Frequency and Implications of HIV Superinfection

Total Page:16

File Type:pdf, Size:1020Kb

Frequency and Implications of HIV Superinfection Review Frequency and implications of HIV superinfection Andrew D Redd, Thomas C Quinn, Aaron A R Tobian* HIV superinfection occurs when an individual with HIV is infected with a new distinct HIV viral strain. Superinfection Published Online has been reported throughout the world, and studies have recorded incidence rates of 0–7∙7% per year. Use of next- May 31, 2013 generation sequencing has improved detection of superinfection, which can be transmitted by injecting drug use and http://dx.doi.org/10.1016/ S1473-3099(13)70066-5 sexual intercourse. Superinfection might have incidence rates comparable to those of initial HIV infection. Clinicians Division of Intramural should encourage safe sexual and injecting drug use practices for HIV-infected patients because superinfection has Research, National Institute of detrimental eff ects on clinical outcomes and could pose a concern for large-scale antiretroviral treatment plans. The Allergy and Infectious Diseases, occurrence of superinfection has implications for vaccine research, since it seems initial HIV infection is not fully National Institutes of Health, protective against a subsequent infection. Additional collaborative research could benefi t care of patients and inform Bethesda, MD, USA (A D Redd PhD, future vaccine design. Prof T C Quinn MD); Department of Pathology, Introduction Detection of HIV superinfection School of Medicine, Johns HIV superinfection occurs when an individual with The investigators in initial studies that identifi ed indi- Hopkins University, Baltimore, MD (A A R Tobian MD) HIV becomes infected with a new, phylogenetically distinct viduals dually infected with HIV-1 and HIV-2 used Correspondence to: viral HIV strain. This diff ers from HIV dual infection, serological assays that could easily distinguish between Dr Aaron Tobian, Department of which is defi ned as being infected with two or more distinct the two viral species;3 however, this approach cannot Pathology, Johns Hopkins viral strains at one point in time. Dual infection can be distinguish between diff erent HIV-1 subtypes or strains. University, Carnegie 437, caused by superinfection as well as co-infection, which is The initial cases of HIV superinfection were identifi ed in 600 North Wolfe Street, Baltimore, MD 21287, USA initial infection with two or more strains. The possibility of injecting drug users in Thailand by restriction fragment [email protected] superinfection was fi rst discovered after the observation of analysis on amplifi ed viral sequences from longitudinal co-infection with both HIV-1 and HIV-2, which are samples followed by confi rmatory viral sequencing.9 At evolutionarily distinct viral species that share about 42% of the same time, two separate super infection cases were nucleotide homology in their envelope genes.1–3 identifi ed in two men who have sex with men who were Additional evidence for superinfection came from HIV-1 being monitored as part of larger clinical studies after recombinant forms, which are HIV virions that contain they had unexplained spikes in their set-point viral separate genomic sections from distinct HIV-1 subtypes. loads.7,8 Samples from these individuals before and after HIV-1 is diff erentiated by genetic sequence into nine the spike were subsequently analysed by subtype-specifi c subtypes—A, B, C, D, F, G, H, J, and K, which have been asso- PCR amplifi cation7 or direct sequencing8 to confi rm the ciated with diff erent rates of disease progression, viral presence of new viral populations. Other groups sub- load, detection method assay sensitivity, and distinct sequently used these strategies of screening populations geographical regions.4,5 HIV-1 virions are diploid and viral for spikes in viral load10–14 or subsequent restriction strains are able to recombine when two distinct subtypes fragment analysis15 followed by direct sequencing to infect a single cell. If this new recombinant strain is identify HIV superinfection. transmitted it can become a circulating recombinant After these initial studies, three diagnostic strategies form. Roughly 10% of all HIV-1 infections involve re- were used to screen for HIV superinfection in popu- combinant viruses, providing further evidence of lations: heteroduplex mobility assays,16–18 multiregion superinfection.6 hybridisation assays,19 and bulk viral sequence analysis20–25 Although HIV superinfection has been strongly followed by selective cloning of those samples that suspected for many years, whether individuals were suggested emergence of new viral variants. Multiregion infected by two distinct HIV-1 viruses simultaneously hybridisation assays can identify only inter-subtype (co-infection or dual infection), or whether a secondary superinfection. Heteroduplex mobility assays, however, infection occurred after the initial infection (super- can detect samples with greater than 1∙5% genetic infection), has been diffi cult to distinguish. Insuffi cient diff erence but are susceptible to false positives caused by well documented longitudinal samples and absence of insertions or deletions.26 Bulk sequencing can be used to sensitive techniques for HIV superinfection detection examine for changes in the viral population by either prevented its documentation until 2002.7–9 Under- searching for new phylogenetic species at a later standing of both intra-subtype and inter-subtype HIV timepoint or quantifying the amount of degenerate bases superinfection is not only important for appropriate in a given sequence. The sensitivity of this strategy relies management, but could also provide insights into viral on the likelihood of amplifi cation of the new viral popula- evolution and host immune responses to repeat HIV tion and not only the original strain. Not surprisingly, challenges before and after superinfection. Such infor- examination of degenerate bases poorly detected minor mation could have substantial implications for HIV variants at levels of 20% or lower.26 Additionally, all vaccine development, global public health eff orts, and these methods need confi rmation with cloning and care of patients. sequencing.27–29 To avoid problems associated with less www.thelancet.com/infection Published online May 31, 2013 http://dx.doi.org/10.1016/S1473-3099(13)70066-5 1 Review sensitive screening techniques, a range of populations viral diversity than an approach based on amplifi cation of with diff ering risk behaviours were screened for HIV single-viral genomes at 40% of the cost and with 20% less superinfection by either single-viral genome amplifi - labour.29 Consequently, next-generation-sequencing is cation27,28 or cloning30,31 and then compared for evidence becoming the assay of choice for detection of super- of phylogenetically distinct species. The capacity of these infection. Determination of the timing of the two approaches to accurately identify superinfection superinfection events relies on the sampling intervals depends on the amount of sequences generated for each available for the cohorts being examined. However, as sample.28,29 The sensitivity of all sequence-based assays knowledge improves of the rates of evolution and for identifi cation of superinfection also depends on the recombination after superinfection, better esti mation of number of viral genomic regions investigated.28 The two the timing of superinfection by use of phylogenetic and approaches are therefore prohibitively expen sive and too evolutionary modelling analyses is possible. labour-intensive for large-scale studies.29,32 Because of these limitations, we and other researchers Epidemiology have designed and verifi ed next-generation-sequencing HIV superinfection has been documented in observational assays that can detect minor variants at 1% or less of the studies and case reports in the USA8,23,31,36–38 and Canada,39 total viral population in a high-throughput way.29,33,34 We Europe,7,10,13,22,40–42 Australia,11 Asia,9,15 and Africa17,20,21,27,28,35,43 subsequently used this assay to identify HIV super- (fi gure 2); although a small study in Brazil did not fi nd infection both in virally discordant couples and in a large HIV superinfection when detection methods less sensitive population of African HIV seroconverters34,35 (fi gure 1). than next-generation-sequencing were used.16 The Next-generation-sequencing assays allow one to combine widespread observation of superinfection suggests it is a screening and verifi cation, and can be done in a high- substantial problem and has been under-reported. throughput manner, allowing for the accurate and timely Superinfection is transmitted in various ways. Two assessment of large, at-risk populations or at an individual of the initial case reports and several observational patient level.35 Additionally, these assays can capture more studies23,37,40 were in men who have sex with men.7,8 Studies in Thailand and the USA have reported super- 9,15,31 Initial infecting viral population infection in intravenous drug users. Additionally, Viral population after two years many cases of superinfection among female sex workers have been reported.17,20,27,28,43 Although fi rst studied in high-risk populations, superinfection was recently found to occur among a heterosexual population in rural Africa.34,35 HIV superinfection incidence rates of 0% to 7∙7% per year have been recorded in several case reports and population-based studies.23,27,28,43–45 Incidence rates can vary substantially with population, the frequency of Adequate genetic antiretroviral drug use, the length of follow-up, and the distance from original strain to detection methods used. These diff erences in study design rule out natural have led to several studies reporting no superinfection.45–47 genetic drift However, a study using next-generation-sequencing assays in Uganda found superinfection incidence rates comparable to the rate of initial HIV-infection in the same area.35 The study also drew attention to the diffi culty of comparison between HIV superinfection and HIV Presence of a new primary incidence rates in a population because distinct population individuals with HIV are inherently at a higher-risk than consisting of 35 multiple unique the comparison group.
Recommended publications
  • Coevolution of HIV-1 and Broadly Neutralizing Antibodies
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Curr Opin Manuscript Author HIV AIDS. Author Manuscript Author manuscript; available in PMC 2020 October 13. Published in final edited form as: Curr Opin HIV AIDS. 2019 July ; 14(4): 286–293. doi:10.1097/COH.0000000000000550. Coevolution of HIV-1 and broadly neutralizing antibodies Nicole A. Doria-Rosea, Elise Landaisb aVaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland bIAVI Neutralizing Antibody Center, Immunology and Microbiology Department, The Scripps Research Institute, La Jolla, California, USA Abstract Purpose of review—Exploring the molecular details of the coevolution of HIV-1 Envelope with broadly neutralizing antibodies (bNAbs) in infected individuals over time provides insights for vaccine design. Since mid-2017, the number of individuals described in such publications has nearly tripled. New publications have extended such studies to new epitopes on Env and provided more detail on previously known sites. Recent findings—Studies of two donors – one of them an infant, the other with three lineages targeting the same site – has deepened our understanding of V3-glycan-directed lineages. A V2- apex-directed lineage showed remarkable similarity to a lineage from a previously described donor, revealing general principles for this class of bNAbs. Understanding development of CD4 binding site antibodies has been enriched by the study of a VRC01-class lineage. Finally, the membrane-proximal external region is a new addition to the set of epitopes studied in this manner, with early development events explored in a study of three lineages from a single donor.
    [Show full text]
  • Lessons from Viral Superinfections for HIV-1 Vaccine Design Stephanie Jost* Ragon Institute of MGH, MIT and Harvard, USA
    C S & lini ID ca A l f R o e l s Journal of a e n a r r Jost, J AIDS Clinic Res 2013, S3 c u h o J DOI: 10.4172/2155-6113.S3-005 ISSN: 2155-6113 AIDS & Clinical Research Review Article Open Access Lessons from Viral Superinfections for HIV-1 Vaccine Design Stephanie Jost* Ragon Institute of MGH, MIT and Harvard, USA Abstract Superinfection refers to a second viral infection in the context of a pre-existing adaptive immune response to prior infection with a viral strain that has not been cleared, the two viruses being genetically distinct yet belonging to the same genus. As such, this phenomenon provides unique settings to gain insights into the immune correlates of protection against HIV-1. The focus of this review is to discuss the current knowledge about immune responses to HIV-1 and to other viruses that are associated with partial or complete immunity to superinfection, or lack thereof, and how that could be applied to future HIV-1 vaccine strategies. Keywords: HIV-1; Superinfection; Vaccine; Co-infection; Viral HIV-1 Rapid Evolution and Diversity: A Challenge for infection; Recombination Vaccine Design Introduction The extremely rapid evolution of the virus probably largely contributed to the failure or limited success of HIV-1 vaccines evaluated The human immunodeficiency virus type 1 (HIV-1) affects 34 to date [5]. HIV-1’s extensive genetic diversity was first brought to light million adults and children worldwide, and the ongoing spread of the around 1983, when full-length sequences of the virus became available, epidemic resulted in about 2.5 million new infections and 1.7 million and has since then expanded [6].
    [Show full text]
  • Using Knowledge of HIV Status As an HIV Prevention Strategy
    From Prevention in Focus, Spring 2014 Unknown, negative or positive? Using knowledge of HIV status as an HIV prevention strategy By James Wilton and Tim Rogers As front-line workers in HIV prevention, it is important to understand what prevention strategies clients are using and how they understand the risks associated with them. A common HIV prevention strategy used by gay men and other men who have sex with men (MSM) is known as “serosorting” and involves limiting all – or just “high-risk” – sexual activities to partners who have the same HIV status. For example, an HIV-negative person may choose to only have condomless sex with other people who are HIV negative or an HIV-positive person may choose to only have condomless sex with other people who are HIV positive. This strategy is used in the context of different types of relationships, such as stable, casual, monogamous and non-monogamous relationships. This article focuses on how often serosorting is used, how well it works, and how knowledge of HIV status can be effectively used as a prevention strategy. The article only covers serosorting strategies that are based on individuals identifying themselves or others as HIV-positive or HIV-negative. It does not address other factors, such as viral load or use of other HIV prevention strategies, which play a very important role in assessing HIV risk. For information on these other strategies, please see the resource list at the end of the article. How common is serosorting? Serosorting is quite common among MSM in Canada and other parts of the world.
    [Show full text]
  • Modelling the Role of Amelioration and Drug Lords on Drug Epidemics and the Impact of Substance Abuse on the Dynamics of HIV/AIDS
    Modelling the Role of Amelioration and Drug Lords on Drug Epidemics and the Impact of Substance Abuse on the Dynamics of HIV/AIDS by Hatson John Boscoh Njagarah Thesis presented in partial fulfilment of the academic requirements for the degree of Master of Science at the University of Stellenbosch Supervisor: Dr Nyabadza Farai (University of Stellenbosch) December 2011 Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellen- bosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. November 21, 2011 - ---------------------------- ----------------------- Hatson John Boscoh Njagarah Date Copyright © 2011 Stellenbosch University All rights reserved. Stellenbosch University http://scholar.sun.ac.za i Abstract Substance abuse is an imminent danger on the health of both substance users and non- users. In general, abuse of psychoactive substances is associated with high risk behaviour, mortality and morbidity. The drug use cycle involves inextricably intertwined variants such as production, trading and usage of both licit and illicit addictive substances. The dynamics of substance use involve initiation, addiction, rehabilitation/treatment and quit- ting/recovery. In response to supply and abuse of monster drugs, control strategies such as law enforcement and rehabilitation have been stepped up to reduce access to drugs by targeting drug kingpins and harm reduction respectively. In this thesis, we model the fac- tors affecting the prevalence of substance abuse, the effect of drug lords on the prevalence of substance abuse, and the impact of substance abuse on the prevalence of HIV/AIDS.
    [Show full text]
  • HIV and Human Coronavirus Coinfections: a Historical Perspective
    viruses Review HIV and Human Coronavirus Coinfections: A Historical Perspective Palesa Makoti and Burtram C. Fielding * Molecular Biology and Virology Research Laboratory, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa; [email protected] * Correspondence: bfi[email protected]; Tel.: +27-21-959-2949 Received: 21 May 2020; Accepted: 2 August 2020; Published: 26 August 2020 Abstract: Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases. Keywords: coronaviruses; HIV; COVID-19; SARS-CoV-2; MERS-CoV; immunosuppression; immune response; coinfection 1. Introduction With the rapid advancement of molecular diagnostic tools, our understanding of the etiological agents of respiratory tract infections (RTIs) has advanced rapidly [1]. Researchers now know that lower respiratory tract infections (LRTIs)—caused by viruses—are not restricted to the usual suspects, such as respiratory syncytial virus (RSV), parainfluenza viruses (PIVs), adenovirus, human rhinoviruses (HRVs) and influenza viruses.
    [Show full text]
  • HIV/AIDS Programme Strengthening Health Services to Fight HIV/AIDS
    HIV/AIDS Programme Strengthening health services to fight HIV/AIDS ESSENTIAL PREVENTION AND CARE INTERVENTIONS FOR ADULTS AND ADOLESCENTS LIVING WITH HIV IN RESOURCE-LIMITED SETTINGS WHO Library Cataloguing-in-Publication Data Essential prevention and care interventions for adults and adolescents living with HIV in resource-limited settings / coordinated by Kevin O’Reilly. 1.HIV infections - prevention and control. 2.HIV infections - therapy. 3.HIV infections - complications. 4.Developing countries. I.World Health Organization. II.Boothroyd, Jim. ISBN 978 92 4 159670 1 (NLM classification: WC 503.5) © World Health Organization 2008 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]
  • HIV/AIDS Guidelines
    Reproductive Options for Couples When One or Both Partners are Living with HIV (Last updated December 24, 2019; last reviewed December 24, 2019) Panel’s Recommendations For Couples Who Want to Conceive When One or Both Partners are Living with HIV: • Expert consultation is recommended to tailor guidance to couples’ specific needs (AIII). • Both partners should be screened and treated for genital tract infections before attempting to conceive (AII). • Partners with HIV should achieve sustained viral suppression (e.g., two recorded measurements of plasma viral loads that are below the limits of detection at least 3 months apart) before attempting conception to maximize their health, prevent HIV sexual transmission (AI) and, for pregnant persons with HIV, to minimize the risk of HIV transmission to the infant (AI). • For couples with differing HIV statuses, sexual intercourse without a condom allows for conception with effectively no risk of sexual HIV transmission to the partner without HIV when the partner with HIV is on antiretroviral therapy (ART) and has achieved sustained viral suppression (BII). • Additional guidance may be required in the following scenarios: • The partner with HIV has not achieved sustained viral suppression or the partner’s HIV viral suppression status is unknown, • There are concerns that the partner with HIV may be inconsistently adherent to ART during the periconception period, or • The provider needs to share additional information with the patient regarding options to prevent sexual HIV transmission during the periconception period. • In these circumstances, providers may choose to counsel their patient about the following options: • Administration of antiretroviral pre-exposure prophylaxis (PrEP) to the partner without HIV is recommended to reduce the risk of sexual acquisition of HIV (AI).
    [Show full text]
  • Reproductive Options for Couples When One Or Both Partners Have
    Reproductive Options for Couples When One or Both Partners Have HIV (Last updated December 29, 2020; last reviewed December 29, 2020) Panel’s Recommendations For Couples Who Want to Conceive When One or Both Partners Have HIV: • Expert consultation is recommended to tailor guidance to couples’ specific needs (AIII). • Both partners should be screened and treated for genital tract infections before attempting to conceive (AII). • Partners with HIV should achieve sustained viral suppression (e.g., two recorded measurements of plasma viral loads that are below the limits of detection at least 3 months apart) before attempting conception to maximize their health, prevent HIV sexual transmission (AI) and, for pregnant persons with HIV, to minimize the risk of HIV transmission to the infant (AI). • When partners have different HIV statuses, sexual intercourse without a condom allows conception with effectively no risk of sexual HIV transmission to the partner without HIV if the partner with HIV is on antiretroviral therapy (ART) and has achieved sustained viral suppression (BII). • Additional guidance might be required in the following scenarios: • The partner with HIV has not achieved sustained viral suppression or the partner’s HIV viral suppression status is unknown, • There are concerns that the partner with HIV might be inconsistently adherent to ART during the periconception period, or • The provider wishes to share additional information with the patient regarding options to prevent sexual HIV transmission during the periconception period. • In these circumstances, providers can choose to counsel their patient about the following options: • Administration of antiretroviral pre-exposure prophylaxis (PrEP) to the partner without HIV reduces the risk of sexual acquisition of HIV (AI) see Pre-exposure Prophylaxis (PrEP) to Reduce the Risk of Acquiring HIV During Periconception, Antepartum, and Postpartum Periods.
    [Show full text]
  • Serosorting and Strategic Positioning
    TECHNICAL BULLETIN SERIES Serosorting and Strategic Positioning What is serosorting? prevention does not yet have a definitive answer.22, 26, 27 • According to a World Health Organization (WHO) Serosorting is defined as “a person choosing a sexual partner systematic review that included 3 studies on serosort- known to be of the same HIV serostatus, often to engage in ing among MSM, serosorting was associated with a unprotected sex, in order to reduce the risk of acquiring or 79% increase in HIV transmission when compared with transmitting HIV.”1 It is a sexual risk management approach consistent condom use.17, 28-30 Serosorting has also been that has been identified among many groups of gay men and associated with a 61% increase in sexually transmit- other men who have sex with men (MSM), mostly in higher- ted infection (STI) transmission when compared with income countries.2-22 consistent condom use.30 • When serosorting was compared to no condom use, serosorting was associated with a 53% reduction in What is strategic positioning? HIV transmission and 14% reduction in STI transmis- sion.30 While evidence suggests that consistent condom Strategic positioning, also known as sero-positioning, is the use is a more effective means of HIV prevention than act of choosing a different sexual position or practice depend- serosorting, it appears that serosorting may be a viable ing on the serostatus of one’s partner.23 Typically, a person harm reduction strategy for those unwilling or unable living with HIV chooses to take the receptive position (“bot- to use condoms. This strategy depends on high cover- tom”) during unprotected anal sex with a partner believed to age rates of HIV testing, frequent utilization of HIV be HIV-negative.
    [Show full text]
  • Characterising Neutralising Antibody Responses in Hepatitis C Virus
    $ ! E\ #" $WKHVLVVXEPLWWHGDVSDUWLDOIXOILOPHQW RIWKHUHTXLUHPHQWIRUWKHGHJUHHRI 'RFWRURI3KLORVRSK\ ! " ! 6FKRRORI0HGLFDO6FLHQFHV.LUE\,QVWLWXWH )DFXOW\RI0HGLFLQH 8QLYHUVLW\RI1HZ6RXWK:DOHV 'HFHPEHU &(($$&#!(- ‘I hereby declare that this submission is my own work and to the best of my EHIQF?>A?CN=IHN;CHMHIG;N?LC;FMJL?PCIOMFSJO<FCMB?>ILQLCNN?H<S;HINB?LJ?LMIH ILMO<MN;HNC;FJLIJILNCIHMI@G;N?LC;FQBC=BB;P?<??H;==?JN?>@ILNB?;Q;L>I@;HS INB?L>?AL??IL>CJFIG;;N3,15IL;HSINB?L?>O=;NCIH;FCHMNCNONCIH ?R=?JNQB?L? >O?;=EHIQF?>A?G?HNCMG;>?CHNB?NB?MCM HS=IHNLC<ONCIHG;>?NINB?L?M?;L=B<S INB?LM QCNBQBIG'B;P?QILE?>;N3,15IL?FM?QB?L? CM?RJFC=CNFS;=EHIQF?>A?> CHNB?NB?MCM ';FMI>?=F;L?NB;NNB?CHN?FF?=NO;F=IHN?HNI@NBCMNB?MCMCMNB?JLI>O=NI@ GSIQHQILE ?R=?JNNINB??RN?HNNB;N;MMCMN;H=?@LIGINB?LMCHNB?JLID?=NM>?MCAH ;H>=IH=?JNCIHILCHMNSF? JL?M?HN;NCIH;H>linguistic expression is acknowledged.’ Signed…………………………………… Date ………………………… C $%-&('(("#( ‘I hereby grant the University of New South Wales or its agents a non ?R=FOMCP? FC=?H=?NI;L=BCP?;H>NIG;E?;P;CF;<F?CH=FO>CHANIG?G<?LMI@NB?JO<FC= GSNB?MCMIL>CMM?LN;NCIHCHQBIF?ILJ;LNCHNB?3HCP?LMCNSFC<L;LC?MCH;FF@ILGM I@G?>C; HIQILB?L?;@N?LEHIQH ';=EHIQF?>A?NB;N'L?N;CH;FFCHN?FF?=NO;F JLIJ?LNSLCABNMQBC=BMO<MCMNCHGSNB?MCMIL>CMM?LN;NCIH MO=B;M=IJSLCABN;H> J;N?HNLCABNM MO<D?=NNI;JJFC=;<F?F;Q ';FMIL?N;CHNB?LCABNNIOM?;FFILJ;LN of my thesis or dissertation in future works (such as articles or books).’ ‘For any substantial portions of copyright material used in this thesis, written J?LGCMMCIH@ILOM?B;M<??HI<N;CH?> ILNB?=IJSLCABNG;N?LC;FCML?GIP?>@LIG
    [Show full text]
  • Variable Effect of HIV Superinfection on Clinical Status: Insights from Mathematical Modeling
    ORIGINAL RESEARCH published: 23 July 2018 doi: 10.3389/fmicb.2018.01634 Variable Effect of HIV Superinfection on Clinical Status: Insights From Mathematical Modeling Ágnes Móréh 1, András Szilágyi 2,3, István Scheuring 2,3 and Viktor Müller 2,4* 1 MTA Centre for Ecological Research, Danube Research Institute, Budapest, Hungary, 2 Evolutionary Systems Research Group, MTA Centre for Ecological Research, Tihany, Hungary, 3 MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Institute of Biology, Eötvös Loránd University, Budapest, Hungary, 4 Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary HIV superinfection (infection of an HIV positive individual with another strain of the virus) has been shown to result in a deterioration of clinical status in multiple case studies. However, superinfection with no (or positive) clinical outcome might easily go unnoticed, and the typical effect of superinfection is unknown. We analyzed mathematical models of HIV dynamics to assess the effect of superinfection under various assumptions. We extended the basic model of virus dynamics to explore systematically a set of model variants incorporating various details of HIV infection (homeostatic target cell dynamics, bystander killing, interference competition between viral clones, multiple target cell types, virus-induced activation of target cells). In each model, we identified the conditions for Edited by: Esteban A. Hernandez-Vargas, superinfection, and investigated whether and how successful invasion by a second viral Frankfurt Institute for Advanced strain affects the level of uninfected target cells. In the basic model, and in some of Studies, Germany its extensions, the criteria for invasion necessarily entail a decrease in the equilibrium Reviewed by: abundance of uninfected target cells.
    [Show full text]
  • (2018). Reducing Risk: Counseling HIV-Infected Men Who Have Sex With
    Social Work in Public Health ISSN: 1937-1918 (Print) 1937-190X (Online) Journal homepage: http://www.tandfonline.com/loi/whsp20 Reducing Risk: Counseling Men Infected with HIV Who Have Sex with Men on Safer Sex Practices with Seroconcordant Partners Christopher W. Blackwell To cite this article: Christopher W. Blackwell (2018) Reducing Risk: Counseling Men Infected with HIV Who Have Sex with Men on Safer Sex Practices with Seroconcordant Partners, Social Work in Public Health, 33:5, 271-279, DOI: 10.1080/19371918.2018.1454869 To link to this article: https://doi.org/10.1080/19371918.2018.1454869 Published online: 10 Apr 2018. Submit your article to this journal Article views: 32 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=whsp20 SOCIAL WORK IN PUBLIC HEALTH 2018, VOL. 33, NO. 5, 271–279 https://doi.org/10.1080/19371918.2018.1454869 Reducing Risk: Counseling Men Infected with HIV Who Have Sex with Men on Safer Sex Practices with Seroconcordant Partners Christopher W. Blackwell College of Nursing, University of Central Florida, Orlando, Florida, USA ABSTRACT KEYWORDS The incidence of new HIV infections in the United States continues to be AIDS; bisexual; gay; HIV; greatest among men who have sex with men (MSM). MSM infected with HIV men who have sex with often seek seroconcordant sexual partners based on intent to limit psychoso- men; risk; seroconcordant; cial, legal, and health risks they perceive as higher with serodiscordant sexual sexually transmitted disease; superinfection partners. However, the rationales for limiting sexual relationships exclusively with other MSM infected with HIV may be rooted in misinformation or mis- perception.
    [Show full text]