A Pragmatic Randomized Controlled Trial of Personalized, Genetic-Based Lifestyle Advice

Total Page:16

File Type:pdf, Size:1020Kb

A Pragmatic Randomized Controlled Trial of Personalized, Genetic-Based Lifestyle Advice Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-12-2020 11:00 AM The NOW Trial: A Pragmatic Randomized Controlled Trial of Personalized, Genetic-Based Lifestyle Advice Justine Rochelle Horne The University of Western Ontario Supervisor Gilliland, Jason A The University of Western Ontario Co-Supervisor Madill, Janet The University of Western Ontario Graduate Program in Health and Rehabilitation Sciences A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Justine Rochelle Horne 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Dietetics and Clinical Nutrition Commons, and the Other Genetics and Genomics Commons Recommended Citation Horne, Justine Rochelle, "The NOW Trial: A Pragmatic Randomized Controlled Trial of Personalized, Genetic-Based Lifestyle Advice" (2020). Electronic Thesis and Dissertation Repository. 6839. https://ir.lib.uwo.ca/etd/6839 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. The NOW Trial: A Pragmatic Randomized Controlled Trial of Personalized, Genetic-Based Lifestyle Advice Abstract Background: The impact of nutrigenomics and lifestyle genomics interventions on health outcomes and behaviours remains controversial and under-explored. Objectives: To determine the short-term (3-month), moderate-term (6-month) and long-term (12-month) impact of providing personalized, genetic-based lifestyle information and advice on anthropometric measures, as well as dietary intake and adherence. Methods: The nutrigenomics, overweight/obesity and weight management trial (NOW Trial) is a pragmatic randomized controlled trial that was incorporated into the Group Lifestyle Balance™ (GLB) program (N=140). Inclusion criteria: overweight or obesity (BMI ≥ 25 kg/m2), ≥ 18 years of age, English-speaking, having access to internet at least one day per week, willing to undergo genetic testing, and not seeing another healthcare provider outside of the study for weight-loss advice. Exclusion criteria: Pregnancy and lactation. Twelve-month GLB weight management program groups were randomized 1:1 to receive either the standard GLB program or a modified nutrigenomics-based GLB program (GLB+NGx). Data collection occurred at baseline, 3-, 6- and 12-month follow-up. The predetermined primary outcome was change in body fat percentage (BFP). Dietary intake and adherence were secondary outcome measures. Statistical Analysis: Statistical tests conducted using SPSS (version 26.0) included: repeated measures analyses of variance (ANOVAs), split-plot ANOVAs, two-way ANOVAs, chi-square i and Fisher’s exact tests and logistic regression. Key components of the Theory of Planned Behaviour were considered in the dietary intake analyses. Results: After 3- and 6-month follow-up, the GLB+NGx group improved (reduced) their BFP to a significantly greater extent (p<0.05) than the standard GLB group. There were no statistically significant differences in BFP between groups after 12 months. Furthermore, the GLB+NGx group significantly reduced their total fat intake after 12 months; the standard GLB group did not. Dietary adherence to saturated fat and total fat recommendations were significantly (p<0.05) greater in the GLB+NGx group compared to the standard GLB group at 12 months. Conclusion: Genetically-tailored lifestyle advice can lead to improvements in body composition over the short-term and moderate-term, and motivate long-term dietary changes and adherence to nutrition recommendations. Biological mechanisms may challenge long-term weight loss, even with genetically-tailored advice that motivates long-term dietary changes. Keywords: nutrigenomics, nutritional genomics, nutrigenetics, lifestyle genomics, genetics, nutrition, overweight, obesity, Theory of Planned Behaviour, Theory of Planned Behavior ii Summary for Lay Audience Nutrigenomics is a science that explores how our genes impact the way our bodies respond to the foods, beverages and nutrients we consume. For example, one person may lose more weight by following a lower saturated fat nutrition plan compared to someone else. Nutrigenomics can be used to provide more personalized nutrition advice. Some studies have shown that giving personalized, genetic-based information and advice can help motivate individuals to make dietary changes. Very few studies have assessed the effectiveness of nutrigenomics-based weight loss interventions. Therefore, the studies included in this dissertation aimed to build upon past research and provide new insights into whether providing people with genetic-based lifestyle advice results in improvements in dietary intake, weight and body fat. To study this, we randomly assigned people to receive either standard advice for weight management or genetic- based advice for weight management and then followed up with them after 3, 6 and 12 months. The study participants also participated in a 12-month intervention. Overall, people who received the genetic-based advice experienced a decrease in body fat, more so than the people who received the standard advice after 3 and 6 months. After 12 months, there was no major difference in body fat between these two groups. When we looked at changes to their nutritional intake, people who received the genetic-based advice significantly reduced their overall intake of dietary fat after 12 months, whereas those who received the standard advice did not. Additionally, after 12 months, people who received the genetic-based advice better adhered to the recommendations for total fat and saturated fat compared to those who received the standard intervention. Overall, we found that nutrigenomics interventions can motivate long-term (12- month) dietary changes and can lead to improvements in body fat over the short-term (3-month) and moderate-term (6-month) to a greater extent than standard advice. Previous research shows that over time, the body tries to compensate for weight loss with physiological mechanisms promoting weight regain. This may help to explain why we found that after 12 months, the group receiving the standard advice had lost a similar amount of body fat as the group receiving genetic-based advice, despite the genetic intervention group improving their diet to a greater extent. iii Statement of Co-Authorship The following dissertation includes six integrated articles, three of which have been published, and three of which have been submitted for publication. For published manuscripts, reference formatting, sub-heading numbers, spelling (Canadian) table numbers and figure numbers have been revised for consistency with the present dissertation. In addition, acknowledgments have been removed from the individual chapters and are included in the proceeding Acknowledgments section of this dissertation. Co-authorship details for each of the six articles are as follows: Chapter 2 (published): Horne J, Madill J, Gilliland J. 2017. “Incorporating the ‘Theory of Planned Behavior’ into personalized healthcare behavior change research: a call to action.” Personalized Medicine 14(6): 521-29. This article was conceptualized and written by Horne with guidance from Madill and Gilliland. Horne conducted the literature search, conceptualized the presented ideas, wrote and revised manuscript, and formatted and submitted the article to the journal Personalized Medicine. Horne also completed all recommended revisions resulting from the journal’s peer-review process. Madill and Gilliland advised on the revisions and approved the final manuscript. Chapter 3 (published): Horne J, Madill J, O ’Connor C, Shelley J, Gilliland J. 2018. “A systematic review of genetic testing and lifestyle behaviour change: Are we using high-quality genetic interventions and considering behaviour change theory?” Lifestyle Genomics. 11(1): 49-63. Horne designed the review protocol with guidance from Gilliland, piloted data collection forms with Gilliland, critically appraised articles, trained a student volunteer to conduct searches, took the lead on data entry, critically appraised all included articles, conducted analyses, interpreted results, wrote and revised the manuscript, and formatted and submitted article to the journal Lifestyle Genomics. Madill, O’Connor, Shelley and Gilliland provided guidance throughout the research process, and revised and approved the final manuscript. Chapter 4 (submitted): Horne J, Gilliland J, Madill J. “Assessing the effectiveness of actionable nutrigenomics and lifestyle genomics interventions for weight management: A critical, scoping review with directions for future research.” Horne completed the literature search, reviewed, summarized, and critiqued the included articles, conceptualized the presented ideas, wrote, revised, formatted and submitted the manuscript to the journal. Gilliland and Madill reviewed and approved the final manuscript. iv Chapter 5 (published): Horne J, Gilliland J, O’Connor C, Seabrook J, Hannaberg P, Madill J. 2019. “Study protocol of a pragmatic randomized controlled trial incorporated into the Group Lifestyle Balance™ Program: The Nutrigenomics, Overweight/Obesity and Weight Management Trial (The NOW Trial).” BMC Public Health 19(1): 310. Horne took a leadership role in designing the study with feedback from Madill, Gilliland, Seabrook and O’Connor.
Recommended publications
  • Prolyl Hydroxylase Domain Enzymes: Important Regulators of Cancer Metabolism
    Hypoxia Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism Ming Yang1 Abstract: The hypoxia-inducible factor (HIF) prolyl hydroxylase domain enzymes (PHDs) Huizhong Su1 regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl Tomoyoshi Soga2 residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα 3 under normal oxygen (O ) availability enables its association with the von Hippel-Lindau (VHL) Kamil R Kranc 2 Patrick J Pollard1 tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin- proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the 1Cancer Biology and Metabolism activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIF , which Group, Institute of Genetics and α Molecular Medicine, University of dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the Edinburgh, Edinburgh, UK; 2Institute transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, for Advanced Biosciences, Keio For personal use only. University, Mizukami, Tsuruoka, HIF plays important roles in multiple cellular processes and its overexpression has been detected Yamagata, Japan; 3MRC Centre for in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, Regenerative Medicine, University most notably by promoting anaerobic, whilst inhibiting O -dependent, metabolism of glucose. of Edinburgh, Edinburgh, UK 2 The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites) that have been observed in some types of cancers.
    [Show full text]
  • Identification of Micrornas Controlling Hepatic Mrna Levels for Metabolic
    Hicks et al. BMC Genomics (2017) 18:687 DOI 10.1186/s12864-017-4096-5 RESEARCHARTICLE Open Access Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken Julie A. Hicks1, Tom E. Porter2 and Hsiao-Ching Liu1* Abstract Background: The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. Results: We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs.
    [Show full text]
  • Loss-Of-Function Mutation in the Dioxygenase-Encoding FTO Gene
    Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations Sarah Boissel, Orit Reish, Karine Proulx, Hiroko Kawagoe-Takaki, Barbara Sedgwick, Giles Yeo, David Meyre, Christelle Golzio, Florence Molinari, Noman Kadhom, et al. To cite this version: Sarah Boissel, Orit Reish, Karine Proulx, Hiroko Kawagoe-Takaki, Barbara Sedgwick, et al.. Loss-of- Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations. American Journal of Human Genetics, Elsevier (Cell Press), 2009, 85 (1), pp.106-111. 10.1016/j.ajhg.2009.06.002. hal-02044723 HAL Id: hal-02044723 https://hal.archives-ouvertes.fr/hal-02044723 Submitted on 21 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REPORT Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations Sarah Boissel,1,7 Orit Reish,2,7 Karine Proulx,3,7 Hiroko Kawagoe-Takaki,4 Barbara Sedgwick,4 Giles S.H. Yeo,3 David Meyre,5 Christelle Golzio,1 Florence Molinari,1 Noman Kadhom,1 Heather C. Etchevers,1 Vladimir Saudek,3 I. Sadaf Farooqi,3 Philippe Froguel,5,6 Tomas Lindahl,4 Stephen O’Rahilly,3 Arnold Munnich,1 and Laurence Colleaux1,* FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family.
    [Show full text]
  • Genomics of Body Fat Distribution
    Journal of Genetics (2021)100:32 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-021-01281-7 (0123456789().,-volV)(0123456789().,-volV) REVIEW ARTICLE Genomics of body fat distribution SIMMI SAINI1, GAGANDEEP KAUR WALIA2, MOHINDER PAL SACHDEVA1 and VIPIN GUPTA1* 1Department of Anthropology, University of Delhi, Delhi 110 007, India 2Public Health Foundation of India, Gurugram 122 002, India *For correspondence. E-mail: [email protected]. Received 1 May 2020; revised 10 November 2020; accepted 4 January 2021 Abstract. Central obesity and body fat distribution measured by waist circumference (WC) and waist hip ratio (WHR) are good predictors of cardio metabolic adversities independent of overall adiposity. There are substantial evidence that body fat distribution is controlled by genetic factors. Even after accounting for body mass index (BMI), individual variation in body fat distribution is heritable, with estimates ranging from 31–76%. Individuals genetically predisposed to store more fat in visceral depots are at higher risk of developing metabolic complications. Several linkage and genomewide association studies (GWAS) for measures of body fat distribution uncovered numerous loci harbouring genes potentially regulating body fat distribution. Additionally, genes with fat depot specific expression patterns (especially, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT)) have provided plausible candidate genes involved in body fat regulation. Further, sexual dimorphism have revealed a remarkable heterogeneity in the genetic regulation of body fat distribution. More than hundred loci have been identified through GWAS, displaying more pronounced effect in females than males, suggesting that both sexes share potentially different biological architecture in traits related to body fat distribution.
    [Show full text]
  • Aprioritized Panel of Candidate Genes
    In: Advances in Genetics Research. Volume 9 ISBN: 978-1- 62081-466-6 Editor: Kevin V. Urbano © 2012 Nova Science Publishers, Inc No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 1 A PRIORITIZED PANEL OF CANDIDATE GENES TO BE EXPLORED FOR ASSOCIATIONS WITH THE BLOOD PRESSURE RESPONSE TO EXERCISE Garrett I. Ash,1,Amanda L. Augeri,2John D. Eicher,3 Michael L. Bruneau, Jr.1 and Linda S. Pescatello1 1University of Connecticut, Storrs, CT, US 2Hartford Hospital, Hartford, CT, US 3Yale University School of Medicine, New Haven, CT, US ABSTRACT Introduction. Identifying genetic variants associated with the blood pressure (BP) response to exercise is hindered by the lack of standard criteria for candidate gene selection, underpowered samples, and a limited number of conclusive whole genome studies. We developed a prioritized panel of candidate genetic variants that may increase the likelihood of finding genotype associations with the BP response to exercise when used alone or in conjunction with high throughput genotyping studies. Methods. We searched for candidate genetic variants meeting preestablished criteria using PubMed and published systematic reviews.
    [Show full text]
  • The Relationship Between Selected CNR1, MC4R, LEP, FTO and VDR
    Journal of Clinical Medicine Article The Relationship between Selected CNR1, MC4R, LEP, FTO and VDR Gene Polymorphisms and Several Basic Toxicological Parameters Among Persons Occupationally Exposed to Arsenic, Cadmium and Lead Tomasz Matys 1, Anna Szyma ´nska-Chabowska 1, Katarzyna Bogunia-Kubik 2, Beata Smyk 1, Małgorzata Kami ´nska 2, Grzegorz Mazur 1 , Rafał Por˛eba 1 and Paweł Ga´c 3,* 1 Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, PL 50-556 Wroclaw, Poland; [email protected] (T.M.); [email protected] (A.S.-C.); [email protected] (B.S.); [email protected] (G.M.); [email protected] (R.P.) 2 Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, PL 53-114 Wroclaw, Poland; [email protected] (K.B.-K.); [email protected] (M.K.) 3 Department of Hygiene, Wroclaw Medical University, Mikulicza-Radeckiego 7, PL 50-368 Wroclaw, Poland * Correspondence: [email protected]; Tel.: +48-71-784-1502; Fax.: +48-71-784-1503 Received: 24 February 2020; Accepted: 6 April 2020; Published: 7 April 2020 Abstract: The purpose of this work was to assess the influence of selected CNR1, MC4R, LEP, FTO and VDR FOKI gene polymorphisms on blood and urine concentration markers of lead, cadmium and arsenic in a population directly exposed to these metals. Eighty-five people exposed to lead, arsenic and cadmium were qualified to take part in the study. Standard urine samples and 25 mL of venous blood from each worker were collected to assay basic laboratory and toxicological markers as well as selected single nucleotide polymorphisms (SNPs) within CNR1—cannabinoid receptor 1 gene (rs806368, rs806381, rs1049353, rs12720071), MC4R—melanocortin 4 receptor gene (rs17782313), LEP—leptin promoter gene (rs7799039), FTO—alpha-ketoglutarate-dependent dioxygenase gene (rs9939609) and VDR—vitamin D receptor (rs10735810) genes.
    [Show full text]
  • Lack of Association Between Genetic Polymorphism of FTO
    J Pediatr (Rio J). 2016;92(5):521---527 www.jped.com.br ORIGINAL ARTICLE Lack of association between genetic polymorphism of FTO, AKT1 and AKTIP in childhood overweight ଝ and obesity a,1 a,∗,1 Patrícia de Araújo Pereira , António Marcos Alvim-Soares Jr. , d c Valéria Cristina Sandrim , Carla Márcia Moreira Lanna , b b Débora Cristine Souza-Costa , Vanessa de Almeida Belo , a b Jonas Jardim de Paula , José Eduardo Tanus-Santos , a a Marco Aurélio Romano-Silva , Débora Marques de Miranda a Universidade Federal de Minas Gerais (UFMG), INCT de Medicina Molecular, Belo Horizonte, MG, Brazil b Universidade de São Paulo (USP), Faculdade de Medicina de Ribeirão Preto (FMRP), Departamento de Farmacologia, Ribeirão Preto, SP, Brazil c Universidade Federal de Juiz de Fora (UFJF), Instituto de Ciências Biológicas, Departamento de Fisiologia, Juiz de Fora, MG, Brazil d Universidade Estadual Paulista (UNESP), São Paulo, SP, Brazil Received 15 July 2015; accepted 15 December 2015 Available online 21 June 2016 KEYWORDS Abstract Single-nucleotide Objective: Obesity is a chronic disease caused by both environmental and genetic factors. polymorphisms; Epidemiological studies have documented that increased energy intake and sedentary lifestyle, as well as a genetic contribution, are forces behind the obesity epidemic. Knowledge about the Childhood obesity; interaction between genetic and environmental components can facilitate the choice of the Fat mass and obesity associated; most effective and specific measures for the prevention of obesity. The aim of this study was Gene; to assess the association between the FTO, AKT1, and AKTIP genes and childhood obesity and AKT1; insulin resistance. AKTIP Methods: This was a case---control study in which SNPs in the FTO (rs99396096), AKT1, and AKTIP genes were genotyped in groups of controls and obese/overweight children.
    [Show full text]
  • SNP) Markers in Candidate Genes and QTL Regions with Pork Quality Traits in Commercial Pigs☆,☆☆
    Meat Science 92 (2012) 511–518 Contents lists available at SciVerse ScienceDirect Meat Science journal homepage: www.elsevier.com/locate/meatsci Association of single nucleotide polymorphism (SNP) markers in candidate genes and QTL regions with pork quality traits in commercial pigs☆,☆☆ G.A. Rohrer a,⁎, D.J. Nonneman a, R.K. Miller b, H. Zerby c, S.J. Moeller c a USDA, ARS, U.S. Meat Animal Research Center, Spur 18D, Clay Center, NE 68933-0166, USA b Texas A&M University, Rudder Tower 401, Joe Routt Blvd., College Station, TX 77843-1372, USA c The Ohio State University, 1971 Neil Ave, Columbus, OH 43210-1273, USA article info abstract Article history: Numerous reports have described genetic markers or genomic regions (QTL) associated with pork quality Received 6 January 2012 and/or palatability but few validation studies have been reported. Therefore, 156 SNP markers from 45 Received in revised form 10 April 2012 candidate genes and eight QTL regions were analyzed for association with pork quality and palatability traits Accepted 18 May 2012 from 888 pork loins. Loins were collected at three slaughter facilities and selected to represent a wide range of pork color, pH and marbling. Phenotypic data recorded included objective and subjective measures of color Keywords: and marbling, purge loss, shear force, and cooking loss. Data were analyzed with SAS PROC MIXED where Genetic markers fi Pork quality loin was t as a random effect. Results indicated some of the markers tested should be useful in industry, Association while others are not segregating in all populations or linkage disequilibrium between markers and causative genetic variation fluctuates among populations limiting their universal utility.
    [Show full text]
  • The Dual Role of HIF Hydroxylase PHD3 in Cancer Cell Survival
    TURUN YLIOPISTON JULKAISUJA ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. D OSA - TOM. 1033 MEDICA - ODONTOLOGICA The dual role of HIF hydroxylase PHD3 in cancer cell survival by Krista Rantanen TURUN YLIOPISTO UNIVERSITY OF TURKU Turku 2012 From the Department of Medical Biochemistry and Genetics, Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland Supervised by Docent Panu Jaakkola, MD, PhD Turku Centre for Biotechnology and The Department of Oncology and Radiation Therapy University of Turku Turku, Finland Reviewed by Docent Peppi Karppinen, MD, PhD Department of Medical Biochemistry and Molecular Biology Institute of Biomedicine University of Oulu Oulu, Finland and Docent Antero Salminen, Ph.D Department of Neurology, Institute of Clinical Medicine, School of Medicine University of Eastern Finland Kuopio, Finland Opponent Susanne Schlisio, PhD Ludwig Institute for Cancer Research Karolinska Institutet Stockholm, Sweden ISBN 978-951-29-5132-1 (PRINT) ISBN 978-951-29-5133-8 (PDF) ISSN 0355-9483 Painosalama Oy – Turku, Finland 2012 To Halla 4 Abstract Krista Rantanen The Dual Role of HIF Hydroxylase PHD3 in Cancer Cell Survival Department of Medical Biochemistry and Genetics, Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University Annales Universitatis Turkuensis Painosalama Oy – Turku, Finland ABstract Most advanced tumours face periods of reduced oxygen availability i.e. hypoxia. During these periods tumour cells undergo adaptive changes enabling their survival under adverse conditions. In cancer hypoxia-induced cellular changes cause tumour progression, hinder cancer treatment and are indicative of poor prognosis. Within cells the main regulator of hypoxic responses is the hypoxia-inducible factor (HIF).
    [Show full text]
  • (FTO) Gene: Mechanisms of Impact on Obesity and Energy Balance
    Curr Obes Rep DOI 10.1007/s13679-015-0143-1 PSYCHOLOGICAL ISSUES (M HETHERINGTON AND V DRAPEAU, SECTION EDITORS) The ‘Fat Mass and Obesity Related’ (FTO) gene: Mechanisms of Impact on Obesity and Energy Balance John R. Speakman # Springer Science+Business Media New York 2015 Abstract A cluster of single nucleotide polymorphisms mental to its role in development but the link to obesity is less (SNPs) in the first intron of the fat mass and obesity related clear. It has been recently suggested that although the obesity (FTO) gene were the first common variants discovered to be related SNPs reside in the first intron of FTO, they may not associated with body mass index and body fatness. This re- only impact FTO but mediate their obesity effects via nearby view summarises what has been later discovered about the genes (notably RPGRIP1L and IRX3). biology of FTO drawing together information from both hu- man and animal studies. Subsequent work showed that the ‘at Keywords FTO . GWAS . BMI . Body composition . risk’ alleles of these SNPs are associated with greater food Adiposity . Fatness . Obesity . Food intake . Energy intake and increased hunger/lowered satiety, but are not asso- expenditure . Physical activity . 2-oxoglutarate . ciated with altered resting energy expenditure or low physical Demethylation . DNA . RNA . Leptin . Ghrelin . activity in humans. FTO is an FE (II) and 2-oxoglutarate de- Hypothalamus . Amino acid sensor . mTOR . Protein intake . pendent DNA/RNA methylase. Contrasting the impact of the Macronutrient intake . IRX3 . RPGRIP1L . FTM SNPs on energy balance in humans, knocking out or reducing activity of the Fto gene in the mouse resulted in lowered adiposity, elevated energy expenditure with no impact on food intake (but the impact on expenditure is disputed).
    [Show full text]
  • Analysis of the Potential Genetic Links Between Psoriasis and Cardiovascular Risk Factors
    International Journal of Molecular Sciences Review Analysis of the Potential Genetic Links between Psoriasis and Cardiovascular Risk Factors Dorota Purzycka-Bohdan 1,* , Anna Kisielnicka 1, Michał Bohdan 2 , Aneta Szczerkowska-Dobosz 1, Marta Sobalska-Kwapis 3, Bogusław Nedoszytko 1,4 and Roman J. Nowicki 1 1 Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland; [email protected] (A.K.); [email protected] (A.S.-D.); [email protected] (B.N.); [email protected] (R.J.N.) 2 First Department of Cardiology, Medical University of Gdansk, 80-211 Gdansk, Poland; [email protected] 3 Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland; [email protected] 4 Invicta Fertility and Reproductive Centre, Molecular Laboratory, 81-740 Sopot, Poland * Correspondence: [email protected] Abstract: Cardiovascular risk factors are one of the most common comorbidities in psoriasis. A higher prevalence of hypertension, insulin resistance and type 2 diabetes, dyslipidemia, obesity, metabolic syndrome, depression, as well as cardiovascular disease was confirmed in psoriatic patients in comparison to the general population. Data suggest that psoriasis and systemic inflammatory disorders may originate from the pleiotropic interactions with many genetic pathways. In this review, the authors present the current state of knowledge on the potential genetic links between psoriasis and cardiovascular risk factors. The understanding of the processes linking psoriasis with Citation: Purzycka-Bohdan, D.; Kisielnicka, A.; Bohdan, M.; cardiovascular risk factors can lead to improvement of psoriasis management in the future.
    [Show full text]
  • Contributions to Adult and Childhood Obesity
    Biochemical Society Transactions (2020) 0 1–10 https://doi.org/10.1042/BST20200556 Review Article 1 2 3 DNA copy number and structural variation (CNV) 4 5 contributions to adult and childhood obesity 6 7 Megan Phillips1, Jeganathan Ramesh Babu1,2,3,XuWang4,5,3 and Thangiah Geetha1,2,3 Q2Q1 8 9 1Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, U.S.A.; 2Boshell Metabolic Diseases and Diabetes Program, Auburn 10 University, Auburn, AL 36849, U.S.A.; 3Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, U.S.A.; 4Department of Pathobiology, Auburn University, Auburn, AL 36849, U.S.A.; 5HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A. Q311 12 Correspondence: Thangiah Geetha ([email protected]) 13 14 15 In recent years, obesity has reached epidemic proportions globally and has become a 16 major public health concern. The development of obesity is likely caused by several 17 behavioral, environmental, and genetic factors. Genomic variability among individuals is 18 largely due to copy number variations (CNVs). Recent genome-wide association studies 19 (GWAS) have successfully identified many loci containing CNV related to obesity. These 20 obesity-related CNVs are informative to the diagnosis and treatment of genomic dis- 21 eases. A more comprehensive classification of CNVs may provide the basis for determin- 22 ing how genomic diversity impacts the mechanisms of expression for obesity in children 23 and adults of a variety of genders and ethnicities. In this review, we summarize current 24 knowledge on the relationship between obesity and the CNV of several genomic regions, 25 with an emphasis on genes at the following loci: 11q11, 1p21.1, 10q11.22, 10q26.3, 26 16q12.2, 16p12.3, and 4q25.
    [Show full text]