Thymidine Kinase As a Molecular Target for The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wo 2010/075007 A2
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 1 July 2010 (01.07.2010) WO 2010/075007 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) G06F 19/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/12 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2009/067757 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 11 December 2009 ( 11.12.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/3 16,877 16 December 2008 (16.12.2008) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): DODDS, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, W., Jean [US/US]; 938 Stanford Street, Santa Monica, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, CA 90403 (US). -
Genome of Phaeocystis Globosa Virus Pgv-16T Highlights the Common Ancestry of the Largest Known DNA Viruses Infecting Eukaryotes
Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes Sebastien Santinia, Sandra Jeudya, Julia Bartolia, Olivier Poirota, Magali Lescota, Chantal Abergela, Valérie Barbeb, K. Eric Wommackc, Anna A. M. Noordeloosd, Corina P. D. Brussaardd,e,1, and Jean-Michel Claveriea,f,1 aStructural and Genomic Information Laboratory, Unité Mixte de Recherche 7256, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille Cedex 9, France; bCommissariat à l’Energie Atomique–Institut de Génomique, 91057 Evry Cedex, France; cDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19711; dDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands; eAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; and fService de Santé Publique et d’Information Médicale, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, FR-13385 Marseille, France Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved May 1, 2013 (received for review February 22, 2013) Large dsDNA viruses are involved in the population control of many viruses: 730 kb and 1.28 Mb for CroV and Megavirus chilensis, globally distributed species of eukaryotic phytoplankton and have respectively. Other studies, targeting virus-specific genes [e.g., a prominent role in bloom termination. The genus Phaeocystis (Hap- DNA polymerase B (8) or capsid proteins (9)] have suggested tophyta, Prymnesiophyceae) includes several high-biomass-forming a close phylogenetic relationship between Mimivirus and several phytoplankton species, such as Phaeocystis globosa, the blooms of giant dsDNA viruses infecting various unicellular algae such as which occur mostly in the coastal zone of the North Atlantic and the Pyramimonas orientalis (Chlorophyta, Prasinophyceae), Phaeocys- North Sea. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo Et Al
US 20060O88532A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0088532 A1 Alitalo et al. (43) Pub. Date: Apr. 27, 2006 (54) LYMPHATIC AND BLOOD ENDOTHELIAL Related U.S. Application Data CELL GENES (60) Provisional application No. 60/363,019, filed on Mar. (76) Inventors: Kari Alitalo, Helsinki (FI); Taija 7, 2002. Makinen, Helsinki (FI); Tatiana Petrova, Helsinki (FI); Pipsa Publication Classification Saharinen, Helsinki (FI); Juha Saharinen, Helsinki (FI) (51) Int. Cl. A6IR 48/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) MARSHALL, GERSTEIN & BORUN LLP A6II 38/18 (2006.01) 233 S. WACKER DRIVE, SUITE 6300 (52) U.S. Cl. .............................. 424/145.1: 514/2: 514/44 SEARS TOWER (57) ABSTRACT CHICAGO, IL 60606 (US) The invention provides polynucleotides and genes that are (21) Appl. No.: 10/505,928 differentially expressed in lymphatic versus blood vascular endothelial cells. These genes are useful for treating diseases (22) PCT Filed: Mar. 7, 2003 involving lymphatic vessels, such as lymphedema, various inflammatory diseases, and cancer metastasis via the lym (86). PCT No.: PCT/USO3FO6900 phatic system. Patent Application Publication Apr. 27, 2006 Sheet 1 of 2 US 2006/0088532 A1 integrin O9 integrin O1 KIAAO711 KAAO644 ApoD Fig. 1 Patent Application Publication Apr. 27, 2006 Sheet 2 of 2 US 2006/0088532 A1 CN g uueleo-gº US 2006/0O88532 A1 Apr. 27, 2006 LYMPHATIC AND BLOOD ENDOTHELLAL CELL lymphatic vessels, such as lymphangiomas or lymphang GENES iectasis. Witte, et al., Regulation of Angiogenesis (eds. Goldber, I. D. & Rosen, E. M.) 65-112 (Birkauser, Basel, BACKGROUND OF THE INVENTION Switzerland, 1997). -
Nucleotide Metabolism 22
Nucleotide Metabolism 22 For additional ancillary materials related to this chapter, please visit thePoint. I. OVERVIEW Ribonucleoside and deoxyribonucleoside phosphates (nucleotides) are essential for all cells. Without them, neither ribonucleic acid (RNA) nor deoxyribonucleic acid (DNA) can be produced, and, therefore, proteins cannot be synthesized or cells proliferate. Nucleotides also serve as carriers of activated intermediates in the synthesis of some carbohydrates, lipids, and conjugated proteins (for example, uridine diphosphate [UDP]-glucose and cytidine diphosphate [CDP]- choline) and are structural components of several essential coenzymes, such as coenzyme A, flavin adenine dinucleotide (FAD[H2]), nicotinamide adenine dinucleotide (NAD[H]), and nicotinamide adenine dinucleotide phosphate (NADP[H]). Nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), serve as second messengers in signal transduction pathways. In addition, nucleotides play an important role as energy sources in the cell. Finally, nucleotides are important regulatory compounds for many of the pathways of intermediary metabolism, inhibiting or activating key enzymes. The purine and pyrimidine bases found in nucleotides can be synthesized de novo or can be obtained through salvage pathways that allow the reuse of the preformed bases resulting from normal cell turnover. [Note: Little of the purines and pyrimidines supplied by diet is utilized and is degraded instead.] II. STRUCTURE Nucleotides are composed of a nitrogenous base; a pentose monosaccharide; and one, two, or three phosphate groups. The nitrogen-containing bases belong to two families of compounds: the purines and the pyrimidines. A. Purine and pyrimidine bases Both DNA and RNA contain the same purine bases: adenine (A) and guanine (G). -
Unless Otherwise Noted, the Content of This Course Material Is Licensed Under a Creative Commons Attribution – Share Alike 3.0 License
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution – Share Alike 3.0 License. Copyright 2007, Robert Lyons. The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact [email protected] with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. Viewer discretion advised: Material may contain medical images that may be disturbing to some viewers. Formation of PRPP: Phosphoribose pyrophosphate PRPP Use in Purine Biosynthesis: The First Purine: Inosine Monophosphate (folates are involved in this synthesis) Conversion to Adenosine: Conversion to Guanosine: Nucleoside Monophosphate Kinases AMP + ATP <--> 2ADP (adenylate kinase) GMP + ATP <---> GDP + ADP (guanylate kinase) • similar enzymes specific for each nucleotide • no specificity for ribonucleotide vs. -
Biological Phosphorylation of an Unnatural Base Pair (UBP) Using a Drosophila Melanogaster Deoxynucleoside Kinase (Dmdnk) Mutant
RESEARCH ARTICLE Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant Fei Chen1,2,3☯*, Yuan Zhang4☯, Ashley B. Daugherty5, Zunyi Yang3, Ryan Shaw3, Mengxing Dong1,2, Stefan Lutz5, Steven A. Benner3* a1111111111 1 CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Foundation for a1111111111 Applied Molecular Evolution (FfAME), Alachua, Florida, United States of America, 4 College of Chemistry, a1111111111 Beijing Normal University, Beijing, China, 5 Department of Chemistry, Emory University School of Medicine, a1111111111 Atlanta, Georgia, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] (FC); [email protected] (SAB) OPEN ACCESS Abstract Citation: Chen F, Zhang Y, Daugherty AB, Yang Z, Shaw R, Dong M, et al. (2017) Biological One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate phosphorylation of an Unnatural Base Pair (UBP) them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be using a Drosophila melanogaster deoxynucleoside available at sufficient concentrations within the cell. To achieve this goal, the unnatural kinase (DmdNK) mutant. PLoS ONE 12(3): nucleoside analogues must be phosphorylated to the corresponding nucleoside triphos- e0174163. https://doi.org/10.1371/journal. pone.0174163 phates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally consid- Editor: Giovanni Maga, Istituto di Genetica Molecolare, ITALY ered the rate limiting step because of the high specificity of dNKs. -
Thesis for Word XP
Thesis for doctoral degree (Ph.D.) 2010 Thesis for doctoral degree (Ph.D.) 2010 The role of 5’-nucleotidases and Deoxynucleoside Kinases in Responses to Nucleoside Analogues Saeedeh Mirzaee The role of 5’-nucleotidases and Deoxynucleoside Kinases in Responses to Nucleoside Analogues Saeedeh Mirzaee From the Department of Oncology and Pathology, Cancer Centrum Karolinska Karolinska Institutet, Stockholm, Sweden The role of 5’-nucleotidases and deoxynucleoside kinases in responses to nucleoside analogues Saeedeh Mirzaee Stockholm 2010 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print. © Saeedeh Mirzaee, 2010 ISBN 978-91-7409-908-9 Some look at things that are, and ask why. I dream of things that never were and ask why not? George Bernard Shaw ABSTRACT The efficacy of nucleoside analogues (NAs) in treating several hematological malignancies, solid tumors and viral infections is limited primarily by side-effects and the development of drug resistance. The aims of the present thesis were to elucidate mechanism(s) involved in tissue-specific toxicity associated with NA therapy, as well as the mechanisms underlying resistance to these drugs. The mRNA levels and activities of different cytosolic and mitochondrial deoxynucleoside kinases (dNKs) and 5'-nucleotidases (5'- NTs) exhibit a distinct pattern for each of a variety of mouse tissues. Heart and skeletal muscle, as well as adipose tissue demonstrate low levels of both the anabolic and catabolic enzymes, which may explain at least some of the adverse side-effects of NA treatment. A novel approach based on high-performance liquid chromatography (HPLC) revealed that each of 14 different mouse and rat tissues exhibits a unique profile of dNK and 5'NT activities, with 2-3-fold species differences for certain of these tissues. -
Deoxynucleoside Kinases Development in Vitro by Inhibition
Restoration of Adenosine Deaminase-Deficient Human Thymocyte Development In Vitro by Inhibition of Deoxynucleoside Kinases This information is current as of September 26, 2021. Michelle L. Joachims, Patrick A. Marble, Aletha B. Laurent, Peter Pastuszko, Marco Paliotta, Michael R. Blackburn and Linda F. Thompson J Immunol 2008; 181:8153-8161; ; doi: 10.4049/jimmunol.181.11.8153 Downloaded from http://www.jimmunol.org/content/181/11/8153 References This article cites 54 articles, 20 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/181/11/8153.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Restoration of Adenosine Deaminase-Deficient Human Thymocyte Development In Vitro by Inhibition of Deoxynucleoside Kinases1,2 Michelle L. Joachims,* Patrick A. Marble,* Aletha B. Laurent,* Peter Pastuszko,3† Marco Paliotta,† Michael R. -
UC San Diego UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title On the origin of the canonical nucleobases : selection pressures and hydrolytic stabilities of N-glycosyl bonds Permalink https://escholarship.org/uc/item/0bx9p84v Author Rios, Andro C. Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO On the origin of the canonical nucleobases: selection pressures and hydrolytic stabilities of N-glycosyl bonds A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Chemistry by Andro C. Rios Committee in Charge: Professor Yitzhak Tor, Chair Professor Jeffrey Bada Professor Stanley Opella Professor Emmanuel Theodorakis Professor Jerry Yang 2012 Copyright Andro C. Rios, 2012 All rights reserved. The Dissertation of Andro C. Rios is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii DEDICATION To the memories of Leslie E. Orgel (1927–2007) and Stanley L. Miller (1930–2007). It is because of their work in the field of prebiotic and origin of life chemistry that I was inspired to pursue a career in chemistry. And especially to Professor Orgel, thank you for your inspiration and encouragement . iv TABLE OF CONTENTS Signature Page .......................................................................................................... iii Dedication ................................................................................................................. -
Conserved Phosphoryl Transfer Mechanisms Within Kinase Families
Kenyon et al. BMC Research Notes 2012, 5:131 http://www.biomedcentral.com/1756-0500/5/131 RESEARCHARTICLE Open Access Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer Colin P Kenyon*, Robyn L Roth, Chris W van der Westhuyzen and Christopher J Parkinson Abstract Background: The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes. Results: A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the g-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH2 of the adenyl moiety, namely a “push” mechanism, and a “pull” mechanism, based on the protonation of N7. Associated with the “push” mechanism and “pull” mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the g-phosphate of the ATP and the substrate nucleophile. -
Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
Rabbit Anti-Human TK1 Polyclonal Antibody (CABT-L2019) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Polyclonal Antibody to Thymidine Kinase 1, Soluble (Knockout Validated) Specificity The antibody is a rabbit polyclonal antibody raised against TK1. It has been selected for its ability to recognize TK1 in immunohistochemical staining and western blotting. Target TK1 Immunogen Recombinant fragment corresponding to human TK1 (Ser2~Asn234) Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Antigen-specific affinity chromatography followed by Protein A affinity chromatography Conjugate Unconjugated Applications WB Format Liquid Concentration Lot specific Size 200 μg Buffer Supplied as solution form in 0.01M PBS with 50% glycerol, pH7.4. Preservative 0.05% Proclin-300 Storage Avoid repeated freeze/thaw cycles. Store at 4°C for frequent use. Aliquot and store at -20°C for 12 months. Ship 4°C with ice bags Warnings For research use only. BACKGROUND 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Introduction TK1 Belongs to the thymidine kinase family. Keywords TK2;Thymidine kinase, cytosolic GENE INFORMATION Gene Name TK1 thymidine kinase 1, soluble [ Homo sapiens (human) ] Official Symbol TK1 Synonyms TK1; thymidine kinase 1, soluble; TK2; thymidine kinase, cytosolic; thymidine kinase-1; thymidine kinase 1 soluble isoform; Entrez Gene ID 7083 -
Recent Progress Toward the Templated Synthesis and Directed Evolution of Sequence-Defined Synthetic Polymers
Recent Progress Toward the Templated Synthesis and Directed Evolution of Sequence-Defined Synthetic Polymers The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Brudno, Yevgeny, and David R. Liu. 2009. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Chemistry and Biology 16, no. 3: 265-276. Published Version http://dx.doi.org/10.1016/j.chembiol.2009.02.004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2958222 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Brudno and Liu page 1 Recent Progress Towards the Templated Synthesis and Directed Evolution of Sequence-Defined Synthetic Polymers Yevgeny Brudno and David R. Liu* *Department of Chemistry and Chemical Biology and the Howard Hughes Medical Institute 12 Oxford Street Harvard University Cambridge, MA 02138 E-mail: [email protected] Brudno and Liu page 2 Abstract Biological polymers such as nucleic acids and proteins are ubiquitous in living systems, but their ability to address problems beyond those found in nature is constrained by factors such as chemical or biological instability, limited building-block functionality, bioavailability, and immunogenicity. In principle, sequence-defined synthetic polymers based on non-biological monomers and backbones might overcome these constraints; however, identifying the sequence of a synthetic polymer that possesses a specific desired functional property remains a major challenge.