Physical Mapping of Genes on Plant Chromosomes

Total Page:16

File Type:pdf, Size:1020Kb

Physical Mapping of Genes on Plant Chromosomes Physical mapping of genes on plant chromosomes Ilia V. Kirov This PhD thesis is dedicated to my wife Nadya, daughter Angelika and son Luka Promoters: Prof. dr. Nadine Van Roy, Ghent University, Ghent, Belgium Dr. ir. Katrijn Van Laere, Institute for Agricultural and Fisheries Research, Melle, Belgium Prof. dr. Ludmila I. Khrustaleva, Russian Timiryazev Agricultural Academy, Moscow, Russia Members of examination committee: Prof. dr. Jan Gettemans, (chairman) Ghent University, Gent, Belgium Prof. dr. ir. Paul Coucke, Ghent University, Gent, Belgium Prof. dr. ir. Danny Geelen, Ghent University, Gent, Belgium Prof. dr. ir. Winnok De Vos, Ghent University, Gent, Belgium Dr. Mohammed Bendahmane, Ecole normale supérieure de Lyon, Lyon, France Dr. Tom Ruttink, Institute for Agricultural and Fisheries Research, Melle, Belgium Ghent University Faculty of Medicine and Health Sciences Center for Medical Genetics Physical mapping of genes on plant chromosomes Ilia Kirov Email address: [email protected] This thesis is submitted to fulfill of the requirements for the degree of doctor in Health Sciences, 2017 Please refer to this work as follows: Kirov I (2017) Physical mapping of genes on plant chromosomes. PhD Thesis, Ghent University, Gent, Belgium The author and the promoters give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. TABLE OF CONTENT Abbreviations ........................................................................................................................................... 8 Summary................................................................................................................................................... 9 Samenvatting.......................................................................................................................................... 10 PART I - INTRODUCTION AND RESEARCH OBJECTIVES........................................................................... 12 1. Physical mapping of plant genomes ................................................................................................... 13 1.1 Relevance ................................................................................................................................................................... 13 1.2 Physical maps versus genetic maps.......................................................................................................................... 14 1.3 Physical mapping using fluorescence in situ hybridization .................................................................................... 15 2. Physical mapping of individual genes by FISH ................................................................................... 18 2.1 Chromosome preparation......................................................................................................................................... 20 2.2 Detection system ....................................................................................................................................................... 21 2.3 Chromosome markers ............................................................................................................................................... 22 3. Tyramide-FISH – a highly sensitive technique for cytogenetic mapping of short dna probes on plant chromosomes .................................................................................................................................... 24 4. Applications of FISH based physical maps.......................................................................................... 27 4.1 Assistance in genome assembly ........................................................................................................................................ 27 4.2 Comparative genomics ...................................................................................................................................................... 28 4.3 Genetic and physical map integration .............................................................................................................................. 30 5. Cytogenetics in Rosa and Allium ........................................................................................................ 31 5.1 Rosa .................................................................................................................................................................................... 31 5.2 Allium .................................................................................................................................................................................. 32 Research objectives ................................................................................................................................ 34 Research outline ..................................................................................................................................... 36 PART II - RESULTS.................................................................................................................................... 38 Chapter 1 Development of a highly efficient chromosome preparation method suitable for species with small and large chromosomes................................................................................................... 40 Paper 1: An easy “SteamDrop” method for high quality plant chromosome preparation................................................ 41 Chapter 2 Evaluation of direct and indirect detection systems for efficient physical .............................. mapping of genes ............................................................................................................................ 41 Paper 2: Anchoring linkage groups of the Rosa genetic map to physical chromosomes with Tyramide-FISH and EST-SNP markers........................................................................................................................................................ 53 Chapter 3 Development of cytogenetic markers for Rosa and Allium chromosome identification...... 63 Paper 3: Towards a FISH-based karyotype of Rosa L.. ......................................................................................................4364 Paper 4: Tandem repeats of Allium fistulosum associated with major chromosomal landmarks .................................... 77 6 Chapter 4 Physical mapping of target genes on chromosomes of Allium and Rosa species ............... 103 Paper 5: High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa ..... 104 Paper 6: The chromosome organization of genes and some types of extragenic DNA in Allium.. .................................. 114 PART III: General discussion and future perspectives .......................................................................... 124 1. Chromosome preparation quality as the key factor in Tyramide-FISH reproducibility ................... 125 2. Increasing signal frequency is still the biggest challenge for Tyramide-FISH................................... 127 3. Efficient probe design and detection system enhance Tyramide-FISH efficiency ........................... 128 4. Increased spatial resolution (SR) of physical mapping by Tyramide-FISH ....................................... 129 5. Guidelines for Tyramide-FISH optimization and application in other plant species........................ 130 6. Limitations of Tyramide-FISH ........................................................................................................... 132 7. Tyramide-FISH in the post-genomic era ........................................................................................... 133 7.1. Physical mapping in Allium ............................................................................................................................................. 134 7.1.1 New cytogenetic markers for Allium chromosomes ............................................................................................... 135 7.1.2 Allium comparative genomics based on single-copy gene physical mapping....................................................... 136 7.1.3 Allium breeding can benefit from physical mapping .............................................................................................. 137 7.2 Rosa wichurana can be a model species for molecular cytogenetics within the Rosa genus .................................... 138 7.3 An integrated approach for genome assembly and its application for R. wichurana genome sequencing .............. 140 References .............................................................................................................................................................................. 148 CURRICULUM VITAE ............................................................................................................................. 167 ACKNOWLEDGEMENTS ........................................................................................................................ 173 7 ABBREVIATIONS BSA Bovine Serum Albumin CY3 Cyanine-3 EST Expressed Sequence Tag FISH Fluorescence In Situ Hybridization FITC Fluoresceine Isothiocyanate HRM High Resolution Melting HRP Horse Radish Peroxidase NGS Next generation sequencing OOMT Orcinol O-MethylTransferase PAL Phenylalanine Ammonia Lyase P5CS Pyrroline-5-Carboxylate
Recommended publications
  • 1 Evolution, Domestication and Taxonomy
    1 Evolution, Domestication and Taxonomy R.M. Fritsch1 and N. Friesen2 1Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany; 2Botanischer Garten der Universität, D-49076 Osnabrück, Germany 1. The Genus Allium L. 5 1.1 General characteristics 5 1.2 Distribution, ecology and domestication 6 1.3 Phylogeny and classification 10 2. The Section Cepa (Mill.) Prokh. 14 2.1 Morphology, distribution and ecology 14 2.2 Cytological limitations 15 2.3 Grouping of the species 15 2.4 Enumeration of the species 16 3. Allium cepa L. 19 3.1 Description and variability 19 3.2 Infraspecific classification 20 3.3 Evolutionary lineages 21 3.4 History of domestication and cultivation 22 4. Other Economic Species 23 4.1 Garlic and garlic-like forms 23 4.2 Taxa of Asiatic origin 24 4.3 Chives and locally important onions from other areas 25 5. Conclusions 26 Acknowledgements 27 References 27 1. The Genus Allium L. controversy. In early classifications of the angiosperms (Melchior, 1964), they were 1.1 General characteristics placed in the Liliaceae. Later, they were more often included in the Amaryllidaceae, The taxonomic position of Allium and on the basis of inflorescence structure. related genera has long been a matter of Recently, molecular data have favoured a © CAB International 2002. Allium Crop Science: Recent Advances (eds H.D. Rabinowitch and L. Currah) 5 6 R.M. Fritsch and N. Friesen division into a larger number of small mono- • Ovary: trilocular, three septal nectaries of phyletic families. In the most recent and various shape, two or more curved competent taxonomic treatment of the (campylotropous) ovules per locule, monocotyledons, Allium and its close rela- sometimes diverse apical appendages tives were recognized as a distinct family, the (crests and horns); developing into a Alliaceae, close to the Amaryllidaceae.
    [Show full text]
  • Omics Approaches in Allium Research: Progress and Way Ahead
    Omics approaches in Allium research: Progress and way ahead Kiran Khandagale1, Ram Krishna2, Praveen Roylawar3, Avinash B. Ade1, Ashwini Benke2, Bharat Shinde4, Major Singh2, Suresh J. Gawande2 and Ashutosh Rai5 1 Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India 2 ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India 3 Department of Botany, S. N. Arts, D. J. M. Commerce and B. N. S. Science College, Sangamner, India 4 Vidya Pratishthans's Arts Science and commerce college, Baramati, India 5 Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India ABSTRACT Background. The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops.
    [Show full text]
  • Phylogenetic Relationships and Diversification Processes in Allium Subgenus Melanocrommyum
    Phylogenetic relationships and diversification processes in Allium subgenus Melanocrommyum Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. Nat.) Vorgelegt der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle-Wittenberg von Frau M. Sc Maia Gurushidze geb. am 11.09.1976 in Kvareli, Georgien Gutachter: 1. Prof. Dr. Martin Röser, MLU Halle-Wittenberg 2. Prof. Dr. Joachim W. Kadereit, Universität Mainz 3. Dr. Frank R. Blattner, IPK Gatersleben Halle (Saale), 19.05.2009 Nothing in biology makes sense except in the light of evolution T. Dobzhansky Everything makes a lot more sense in the light of phylogeny J. C. Avise Contents 1. Introduction 5 1.1. Why phylogeny matters 6 1.2. Plant species-level systematics 7 1.3 Phylogenetic inference 7 Distance methods 7 Maximum parsimony methods 8 Maximum likelihood and Bayesian methods 8 Bootstrap confidence for phylogenetic trees 9 Networks – genealogical methods 12 1.4 Molecular clock 13 Nonparametric rate smoothing (NPRS) 13 Penalized likelihood (PL) 13 1.5 Study group – Allium subgenus Melanocrommyum 14 Taxonomic history and systematics 14 Geographical distribution and ecology 17 Phylogenetic relationships within the subgenus 18 Karyology and ploidy level 19 2. Phylogenetic analysis of nuclear rDNA ITS sequences of the subgenus Melanocrommyum infers cryptic species and demands a new sectional classification 21 2.1 Introduction 21 2.2 Materials and methods 21 Plant Material 21 Anatomy of septal nectaries 22 Molecular methods 23 Data analyses 24 2.3 Results 25 Characteristics of the ITS region and phylogenetic analyses 25 RAPD analysis 30 Anatomy of septal nectaries 30 2.4 Discussion 31 Variation at the ITS locus 31 Divergent ITS types within species and individuals 32 RAPD analysis 33 ITS phylogeny and incongruence with taxonomic classification 33 Reasons for the molecular-taxonomical discordance 37 Nectary types 38 2.5 Conclusions 38 1 3.
    [Show full text]
  • Genetic Studies of Disease Resistance and Bolting Time Based on Genomic Analysis in Japanese Bunching Onion (Allium Fistulosum L.)  ࢿࢠࡢࢤࣀ࣒ゎᯒ࡟ᇶ࡙ࡃ⑓ᐖ᢬ᢠᛶ ࠾ࡼࡧᢳⱏᛶࡢ㑇ఏᏛⓗ◊✲
    Genetic studies of disease resistance and bolting time based on genomic analysis in Japanese bunching onion (Allium fistulosum L.) ࢿࢠࡢࢤࣀ࣒ゎᯒ࡟ᇶ࡙ࡃ⑓ᐖ᢬ᢠᛶ ࠾ࡼࡧᢳⱏᛶࡢ㑇ఏᏛⓗ◊✲ Tadayuki Wako 2016 Genetic studies of disease resistance and bolting time based on genomic analysis in Japanese bunching onion (Allium fistulosum L.) ࢿࢠࡢࢤࣀ࣒ゎᯒ࡟ᇶ࡙ࡃ⑓ᐖ᢬ᢠᛶ ࠾ࡼࡧᢳⱏᛶࡢ㑇ఏᏛⓗ◊✲ by Tadayuki Wako A thesis submitted as part fulfillment for a PhD in AGRICULTURE The United Graduate School of Agricultural Sciences Tottori University JAPAN 2016 TABLE OF CONTENTS Page Chapter I: General introduction ………………………………………………….. 1 Chapter II: Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition Introduction ………………………………………………………. 5 Materials and methods …………………………………………… 6 Results ……………………………………………………………. 9 Discussion ……………………………………………………….. 13 Chapter III: Mapping of quantitative trait loci for rust resistance in bunching onion Introduction …………………………………………………….... 19 Materials and methods …………………………………………... 20 Results ………………………………………………………….... 22 Discussion ……………………………………………………….. 24 Chapter IV: Mapping of quantitative trait loci for bolting time in bunching onion Introduction ………………………………………………………30 Materials and methods ………………………………………..…. 31 Results …………………………………………………………… 34 Discussion ……………………………………………………….. 51 Chapter V: Construction of an Allium cepa linkage map using doubled haploid technology Introduction ………………………………………………………57 Materials and methods …………………...……………………… 58 Results ……………………………………………………………
    [Show full text]