Understanding FX Forwards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Section 1256 and Foreign Currency Derivatives
Section 1256 and Foreign Currency Derivatives Viva Hammer1 Mark-to-market taxation was considered “a fundamental departure from the concept of income realization in the U.S. tax law”2 when it was introduced in 1981. Congress was only game to propose the concept because of rampant “straddle” shelters that were undermining the U.S. tax system and commodities derivatives markets. Early in tax history, the Supreme Court articulated the realization principle as a Constitutional limitation on Congress’ taxing power. But in 1981, lawmakers makers felt confident imposing mark-to-market on exchange traded futures contracts because of the exchanges’ system of variation margin. However, when in 1982 non-exchange foreign currency traders asked to come within the ambit of mark-to-market taxation, Congress acceded to their demands even though this market had no equivalent to variation margin. This opportunistic rather than policy-driven history has spawned a great debate amongst tax practitioners as to the scope of the mark-to-market rule governing foreign currency contracts. Several recent cases have added fuel to the debate. The Straddle Shelters of the 1970s Straddle shelters were developed to exploit several structural flaws in the U.S. tax system: (1) the vast gulf between ordinary income tax rate (maximum 70%) and long term capital gain rate (28%), (2) the arbitrary distinction between capital gain and ordinary income, making it relatively easy to convert one to the other, and (3) the non- economic tax treatment of derivative contracts. Straddle shelters were so pervasive that in 1978 it was estimated that more than 75% of the open interest in silver futures were entered into to accommodate tax straddles and demand for U.S. -
Interest Rate Options
Interest Rate Options Saurav Sen April 2001 Contents 1. Caps and Floors 2 1.1. Defintions . 2 1.2. Plain Vanilla Caps . 2 1.2.1. Caplets . 3 1.2.2. Caps . 4 1.2.3. Bootstrapping the Forward Volatility Curve . 4 1.2.4. Caplet as a Put Option on a Zero-Coupon Bond . 5 1.2.5. Hedging Caps . 6 1.3. Floors . 7 1.3.1. Pricing and Hedging . 7 1.3.2. Put-Call Parity . 7 1.3.3. At-the-money (ATM) Caps and Floors . 7 1.4. Digital Caps . 8 1.4.1. Pricing . 8 1.4.2. Hedging . 8 1.5. Other Exotic Caps and Floors . 9 1.5.1. Knock-In Caps . 9 1.5.2. LIBOR Reset Caps . 9 1.5.3. Auto Caps . 9 1.5.4. Chooser Caps . 9 1.5.5. CMS Caps and Floors . 9 2. Swap Options 10 2.1. Swaps: A Brief Review of Essentials . 10 2.2. Swaptions . 11 2.2.1. Definitions . 11 2.2.2. Payoff Structure . 11 2.2.3. Pricing . 12 2.2.4. Put-Call Parity and Moneyness for Swaptions . 13 2.2.5. Hedging . 13 2.3. Constant Maturity Swaps . 13 2.3.1. Definition . 13 2.3.2. Pricing . 14 1 2.3.3. Approximate CMS Convexity Correction . 14 2.3.4. Pricing (continued) . 15 2.3.5. CMS Summary . 15 2.4. Other Swap Options . 16 2.4.1. LIBOR in Arrears Swaps . 16 2.4.2. Bermudan Swaptions . 16 2.4.3. Hybrid Structures . 17 Appendix: The Black Model 17 A.1. -
The Synthetic Collateralised Debt Obligation: Analysing the Super-Senior Swap Element
The Synthetic Collateralised Debt Obligation: analysing the Super-Senior Swap element Nicoletta Baldini * July 2003 Basic Facts In a typical cash flow securitization a SPV (Special Purpose Vehicle) transfers interest income and principal repayments from a portfolio of risky assets, the so called asset pool, to a prioritized set of tranches. The level of credit exposure of every single tranche depends upon its level of subordination: so, the junior tranche will be the first to bear the effect of a credit deterioration of the asset pool, and senior tranches the last. The asset pool can be made up by either any type of debt instrument, mainly bonds or bank loans, or Credit Default Swaps (CDS) in which the SPV sells protection1. When the asset pool is made up solely of CDS contracts we talk of ‘synthetic’ Collateralized Debt Obligations (CDOs); in the so called ‘semi-synthetic’ CDOs, instead, the asset pool is made up by both debt instruments and CDS contracts. The tranches backed by the asset pool can be funded or not, depending upon the fact that the final investor purchases a true debt instrument (note) or a mere synthetic credit exposure. Generally, when the asset pool is constituted by debt instruments, the SPV issues notes (usually divided in more tranches) which are sold to the final investor; in synthetic CDOs, instead, tranches are represented by basket CDSs with which the final investor sells protection to the SPV. In any case all the tranches can be interpreted as percentile basket credit derivatives and their degree of subordination determines the percentiles of the asset pool loss distribution concerning them It is not unusual to find both funded and unfunded tranches within the same securitisation: this is the case for synthetic CDOs (but the same could occur with semi-synthetic CDOs) in which notes are issued and the raised cash is invested in risk free bonds that serve as collateral. -
Ice Crude Oil
ICE CRUDE OIL Intercontinental Exchange® (ICE®) became a center for global petroleum risk management and trading with its acquisition of the International Petroleum Exchange® (IPE®) in June 2001, which is today known as ICE Futures Europe®. IPE was established in 1980 in response to the immense volatility that resulted from the oil price shocks of the 1970s. As IPE’s short-term physical markets evolved and the need to hedge emerged, the exchange offered its first contract, Gas Oil futures. In June 1988, the exchange successfully launched the Brent Crude futures contract. Today, ICE’s FSA-regulated energy futures exchange conducts nearly half the world’s trade in crude oil futures. Along with the benchmark Brent crude oil, West Texas Intermediate (WTI) crude oil and gasoil futures contracts, ICE Futures Europe also offers a full range of futures and options contracts on emissions, U.K. natural gas, U.K power and coal. THE BRENT CRUDE MARKET Brent has served as a leading global benchmark for Atlantic Oseberg-Ekofisk family of North Sea crude oils, each of which Basin crude oils in general, and low-sulfur (“sweet”) crude has a separate delivery point. Many of the crude oils traded oils in particular, since the commercialization of the U.K. and as a basis to Brent actually are traded as a basis to Dated Norwegian sectors of the North Sea in the 1970s. These crude Brent, a cargo loading within the next 10-21 days (23 days on oils include most grades produced from Nigeria and Angola, a Friday). In a circular turn, the active cash swap market for as well as U.S. -
Tax Treatment of Derivatives
United States Viva Hammer* Tax Treatment of Derivatives 1. Introduction instruments, as well as principles of general applicability. Often, the nature of the derivative instrument will dictate The US federal income taxation of derivative instruments whether it is taxed as a capital asset or an ordinary asset is determined under numerous tax rules set forth in the US (see discussion of section 1256 contracts, below). In other tax code, the regulations thereunder (and supplemented instances, the nature of the taxpayer will dictate whether it by various forms of published and unpublished guidance is taxed as a capital asset or an ordinary asset (see discus- from the US tax authorities and by the case law).1 These tax sion of dealers versus traders, below). rules dictate the US federal income taxation of derivative instruments without regard to applicable accounting rules. Generally, the starting point will be to determine whether the instrument is a “capital asset” or an “ordinary asset” The tax rules applicable to derivative instruments have in the hands of the taxpayer. Section 1221 defines “capital developed over time in piecemeal fashion. There are no assets” by exclusion – unless an asset falls within one of general principles governing the taxation of derivatives eight enumerated exceptions, it is viewed as a capital asset. in the United States. Every transaction must be examined Exceptions to capital asset treatment relevant to taxpayers in light of these piecemeal rules. Key considerations for transacting in derivative instruments include the excep- issuers and holders of derivative instruments under US tions for (1) hedging transactions3 and (2) “commodities tax principles will include the character of income, gain, derivative financial instruments” held by a “commodities loss and deduction related to the instrument (ordinary derivatives dealer”.4 vs. -
Arbitrage-Free Affine Models of the Forward Price of Foreign Currency
Federal Reserve Bank of New York Staff Reports Arbitrage-Free Affine Models of the Forward Price of Foreign Currency J. Benson Durham Staff Report No. 665 February 2014 Revised April 2015 This paper presents preliminary findings and is being distributed to economists and other interested readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of the author and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the author. Arbitrage-Free Affine Models of the Forward Price of Foreign Currency J. Benson Durham Federal Reserve Bank of New York Staff Reports, no. 665 February 2014; revised April 2015 JEL classification: G10, G12, G15 Abstract Common affine term structure models (ATSMs) suggest that bond yields include both expected short rates and term premiums, in violation of the strictest forms of the expectations hypothesis (EH). Similarly, forward foreign exchange contracts likely include not only expected depreciation but also a sizeable premium, which similarly contradicts pure interest rate parity (IRP) and complicates inferences about anticipated returns on foreign currency exposure. Closely following the underlying logic of ubiquitous term structure models in parallel, and rather than the usual econometric approach, this study derives arbitrage-free affine forward currency models (AFCMs) with closed-form expressions for both unobservable variables. Model calibration to eleven forward U.S. dollar currency pair term structures, and notably without any information from corresponding term structures, from the mid-to-late 1990s through early 2015 fits the data closely and suggests that the premium is indeed nonzero and variable, but not to the degree implied by previous econometric studies. -
An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting
Federal Reserve Bank of New York Staff Reports An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting Michael Fleming John Jackson Ada Li Asani Sarkar Patricia Zobel Staff Report No. 557 March 2012 Revised October 2012 FRBNY Staff REPORTS This paper presents preliminary fi ndings and is being distributed to economists and other interested readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of the authors and are not necessarily refl ective of views at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. An Analysis of OTC Interest Rate Derivatives Transactions: Implications for Public Reporting Michael Fleming, John Jackson, Ada Li, Asani Sarkar, and Patricia Zobel Federal Reserve Bank of New York Staff Reports, no. 557 March 2012; revised October 2012 JEL classifi cation: G12, G13, G18 Abstract This paper examines the over-the-counter (OTC) interest rate derivatives (IRD) market in order to inform the design of post-trade price reporting. Our analysis uses a novel transaction-level data set to examine trading activity, the composition of market participants, levels of product standardization, and market-making behavior. We fi nd that trading activity in the IRD market is dispersed across a broad array of product types, currency denominations, and maturities, leading to more than 10,500 observed unique product combinations. While a select group of standard instruments trade with relative frequency and may provide timely and pertinent price information for market partici- pants, many other IRD instruments trade infrequently and with diverse contract terms, limiting the impact on price formation from the reporting of those transactions. -
Form 6781 Contracts and Straddles ▶ Go to for the Latest Information
Gains and Losses From Section 1256 OMB No. 1545-0644 Form 6781 Contracts and Straddles ▶ Go to www.irs.gov/Form6781 for the latest information. 2020 Department of the Treasury Attachment Internal Revenue Service ▶ Attach to your tax return. Sequence No. 82 Name(s) shown on tax return Identifying number Check all applicable boxes. A Mixed straddle election C Mixed straddle account election See instructions. B Straddle-by-straddle identification election D Net section 1256 contracts loss election Part I Section 1256 Contracts Marked to Market (a) Identification of account (b) (Loss) (c) Gain 1 2 Add the amounts on line 1 in columns (b) and (c) . 2 ( ) 3 Net gain or (loss). Combine line 2, columns (b) and (c) . 3 4 Form 1099-B adjustments. See instructions and attach statement . 4 5 Combine lines 3 and 4 . 5 Note: If line 5 shows a net gain, skip line 6 and enter the gain on line 7. Partnerships and S corporations, see instructions. 6 If you have a net section 1256 contracts loss and checked box D above, enter the amount of loss to be carried back. Enter the loss as a positive number. If you didn’t check box D, enter -0- . 6 7 Combine lines 5 and 6 . 7 8 Short-term capital gain or (loss). Multiply line 7 by 40% (0.40). Enter here and include on line 4 of Schedule D or on Form 8949. See instructions . 8 9 Long-term capital gain or (loss). Multiply line 7 by 60% (0.60). Enter here and include on line 11 of Schedule D or on Form 8949. -
Arxiv:2101.09738V2 [Q-Fin.GN] 21 Jul 2021
Currency Network Risk Mykola Babiak* Jozef Baruník** Lancaster University Management School Charles University First draft: December 2020 This draft: July 22, 2021 Abstract This paper identifies new currency risk stemming from a network of idiosyncratic option-based currency volatilities and shows how such network risk is priced in the cross-section of currency returns. A portfolio that buys net-receivers and sells net- transmitters of short-term linkages between currency volatilities generates a significant Sharpe ratio. The network strategy formed on causal connections is uncorrelated with popular benchmarks and generates a significant alpha, while network returns formed on aggregate connections, which are driven by a strong correlation component, are partially subsumed by standard factors. Long-term linkages are priced less, indicating a downward-sloping term structure of network risk. Keywords: Foreign exchange rate, network risk, idiosyncratic volatility, currency predictability, term structure JEL: G12, G15, F31 arXiv:2101.09738v2 [q-fin.GN] 21 Jul 2021 *Department of Accounting & Finance, Lancaster University Management School, LA1 4YX, UK, E-mail: [email protected]. **Institute of Economic Studies, Charles University, Opletalova 26, 110 00, Prague, CR and Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 4, 18200, Prague, Czech Republic, E-mail: [email protected]. 1 1 Introduction Volatility has played a central role in economics and finance. In currency markets, a global volatility risk has been proposed by prior literature as a key driver of carry trade returns. While the global volatility risk factor is intuitively appealing, there is little evi- dence on how idiosyncratic currency volatilities relate to each other. -
Value at Risk for Linear and Non-Linear Derivatives
Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei (Under the direction of John T. Scruggs) Abstract This paper examines the question whether standard parametric Value at Risk approaches, such as the delta-normal and the delta-gamma approach and their assumptions are appropriate for derivative positions such as forward and option contracts. The delta-normal and delta-gamma approaches are both methods based on a first-order or on a second-order Taylor series expansion. We will see that the delta-normal method is reliable for linear derivatives although it can lead to signif- icant approximation errors in the case of non-linearity. The delta-gamma method provides a better approximation because this method includes second order-effects. The main problem with delta-gamma methods is the estimation of the quantile of the profit and loss distribution. Empiric results by other authors suggest the use of a Cornish-Fisher expansion. The delta-gamma method when using a Cornish-Fisher expansion provides an approximation which is close to the results calculated by Monte Carlo Simulation methods but is computationally more efficient. Index words: Value at Risk, Variance-Covariance approach, Delta-Normal approach, Delta-Gamma approach, Market Risk, Derivatives, Taylor series expansion. Value at Risk for Linear and Non-Linear Derivatives by Clemens U. Frei Vordiplom, University of Bielefeld, Germany, 2000 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Arts Athens, Georgia 2003 °c 2003 Clemens U. Frei All Rights Reserved Value at Risk for Linear and Non-Linear Derivatives by Clemens U. -
Enns for Corporate and Sovereign CDS and FX Swaps
ENNs for Corporate and Sovereign CDS and FX Swaps by Lee Baker, Richard Haynes, Madison Lau, John Roberts, Rajiv Sharma, and Bruce Tuckman1 February, 2019 I. Introduction The sizes of swap markets, and the sizes of market participant footprints in swap markets, are most often measured in terms of notional amount. It is widely recognized, however, that notional amount is a poor metric of both size and footprint. First, when calculating notional amounts, the long and short positions between two counterparties are added together, even though longs and shorts essentially offset each other. Second, notional calculations add together positions with very different amounts of risk, like a relatively low-risk 3-month interest rate swap (IRS) and a relatively high-risk 30- year IRS. The use of notional amount to measure size distorts understanding of swap markets. A particularly powerful example arose around Lehman Brothers’ bankruptcy in September, 2008. At that time, there were $400 billion notional of outstanding credit default swaps (CDS) on Lehman, and Lehman’s debt was trading at 8.6 cents on the dollar. Many were frightened by the prospect that sellers of protection would soon have to pay buyers of protection a total of $400 billion x (1 – 8.6%), or about $365 billion. As it turned out, however, a large amount of protection sold had been offset by protection bought: in the end, protection sellers paid protection buyers between $6 and $8 billion.2 In January, 2018, the Office of the Chief Economist at the Commodity Futures Trading Commission (CFTC) introduced ENNs (Entity-Netted Notionals) as a metric of size in IRS markets.3 To compute IRS ENNs, all notional amounts are expressed in terms of the risk of a 5-year IRS, and long and short positions are netted when they are between the same pair of legal counterparties and denominated in the same currency. -
The Hedging Process
2016 Hedging What is hedging? Why would a business need it? How would it help mitigate risks? How would one be able to get started with it? How can MFX help? Everything it entails can be summarized in a concise, yet detailed step-by-step process. There are several key steps a company must follow in order to go through with this process and benefit. Let the simple flow chart below direct you as you read through this guide. Key Steps to the Hedging Process Why would you need hedging? Hedging using derivatives is a common and popular method for managing different kinds of risk for all different kinds of business. However, before going down the path of contracting a hedge, it is important to understand exactly what risk your institution faces. Without fully understanding how your financial position will react to changes in the risk factors you are trying to hedge, there is a risk that entering into a derivative contract could add additional risk of different kinds of risk than you currently face. It is important to think about other risk factors other than the one you are hedging that could affect the hedge. For example, how certain are you of the cash flows you are trying to hedge? Are you hedging balance sheet or cash risk? Are there natural hedges in other parts of your business that offset the risk you are trying to hedge? MFX’s team can help you consider the decision to hedge, but the client is responsible for assessing its risk and the appropriateness of hedging it.