsychological, Psychological, and Injury Variables Associated with Post-Traumatic Stress Disorder in Individuals Who Suffered an Electrical Injury Jana Wingo Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_diss Part of the Clinical Psychology Commons Recommended Citation Wingo, Jana, "Neuropsychological, Psychological, and Injury Variables Associated with Post-Traumatic Stress Disorder in Individuals Who Suffered an Electrical Injury" (2013). Dissertations. 695. https://ecommons.luc.edu/luc_diss/695 This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 2013 Jana Wingo LOYOLA UNIVERSITY CHICAGO NEUROPSYCHOLOGICAL, PSYCHOLOGICAL, AND INJURY VARIABLES ASSOCIATED WITH POST-TRAUMATIC STRESS DISORDER IN INDIVIDUALS WHO SUFFERED AN ELECTRICAL INJURY A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL IN CANDICACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY PROGRAM IN CLINICAL PSYCHOLOGY BY JANA WINGO CHICAGO, ILLINOIS AUGUST 2013 Copyright by Jana Wingo, 2013 All rights reserved ACKNOWLEDGMENTS I would like to thank all of the people who made this dissertation possible, starting with the psychologists who helped guide my research. Dr. Fred Bryant provided me with a background in statistics and introduced me to the wonders of classification tree analysis using Optimal Data Analysis. Dr. Duke Han instigated my interest in traumatic brain injury and fostered my pursuit of neuropsychology.
    [Show full text]
  • A Multicentric Case Series in Colombia
    ORIGINAL ARTICLE Damage Control Pancreatoduodenectomy for Severe Pancreaticoduodenal Trauma: A Multicentric Case Series in Colombia Luis F Cabrera1, Mauricio Pedraza2, Sebastian Sanchez3, Paula Lopez4, Felipe Bernal5, Jean Pulido6, Patricia Parra7, Carlos Lopez8, Luis M Marroquin9, Juliana Ordoñez10, Gabriel Herrera11 ABSTRACT Introduction: Emergency pancreatoduodenectomy is a procedure that is indicated for the management of severe pancreaticoduodenal trauma after damage control surgery. Objectives: To present our experience of pancreaticoduodenal trauma management with emergency pancreatoduodenectomy and damage control surgery. Materials and methods: Retrospectively recorded data of patients with severe pancreaticoduodenal trauma who underwent a pancreatoduodenectomy and damage control for trauma at a high-volume trauma center. Results: In a period of 6 years, four patients (three men and one woman, median age 17.5 years, range: 16–21 years) with severe pancreaticoduodenal trauma underwent a pancreatoduodenectomy and damage control procedure (gunshot n = 4), and in a second surgical procedure underwent gastrointestinal tract reconstruction. In total, 75% incidence of surgical site infection (SSI) was reported, 25% health- care-associated pneumonia, and 50% postoperative pancreatic fistula (POPF). Intensive care unit (ICU) of 12.25 and hospital stay of 29.5 days mean and no mortality. Conclusion: An emergency pancreatoduodenectomy can be a lifesaving procedure in patients with non-reconstructable duodenopancreatic injuries. Damage control surgery in pancreaticoduodenal trauma is an alternative for management although with high risk of morbidity. Keywords: Abdominal trauma, Advanced trauma life support care, Duodenum, Multiple trauma, Pancreas, Trauma severity indices. RESUMEN Introducción: La pancreatoduodenectomía de emergencia es un procedimiento que está indicado para el tratamiento del trauma duodenal pancreático severo después de la cirugía de control de daños.
    [Show full text]