Neurophysiological Measures for Human Factors Evaluation in Real World Settings

Total Page:16

File Type:pdf, Size:1020Kb

Neurophysiological Measures for Human Factors Evaluation in Real World Settings Computational Intelligence and Neuroscience Neurophysiological Measures for Human Factors Evaluation in Real World Settings Special Issue Editor in Chief: Pietro Aricò Guest Editors: Gianluca Borghini, Lewis Chuang, and Jochen Baumeister Neurophysiological Measures for Human Factors Evaluation in Real World Settings Computational Intelligence and Neuroscience Neurophysiological Measures for Human Factors Evaluation in Real World Settings Special Issue Editor in Chief: Pietro Aricò Guest Editors: Gianluca Borghini, Lewis Chuang, and Jochen Baumeister Copyright © 2019 Hindawi. All rights reserved. This is a special issue published in “Computational Intelligence and Neuroscience.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Ricardo Aler, Spain Paolo Gastaldo, Italy Gerard McKee, Nigeria Amparo Alonso-Betanzos, Spain S. Ghosh-Dastidar, USA Michele Migliore, Italy Pietro Aricò, Italy Manuel Graña, Spain Paulo Moura Oliveira, Portugal Hasan Ayaz, USA Rodolfo E. Haber, Spain Debajyoti Mukhopadhyay, India Sylvain Baillet, Canada Dominic Heger, Germany Klaus Obermayer, Germany Roman Bartak, Czech Republic Stephen Helms Tillery, USA Karim G. Oweiss, USA Theodore W. Berger, USA J. A. Hernández-Pérez, Mexico Massimo Panella, Italy Daniele Bibbo, Italy Luis Javier Herrera, Spain Fivos Panetsos, Spain Vince D. Calhoun, USA Etienne Hugues, USA David M Powers, Australia Francesco Camastra, Italy Ryotaro Kamimura, Japan Sandhya Samarasinghe, New Zealand Michela Chiappalone, Italy Pasi A. Karjalainen, Finland Saeid Sanei, UK Andrzej Cichocki, Japan Elpida Keravnou, Cyprus Friedhelm Schwenker, Germany Jens Christian Claussen, UK Raşit Köker, Turkey Victor R. L. Shen, Taiwan Silvia Conforto, Italy Dean J. Krusienski, USA Fabio Solari, Italy Justin Dauwels, Singapore Fabio La Foresta, Italy Jussi Tohka, Finland Christian W. Dawson, UK Antonino Laudani, Italy Carlos M. Travieso-González, Spain Carmen De Maio, Italy Maciej Lawrynczuk, Poland Lefteri Tsoukalas, USA Sergio Decherchi, Italy Mikhail A. Lebedev, USA Pablo Varona, Spain Paolo Del Giudice, Italy Cheng-Jian Lin, Taiwan Roberto A. Vazquez, Mexico Maria Jose del Jesus, Spain Giosuè Lo Bosco, Italy Meel Velliste, USA Arnaud Delorme, France Ezequiel López-Rubio, Spain Mario Versaci, Italy Thomas DeMarse, USA Bruce J. MacLennan, USA Francois B. Vialatte, France Anastasios D. Doulamis, Greece Reinoud Maex, Belgium Thomas Villmann, Germany António Dourado, Portugal Kezhi Mao, Singapore Ivan Volosyak, Germany Steven L. Fernandes, USA Sergio Martinoia, Italy Cornelio Yáñez-Márquez, Mexico Juan Carlos Fernández, Spain Laura Marzetti, Italy Michal Zochowski, USA Piotr Franaszczuk, USA Elio Masciari, Italy Rodolfo Zunino, Italy Leonardo Franco, Spain Paolo Massobrio, Italy Contents Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends Patrizia Cherubino , Ana C. Martinez-Levy, Myriam Caratù, Giulia Cartocci ,GianlucaDiFlumeri , Enrica Modica , Dario Rossi , Marco Mancini, and Arianna Trettel Review Article (41 pages), Article ID 1976847, Volume 2019 (2019) A LightGBM-Based EEG Analysis Method for Driver Mental States Classification Hong Zeng , Chen Yang, Hua Zhang, Zhenhua Wu, Jiaming Zhang, Guojun Dai, Fabio Babiloni , and Wanzeng Kong Research Article (11 pages), Article ID 3761203, Volume 2019 (2019) EEG Alpha Power Is Modulated by Attentional Changes during Cognitive Tasks and Virtual Reality Immersion Elisa Magosso , Francesca De Crescenzio , Giulia Ricci ,SergioPiastra ,andMauroUrsino Research Article (18 pages), Article ID 7051079, Volume 2019 (2019) Antismoking Campaigns’ Perception and Gender Differences: A Comparison among EEG Indices Giulia Cartocci , Enrica Modica , Dario Rossi ,BiancaM.S.Inguscio,PietroAricò , Ana C. Martinez Levy, Marco Mancini, Patrizia Cherubino ,andFabioBabiloni Research Article (9 pages), Article ID 7348795, Volume 2019 (2019) Fusion of Motif- and Spectrum-Related Features for Improved EEG-Based Emotion Recognition Abhishek Tiwari and Tiago H. Falk Research Article (14 pages), Article ID 3076324, Volume 2019 (2019) Hindawi Computational Intelligence and Neuroscience Volume 2019, Article ID 1976847, 41 pages https://doi.org/10.1155/2019/1976847 Review Article Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends Patrizia Cherubino ,1,2 Ana C. Martinez-Levy,2,3 Myriam Caratu` ,2,3 Giulia Cartocci ,1,2 Gianluca Di Flumeri ,1,2 Enrica Modica ,4 Dario Rossi ,4 Marco Mancini,2 and Arianna Trettel2 1Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy 2BrainSigns Srl, Via Sesto Celere 7/c, 00152 Rome, Italy 3Department of Communication and Social Research, Sapienza University of Rome, Via Salaria, 113, 00198 Rome, Italy 4Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy Correspondence should be addressed to Patrizia Cherubino; [email protected] Received 15 February 2019; Accepted 31 July 2019; Published 11 September 2019 Guest Editor: Jochen Baumeister Copyright © 2019 Patrizia Cherubino et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. )e new technological advances achieved during the last decade allowed the scientific community to investigate and employ neurophysiological measures not only for research purposes but also for the study of human behaviour in real and daily life situations. )e aim of this review is to understand how and whether neuroscientific technologies can be effectively employed to better understand the human behaviour in real decision-making contexts. To do so, firstly, we will describe the historical development of neuromarketing and its main applications in assessing the sensory perceptions of some marketing and advertising stimuli. )en, we will describe the main neuroscientific tools available for such kind of investigations (e.g., measuring the cerebral electrical or hemodynamic activity, the eye movements, and the psychometric responses). Also, this review will present different brain measurement techniques, along with their pros and cons, and the main cerebral indexes linked to the specific mental states of interest (used in most of the neuromarketing research). Such indexes have been supported by adequate validations from the scientific community and are largely employed in neuromarketing research. )is review will also discuss a series of papers that present different neuromarketing applications, such us in-store choices and retail, services, pricing, brand perception, web usability, neuropolitics, evaluation of the food and wine taste, and aesthetic perception of artworks. Furthermore, this work will face the ethical issues arisen on the use of these tools for the evaluation of the human behaviour during decision-making tasks. In conclusion, the main challenges that neuromarketing is going to face, as well as future directions and possible scenarios that could be derived by the use of neuroscience in the marketing field, will be identified and discussed. 1. Introduction understand human behaviour in various contexts is un- doubtedly interesting and intriguing. Tallis [1] coined the In the last years, we have had a growing interest in the use of term “Neuromania” to refer to the embracing of neuro- brain imaging techniques, for the analysis of brain responses imaging by various fields of studies to explain all human to different contexts. Scientific development in recent years phenomena in terms of brain activity. was characterized by an expansion in the application of Because of the potential application of neuroscientific different and multidisciplinary research modalities to an- methodologies to better understand unconscious reasons of swer various questions of a given scientific field. )e recent human behaviours, especially in terms of risky behaviours, “boom” in employing neuroscientific methods to better the interest on such approaches initially focused on the 2 Computational Intelligence and Neuroscience investigation of human factors (HFs) [2]. In fact, this kind of One of the biggest questions in today’s market is what application relies on specific social challenges, such as op- drives consumers to decide on one product instead of an- erational environments where safety of people relies on the other, or why consumers interact with a specific brand. So, work and the efficiency of one or more operators. For ex- there is a growing interest in understanding how brain ample, in the transports’ domain, the passengers’ safety responses reflect the decision-making process of consumers. depends on the performance of the pilot(s) [3–8], of the air- In this regard, the practical use of neuroimaging neuro- traffic controller(s) [9–14], or of the driver(s) [15–17]. In scientific tools in real contexts and for real stimuli, i.e., the such contexts, a human error could have serious and dra- subject of this article, is named in the literature “neuro- matic consequences. marketing.” )e term specifically describes a field of study In particular, HFs have consistently been identified to defined as “the application of neuroscientific methods to be the main responsible
Recommended publications
  • Neurodevelopmental Correlates of the Emerging Adult Self T ⁎ Christopher G
    Developmental Cognitive Neuroscience 36 (2019) 100626 Contents lists available at ScienceDirect Developmental Cognitive Neuroscience journal homepage: www.elsevier.com/locate/dcn Neurodevelopmental correlates of the emerging adult self T ⁎ Christopher G. Daveya,b,c, , Alex Fornitod,e, Jesus Pujolf, Michael Breakspearg,h, Lianne Schmaala,b, Ben J. Harrisonc a Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia b Centre for Youth Mental Health, The University of Melbourne, Parkville, Australia c Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia d Monash Clinical and Imaging Neuroscience, School of Psychological Sciences, Monash University, Clayton, Australia e Monash Biomedical Imaging, Monash University, Clayton, Australia f MRI Research Unit, Department of Radiology, Hospital del Mar, CIBERSAM G21, Barcelona, Spain g QIMR Berghofer Medical Research Institute, Brisbane, Australia h Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia ARTICLE INFO ABSTRACT Keywords: The self-concept – the set of beliefs that a person has about themselves – shows significant development from Adolescent development adolescence to early adulthood, in parallel with brain development over the same period. We sought to in- Connectivity vestigate how age-related changes in self-appraisal processes corresponded with brain network segregation and Default mode network integration in healthy adolescents and young adults. We scanned 88 participants (46 female), aged from 15 to 25 Functional MRI years, as they performed a self-appraisal task. We first examined their patterns of activation to self-appraisal, and Self replicated prior reports of reduced dorsomedial prefrontal cortex activation with older age, with similar re- ductions in precuneus, right anterior insula/operculum, and a region extending from thalamus to striatum.
    [Show full text]
  • Phd in Marketing with a Minor in Neuropsychology
    PhD in Marketing with a Minor in Neuropsychology Who are we? What are we looking for in you? • A top-ranking graduate school of management in the Sonoran • You actively initiate project ideas Desert of Tucson, Arizona • You enjoy conceptual and creative work • A collegial marketing department with world-class researchers • You have or are close to finishing your bachelor or • A dynamic marketing research group with backgrounds in master degree in neuroscience, marketing, psychology, psychology, sociology, economics and neuroscience sociology and/or economics • You possess excellent English language skills What are our research resources? • Access to a state-of-the-art Siemens Skyra 3T fMRI scanner What are the next steps? • Access to a large subject pool • You submit your application here: marketing.eller.arizona.edu/doctoral • Access to our behavioral lab with 10 rooms, each equipped with a computer and a video camera • We review your application and then may conduct a Skype interview with you • Access to world-class scientists that frequently publish in top marketing journals (Journal of Marketing Research, Marketing You will... Science, Journal of Consumer Research and Journal of Consumer Psychology, among others) and general science journals Study the basics of marketing and consumer (Proceedings of the National Academy of Sciences, Psychological behavior, in courses such as: Science, Journal of Experimental Psychology: General) • Psychological Aspects of Consumer Behavior • Sociocultural Aspects of Consumer Behavior What are your
    [Show full text]
  • Decision Neuroscience and Consumer Decision Making Carolyn Yoon
    Decision neuroscience and consumer decision making Carolyn Yoon, Richard Gonzalez, Antoine Bechara, Gregory S. Berns, Alain A. Dagher, Laurette Dubé, Scott A. Huettel, Joseph W. Kable, et al. Marketing Letters A Journal of Research in Marketing ISSN 0923-0645 Volume 23 Number 2 Mark Lett (2012) 23:473-485 DOI 10.1007/s11002-012-9188-z 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media, LLC. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Mark Lett (2012) 23:473–485 DOI 10.1007/s11002-012-9188-z Decision neuroscience and consumer decision making Carolyn Yoon & Richard Gonzalez & Antoine Bechara & Gregory S. Berns & Alain A. Dagher & Laurette Dubé & Scott A. Huettel & Joseph W. Kable & Israel Liberzon & Hilke Plassmann & Ale Smidts & Charles Spence Published online: 26 May 2012 # Springer Science+Business Media, LLC 2012 Abstract This article proposes that neuroscience can shape future theory and models in consumer decision making and suggests ways that neuroscience methods can be used in decision-making research. The article argues that neuroscience facilitates better theory development and empirical testing by considering the physiological context and the role of constructs such as hunger, stress, and social influence on consumer choice and preferences.
    [Show full text]
  • CNS 2014 Program
    Cognitive Neuroscience Society 21st Annual Meeting, April 5-8, 2014 Marriott Copley Place Hotel, Boston, Massachusetts 2014 Annual Meeting Program Contents 2014 Committees & Staff . 2 Schedule Overview . 3 . Keynotes . 5 2014 George A . Miller Awardee . 6. Distinguished Career Contributions Awardee . 7 . Young Investigator Awardees . 8 . General Information . 10 Exhibitors . 13 . Invited-Symposium Sessions . 14 Mini-Symposium Sessions . 18 Poster Schedule . 32. Poster Session A . 33 Poster Session B . 66 Poster Session C . 98 Poster Session D . 130 Poster Session E . 163 Poster Session F . 195 . Poster Session G . 227 Poster Topic Index . 259. Author Index . 261 . Boston Marriott Copley Place Floorplan . 272. A Supplement of the Journal of Cognitive Neuroscience Cognitive Neuroscience Society c/o Center for the Mind and Brain 267 Cousteau Place, Davis, CA 95616 ISSN 1096-8857 © CNS www.cogneurosociety.org 2014 Committees & Staff Governing Board Mini-Symposium Committee Roberto Cabeza, Ph.D., Duke University David Badre, Ph.D., Brown University (Chair) Marta Kutas, Ph.D., University of California, San Diego Adam Aron, Ph.D., University of California, San Diego Helen Neville, Ph.D., University of Oregon Lila Davachi, Ph.D., New York University Daniel Schacter, Ph.D., Harvard University Elizabeth Kensinger, Ph.D., Boston College Michael S. Gazzaniga, Ph.D., University of California, Gina Kuperberg, Ph.D., Harvard University Santa Barbara (ex officio) Thad Polk, Ph.D., University of Michigan George R. Mangun, Ph.D., University of California,
    [Show full text]
  • A Current Overview of Consumer Neuroscience Mirja Hubert*,Y and Peter Kenningy Zeppelin University, Am Seemooser Horn 20, 88045 Friedrichshafen, Germany
    Journal of Consumer Behaviour J. Consumer Behav. 7: 272–292 (2008) Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/cb.251 A current overview of consumer neuroscience Mirja Hubert*,y and Peter Kenningy Zeppelin University, Am Seemooser Horn 20, 88045 Friedrichshafen, Germany The emerging discipline of neuroeconomics employs methods originally used in brain research for investigating economic problems, and furthers the advance of integrating neuroscientific findings into the economic sciences. Neuromarketing or consumer neuro- science is a sub-area of neuroeconomics that addresses marketing relevant problems with methods and insights from brain research. With the help of advanced techniques of neurology, which are applied in the field of consumer neuroscience, a more direct view into the ‘‘black box’’ of the organism should be feasible. Consumer neuroscience, still in its infancy, should not be seen as a challenge to traditional consumer research, but constitutes a complementing advancement for further investigation of specific decision-making behavior. The key contribution of this paper is to suggest a distinct definition of consumer neuroscience as the scientific proceeding, and neuromarketing as the application of these findings within the scope of managerial practice. Furthermore, we aim to develop a foundational understanding of the field, moving away from the derisory assumption that consumer neuroscience is about locating the ‘‘buy button’’ in the brain. Against this background the goal of this paper is to present specific results of selected studies from this emerging discipline, classified according to traditional marketing-mix instruments such as product, price, communication, and distribution policies, as well as brand research.
    [Show full text]
  • A Resource for Assessing Information Processing in the Developing Brain Using EEG and Eye Tracking
    bioRxiv preprint doi: https://doi.org/10.1101/092213; this version posted December 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. TITLE A Resource for Assessing Information Processing in the Developing Brain Using EEG and Eye Tracking AUTHORS Nicolas Langer*3,1, Erica J. Ho*1,2, Lindsay M. Alexander1, Helen Y. Xu1, Renee K. Jozanovic1, Simon Henin5, Samantha Cohen5, Enitan T. Marcelle4,1, Lucas C. Parra5, Michael P. Milham1,6, Simon P. Kelly5,7 AFFILIATIONS 1. Center for the Developing Brain, Child Mind Institute, New York, NY, USA 2. Department of Psychology, Yale University, New Haven, CT, USA 3. Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland 4. Department of Psychology, University of California, Berkeley, USA 5. Department of Biomedical Engineering, City College of New York, New York, USA 6. Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA 7. School of Electrical and Electronic Engineering, University College Dublin, Ireland * These authors contributed equally to this work Corresponding author(s): Nicolas Langer ([email protected]), Michael P. Milham ([email protected]) and Simon P. Kelly ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/092213; this version posted December 7, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings
    fnhum-12-00509 December 15, 2018 Time: 15:10 # 1 ORIGINAL RESEARCH published: 18 December 2018 doi: 10.3389/fnhum.2018.00509 EEG-Based Mental Workload Neurometric to Evaluate the Impact of Different Traffic and Road Conditions in Real Driving Settings Gianluca Di Flumeri1,2,3*, Gianluca Borghini1,2,3, Pietro Aricò1,2,3, Nicolina Sciaraffa1,2,4, Paola Lanzi5, Simone Pozzi5, Valeria Vignali6, Claudio Lantieri6, Arianna Bichicchi6, Andrea Simone6 and Fabio Babiloni1,3,7 1 BrainSigns srl, Rome, Italy, 2 IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy, 3 Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy, 4 Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy, 5 Deep Blue srl, Rome, Italy, 6 Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), School of Engineering and Architecture, University of Bologna, Bologna, Italy, 7 Department of Computer Science, Hangzhou Dianzi University, Hangzhou, China Car driving is considered a very complex activity, consisting of different concomitant Edited by: tasks and subtasks, thus it is crucial to understand the impact of different factors, Muthuraman Muthuraman, University Medical Center of the such as road complexity, traffic, dashboard devices, and external events on the driver’s Johannes Gutenberg University behavior and performance. For this reason, in particular situations the cognitive demand Mainz, Germany experienced by the driver could be very high, inducing an excessive experienced Reviewed by: Edmund Wascher, mental workload and consequently an increasing of error commission probability. In Leibniz-Institut für Arbeitsforschung this regard, it has been demonstrated that human error is the main cause of the an der TU Dortmund (IfADo), 57% of road accidents and a contributing factor in most of them.
    [Show full text]
  • Experimental-Design Specific Changes in Spontaneous EEG And
    NEUROSCIENCE RESEARCH ARTICLE V. V. Lazarev et al. / Neuroscience 426 (2020) 50–58 Experimental-design Specific Changes in Spontaneous EEG and During Intermittent Photic Stimulation by High Definition Transcranial Direct Current Stimulation V. V. Lazarev, a* N. Gebodh, b T. Tamborino, a M. Bikson b and E. M. Caparelli-Daquer c,d a Laboratory of Neurobiology and Clinical Neurophysiology, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil b Department of Biomedical Engineering, The City College of New York of The City University of New York, New York, NY, USA c Laboratory of Electrical Stimulation of the Nervous System, Department of Physiological Sciences and Neurosurgery Unit, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil d Hospital Universita´rio Gaffre´e e Guinle, Federal University of the State of Rio de Janeiro (UniRio), Rio de Janeiro, Brazil Abstract—Electroencephalography (EEG) as a biomarker of neuromodulation by High Definition transcranial Direct Current Stimulation (HD-tDCS) offers promise as both techniques are deployable and can be integrated into a single head-gear. The present research addresses experimental design for separating focal EEG effect of HD- tDCS in the ‘4-cathode  1-anode’ (4  1) montage over the left motor area (C3). We assessed change in offline EEG at the homologous central (C3, C4), and occipital (O1, O2) locations. Interhemispheric asymmetry was accessed for background EEG at standard frequency bands; and for the intermittent photic stimulation (IPS). EEG was compared post- vs pre-intervention in three HD-tDCS arms: Active (2 mA), Sham (ramp up/down at the start and end), and No-Stimulation (device was not powered), each intervention lasting 20 min.
    [Show full text]
  • Popular Cognitive Neuroscience, Brain Images, Self-Help and the Consumer*
    CAN WE TRUST CONSUMERS WITH THEIR BRAINS? POPULAR COGNITIVE NEUROSCIENCE, BRAIN IMAGES, SELF-HELP AND THE CONSUMER* Tracy D. Gunter** I. INTRODUCTION ................................... 483 II. THE BRAIN'S RISE TO PROMINENCE ................. 486 III. THE BRAIN AS A ROCK STAR ....................... 497 IV. THE RISE OF THE NEUROS AND NEURO SELF-HELP.......503 A. The Market for Brain Self Help Products ............. 506 B. Examples of Commercial Brain Products..............509 V. BRAIN SELF-HELP CONSUMERS AND CONSUMER PROTECTION ............................... ..... 514 A. Why Protect the Brain Self-Help Consumer?........518 B. Examples of Information Offered to Consumers... 523 C. Enhancing ConsumerLiteracy ....... ........ 532 VI. MECHANISMS OF CONSUMER PROTECTION ..... ...... 537 A. Self-Regula tion and Soft La w ...... ............... 539 B. DirectRegulation........................... 541 C CES Devices:An Example ofRegulation and Enforcement.. ................................ 543 VII. CONCLUSION .............................. ...... 550 I. INTRODUCTION Cognitive neuroscience captures the imagination by exploring connections between the physical brain and the abstract mind. Through recent advances in functional * ©2014 Tracy D. Gunter. All rights reserved ** Tracy Gunter, M.D., Associate Professor Of Clinical Psychiatry at the IU School of Medicine, Adjunct Professor of Law, Indiana University Robert H. McKinney School of Law, e-mail [email protected]. I thank research assistants Emily Steeb and Scott Spicer for editorial help and
    [Show full text]
  • The Emergence of Neuromarketing Investigated Through Online Public Communications (2002-2008)
    The emergence of neuromarketing investigated through online public communications (2002-2008) Clément Levallois, emlyon business school, Lyon, France Ale Smidts, Rotterdam School of Management, Erasmus University, Rotterdam, The Netherlands Paul Wouters, Centre for Science and Technology Studies, Leiden University, Leiden, The Netherlands Published version available at: https://doi.org/10.1080/00076791.2019.1579194 Abstract: “Neuromarketing” designates both a developing industry and an academic research field. This study documents the emergence of neuromarketing through the first mention of the term in traditional and new media until the stabilization of the field. Our main interest is to establish whether neuromarketing developed separately as an academic field and as an industry (with knowledge transfer from the former to the latter), or whether it was an act of co-creation. Based on a corpus gathered from a systematic search on the Web, we trace the multiple forms of engagement between academic and commercial communities, echoed but also shaped by reports in traditional and new media. We find that neuromarketing developed an identity through a set of practices and a series of debates which involved intertwined communities of academic researchers and practitioners. This result offers an alternative to the narrative of “knowledge transfer” between academia and the industry and offers a contribution on how to use new kinds of digital sources in business history. Keywords: neuromarketing, university-industry relations, world wide web, neuroeconomics, digital humanities Page 1 of 41 In the early 2000s, both an academic subfield and a new industry developed around the same theme: understanding marketing processes from the viewpoint of their connection with the consumer’s underlying brain mechanisms, such as the processing of sensory inputs, memory encoding and retrieval, or the valuation of different options when presented with a choice.
    [Show full text]
  • Review Article Consumer Behaviour Through the Eyes of Neurophysiological Measures: State-Of-The-Art and Future Trends
    Hindawi Computational Intelligence and Neuroscience Volume 2019, Article ID 1976847, 41 pages https://doi.org/10.1155/2019/1976847 Review Article Consumer Behaviour through the Eyes of Neurophysiological Measures: State-of-the-Art and Future Trends Patrizia Cherubino ,1,2 Ana C. Martinez-Levy,2,3 Myriam Caratu` ,2,3 Giulia Cartocci ,1,2 Gianluca Di Flumeri ,1,2 Enrica Modica ,4 Dario Rossi ,4 Marco Mancini,2 and Arianna Trettel2 1Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy 2BrainSigns Srl, Via Sesto Celere 7/c, 00152 Rome, Italy 3Department of Communication and Social Research, Sapienza University of Rome, Via Salaria, 113, 00198 Rome, Italy 4Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy Correspondence should be addressed to Patrizia Cherubino; [email protected] Received 15 February 2019; Accepted 31 July 2019; Published 18 September 2019 Guest Editor: Jochen Baumeister Copyright © 2019 Patrizia Cherubino et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. )e new technological advances achieved during the last decade allowed the scientific community to investigate and employ neurophysiological measures not only for research purposes but also for the study of human behaviour in real and daily life situations. )e aim of this review is to understand how and whether neuroscientific technologies can be effectively employed to better understand the human behaviour in real decision-making contexts. To do so, firstly, we will describe the historical development of neuromarketing and its main applications in assessing the sensory perceptions of some marketing and advertising stimuli.
    [Show full text]
  • Neuroscience Innovation Report
    Neuroscience Innovation Report 2018 Powered by Neuroscience Innovation Report 2018 Introduction In 1559, surgeons Ambroise Paré and Andreas Vesalius received permission from Queen Catherine to autopsy the brain of King Henri II of France, who had succumbed to an intracranial haemorrhage. While today this would be seen a normal investigative procedure, at the time it was a daring request. Dissections were usually performed only on criminals, who would be sentenced to the procedure as a posthumous punishment. It is unclear why Catherine gave in to Paré and Vesalius, since it was obvious that the cause of death was the lance injury he sustained in a jousting tournament. But when their predictions of the type of damage they’d find inside Henri’s brain, and where they’d find it, proved to be true, it led to a turning point in the history of neuroscience – proof that a deeper understanding of the brain lay in science rather than superstition. Today, neuroscience is continuing to innovate in our understanding of the structure of the brain. The data generated is so huge that many of these innovations are focused on creating ways to more efficiently catalogue and retrieve information from hundreds of thousands of brain scans made by researchers around the world. Platforms, such as the Human Connectome Project, and Open fMRI, have been established to share brain imaging data and analyse it collaboratively. Researchers like Julie Korenberg, at the University of Utah in Salt Lake City, are working on developing 3D coordinate systems to align various types of neuroimaging data to allow anyone to pick a point on one image and look at the same point at another resolution, a Google Earth of neuroimaging.
    [Show full text]