Porphyromonas Bronchialis Sp. Nov. Isolated from Intraoperative Bronchial Fluids of a Patient with Non-Small Cell Lung Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2015/066625 Al 7 May 2015 (07.05.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/066625 Al 7 May 2015 (07.05.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/04 (2006.01) G01N 33/15 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2014/06371 1 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 3 November 20 14 (03 .11.20 14) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/898,938 1 November 2013 (01. 11.2013) (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: WASHINGTON UNIVERSITY [US/US] GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, One Brookings Drive, St. -
Macellibacteroides Fermentans Gen. Nov., Sp. Nov., a Member of the Family Porphyromonadaceae Isolated from an Upflow Anaerobic Filter Treating Abattoir Wastewaters
International Journal of Systematic and Evolutionary Microbiology (2012), 62, 2522–2527 DOI 10.1099/ijs.0.032508-0 Macellibacteroides fermentans gen. nov., sp. nov., a member of the family Porphyromonadaceae isolated from an upflow anaerobic filter treating abattoir wastewaters Linda Jabari,1,2 Hana Gannoun,2 Jean-Luc Cayol,1 Abdeljabbar Hedi,1 Mitsuo Sakamoto,3 Enevold Falsen,4 Moriya Ohkuma,3 Moktar Hamdi,2 Guy Fauque,1 Bernard Ollivier1 and Marie-Laure Fardeau1 Correspondence 1Aix-Marseille Universite´ du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, Case 925, Marie-Laure Fardeau 163 Avenue de Luminy, 13288 Marseille Cedex 9, France [email protected] 2Laboratoire d’Ecologie et de Technologie Microbienne, Institut National des Sciences Applique´es et de Technologie, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia 3Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 4CCUG, Culture Collection, Department of Clinical Bacteriology, University of Go¨teborg, 41346 Go¨teborg, Sweden A novel obligately anaerobic, non-spore-forming, rod-shaped mesophilic bacterium, which stained Gram-positive but showed the typical cell wall structure of Gram-negative bacteria, was isolated from an upflow anaerobic filter treating abattoir wastewaters in Tunisia. The strain, designated LIND7HT, grew at 20–45 6C (optimum 35–40 6C) and at pH 5.0–8.5 (optimum pH 6.5–7.5). It did not require NaCl for growth, but was able to grow in the presence of up to 2 % NaCl. Sulfate, thiosulfate, elemental sulfur, sulfite, nitrate and nitrite were not used as terminal electron acceptors. -
WO 2018/107129 Al O
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/107129 Al 14 June 2018 (14.06.2018) W !P O PCT (51) International Patent Classification: VARD COLLEGE [US/US]; 17 Quincy Street, Cam- C12N 15/09 (2006.01) C12N 15/11 (2006.01) bridge, MA 02138 (US). C12N 15/10 (2006.01) C12Q 1/68 (2006 .01) (72) Inventors: ABUDAYYEH, Omar; 77 Massachusetts Av (21) International Application Number: enue, Cambridge, MA 02139 (US). COLLINS, James PCT/US20 17/065477 Joseph; 77 Massachusetts Avenue, Cambridge, MA 02 139 (US). GOOTENBERG, Jonathan; 17 Quincy Street, (22) International Filing Date: Cambridge, MA 02138 (US). ZHANG, Feng; 415 Main 08 December 2017 (08.12.2017) Street, Cambridge, MA 02142 (US). LANDER, Eric, S.; (25) Filing Language: English 415 Main Street, Cambridge, MA 02142 (US). (26) Publication Language: English (74) Agent: NLX, F., Brent; Johnson, Marcou & Isaacs, LLC, 27 City Square, Suite 1, Hoschton, GA 30548 (US). (30) Priority Data: 62/432,553 09 December 20 16 (09. 12.20 16) US (81) Designated States (unless otherwise indicated, for every 62/456,645 08 February 2017 (08.02.2017) US kind of national protection available): AE, AG, AL, AM, 62/471,930 15 March 2017 (15.03.2017) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/484,869 12 April 2017 (12.04.2017) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/568,268 04 October 2017 (04.10.2017) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (71) Applicants: THE BROAD INSTITUTE, INC. -
Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis Within the Prevalent Canine Oral Species Porphyromonas Cangingivalis
GBE Comparative Genomics of the Genus Porphyromonas Identifies Adaptations for Heme Synthesis within the Prevalent Canine Oral Species Porphyromonas cangingivalis Ciaran O’Flynn1,*, Oliver Deusch1, Aaron E. Darling2, Jonathan A. Eisen3,4,5, Corrin Wallis1,IanJ.Davis1,and Stephen J. Harris1 1 The WALTHAM Centre for Pet Nutrition, Waltham-on-the-Wolds, United Kingdom Downloaded from 2The ithree Institute, University of Technology Sydney, Ultimo, New South Wales, Australia 3Department of Evolution and Ecology, University of California, Davis 4Department of Medical Microbiology and Immunology, University of California, Davis 5UC Davis Genome Center, University of California, Davis http://gbe.oxfordjournals.org/ *Corresponding author: E-mail: ciaran.ofl[email protected]. Accepted: November 6, 2015 Abstract Porphyromonads play an important role in human periodontal disease and recently have been shown to be highly prevalent in canine mouths. Porphyromonas cangingivalis is the most prevalent canine oral bacterial species in both plaque from healthy gingiva and at University of Technology, Sydney on January 17, 2016 plaque from dogs with early periodontitis. The ability of P. cangingivalis to flourish in the different environmental conditions char- acterized by these two states suggests a degree of metabolic flexibility. To characterize the genes responsible for this, the genomes of 32 isolates (including 18 newly sequenced and assembled) from 18 Porphyromonad species from dogs, humans, and other mammals were compared. Phylogenetic trees inferred using core genes largely matched previous findings; however, comparative genomic analysis identified several genes and pathways relating to heme synthesis that were present in P. cangingivalis but not in other Porphyromonads. Porphyromonas cangingivalis has a complete protoporphyrin IX synthesis pathway potentially allowing it to syn- thesize its own heme unlike pathogenic Porphyromonads such as Porphyromonas gingivalis that acquire heme predominantly from blood. -
Identification and Characterization of a Minisatellite Contained Within A
Klein et al. Mobile DNA (2015) 6:18 DOI 10.1186/s13100-015-0049-1 RESEARCH Open Access Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis Brian A. Klein1,2, Tsute Chen2, Jodie C. Scott2, Andrea L. Koenigsberg1, Margaret J. Duncan2 and Linden T. Hu1* Abstract Background: Repetitive regions of DNA and transposable elements have been found to constitute large percentages of eukaryotic and prokaryotic genomes. Such elements are known to be involved in transcriptional regulation, host-pathogen interactions and genome evolution. Results: We identified a minisatellite contained within a miniature inverted-repeat transposable element (MITE) in Porphyromonas gingivalis.TheP. gingivalis minisatellite and associated MITE, named ‘BrickBuilt’, comprises a tandemly repeating twenty-three nucleotide DNA sequence lacking spacer regions between repeats, and with flanking ‘leader’ and ‘tail’ subunits that include small inverted-repeat ends. Forms of the BrickBuilt MITE are found 19 times in thegenomeofP. gingivalis strain ATCC 33277, and also multiple times within the strains W83, TDC60, HG66 and JCVI SC001. BrickBuilt is always located intergenically ranging between 49 and 591 nucleotides from the nearest upstream and downstream coding sequences. Segments of BrickBuilt contain promoter elements with bidirectional transcription capabilities. Conclusions: We performed a bioinformatic analysis of BrickBuilt utilizing existing whole genome sequencing, microarray and RNAseq data, as well as performing in vitro promoter probe assays to determine potential roles, mechanisms and regulation of the expression of these elements and their affect on surrounding loci. The multiplicity, localization and limited host range nature of MITEs and MITE-like elements in P. -
Exploring the Oral Microbiota of Children at Various Developmental
Crielaard et al. BMC Medical Genomics 2011, 4:22 http://www.biomedcentral.com/1755-8794/4/22 RESEARCHARTICLE Open Access Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health Wim Crielaard1, Egija Zaura1, Annemarie A Schuller2, Susan M Huse3, Roy C Montijn4, Bart JF Keijser4* Abstract Background: An understanding of the relation of commensal microbiota to health is essential in preventing disease. Here we studied the oral microbial composition of children (N = 74, aged 3 - 18 years) in natural transition from their deciduous to a permanent dentition and related the microbial profiles to their oral health status. The microbial composition of saliva was assessed by barcoded pyrosequencing of the V5-V6 hypervariable regions of the 16 S rRNA, as well as by using phylogenetic microarrays. Results: Pyrosequencing reads (126174 reads, 1045 unique sequences) represented 8 phyla and 113 higher taxa in saliva samples. Four phyla - Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria - predominated in all groups. The deciduous dentition harboured a higher proportion of Proteobacteria (Gammaproteobacteria, Moraxellaceae) than Bacteroidetes, while in all other groups Bacteroidetes were at least as abundant as Proteobacteria. Bacteroidetes (mainly genus Prevotella), Veillonellaceae family, Spirochaetes and candidate division TM7 increased with increasing age, reflecting maturation of the microbiome driven by biological changes with age. Microarray analysis enabled further analysis of the individual salivary microbiota. Of 350 microarray probes, 156 gave a positive signal with, on average, 77 (range 48-93) probes per individual sample. A caries-free oral status significantly associated with the higher signal of the probes targeting Porphyromonas catoniae and Neisseria flavescens. -
The Ontology of Host-Microbiome Interactions Yongqun He1* , Haihe Wang1,2, Jie Zheng3, Daniel P
He et al. Journal of Biomedical Semantics (2019) 10:25 https://doi.org/10.1186/s13326-019-0217-1 RESEARCH Open Access OHMI: the ontology of host-microbiome interactions Yongqun He1* , Haihe Wang1,2, Jie Zheng3, Daniel P. Beiting4, Anna Maria Masci5, Hong Yu1,6, Kaiyong Liu7, Jianmin Wu8, Jeffrey L. Curtis1,9, Barry Smith10, Alexander V. Alekseyenko11 and Jihad S. Obeid11 Abstract Background: Host-microbiome interactions (HMIs) are critical for the modulation of biological processes and are associated with several diseases. Extensive HMI studies have generated large amounts of data. We propose that the logical representation of the knowledge derived from these data and the standardized representation of experimental variables and processes can foster integration of data and reproducibility of experiments and thereby further HMI knowledge discovery. Methods: Through a multi-institutional collaboration, a community-based Ontology of Host-Microbiome Interactions (OHMI) was developed following the Open Biological/Biomedical Ontologies (OBO) Foundry principles. As an OBO library ontology, OHMI leverages established ontologies to create logically structured representations of (1) microbiomes, microbial taxonomy, host species, host anatomical entities, and HMIs under different conditions and (2) associated study protocols and types of data analysis and experimental results. Results: Aligned with the Basic Formal Ontology, OHMI comprises over 1000 terms, including terms imported from more than 10 existing ontologies together with some 500 OHMI-specific terms. A specific OHMI design pattern was generated to represent typical host-microbiome interaction studies. As one major OHMI use case, drawing on data from over 50 peer-reviewed publications, we identified over 100 bacteria and fungi from the gut, oral cavity, skin, and airway that are associated with six rheumatic diseases including rheumatoid arthritis. -
Characterization of Oral Microbiota in Cats: Novel Insights on the Potential Role of Fungi in Feline Chronic Gingivostomatitis
pathogens Article Characterization of Oral Microbiota in Cats: Novel Insights on the Potential Role of Fungi in Feline Chronic Gingivostomatitis Janina A. Krumbeck 1, Alexander M. Reiter 2, James C. Pohl 3, Shuiquan Tang 1, Young J. Kim 3, Annika Linde 3, Aishani Prem 1 and Tonatiuh Melgarejo 3,* 1 MiDOG LLC, Irvine, CA 92614, USA; [email protected] (J.A.K.); [email protected] (S.T.); [email protected] (A.P.) 2 School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] 3 College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; [email protected] (J.C.P.); [email protected] (Y.J.K.); [email protected] (A.L.) * Correspondence: [email protected]; Tel.: +1-(909)-706-3829 Abstract: Previous studies have suggested the involvement of viral and bacterial components in the initiation and progression of feline chronic gingivostomatitis (FCGS), but the role of fungi remains entirely unknown. This pilot study aimed to investigate the bacteriome and mycobiome in feline oral health and disease. Physical exams, including oral health assessment, of privately owned, clinically healthy (CH) cats (n = 14) and cats affected by FCGS (n = 14) were performed. Using a sterile swab, oral tissue surfaces of CH and FCGS cats were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. A high number of fungal species (n = 186) was detected, Citation: Krumbeck, J.A.; Reiter, with Malassezia restricta, Malassezia arunalokei, Cladosporium penidielloides/salinae, and Aspergillaceae A.M.; Pohl, J.C.; Tang, S.; Kim, Y.J.; sp. -
Porphyromonas Gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors
ORIGINAL RESEARCH published: 26 January 2017 doi: 10.3389/fmicb.2017.00048 Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors Stuart G. Dashper 1 †, Helen L. Mitchell 1 †, Christine A. Seers 1 †, Simon L. Gladman 2, Torsten Seemann 2, Dieter M. Bulach 2, P. Scott Chandry 3, Keith J. Cross 1, Steven M. Cleal 1 and Eric C. Reynolds 1* 1 Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, University of Melbourne, VIC, Australia, 2 Victorian Life Sciences Computation Initiative, Carlton, VIC, Australia, 3 CSIRO Food and Nutrition, Werribee, VIC, Australia Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence Edited by: of P. gingivalis is reported to be strain related and there are currently a number of John R. Battista, strain typing schemes based on variation in capsular polysaccharide, the major and Louisiana State University, USA minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface Reviewed by: proteins. P. gingivalis can exchange chromosomal DNA between strains by natural Zhuofei Xu, Huazhong Agricultural University, competence and conjugation. The aim of this study was to determine the genetic China variability of P. gingivalis strains sourced from international locations over a 25-year Soo Rin Kim, Kyungpook National University, period and to determine if variability in surface virulence factors has a phylogenetic South Korea basis. Whole genome sequencing was performed on 13 strains and comparison made to *Correspondence: 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic Eric C. Reynolds analysis demonstrated a shallow tri-lobed phylogeny. -
Genome-Based Taxonomic Classification Of
ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia. -
WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/071474 A2 21 May 2015 (21.05.2015) P O P C T (51) International Patent Classification: Krzysztof; Simmeringer Hauptstrasse 45/8, A-1 110 Vi C12N 15/11 (2006.01) enna (AT). FONFARA, Ines; Helmstedter Strasse 144, 38102 Braunschweig (DE). (21) International Application Number: PCT/EP2014/074813 (74) Agent: PILKINGTON, Stephanie Joan; Potter Clarkson LLP, The Belgrave Centre, Talbot Street, Nottingham NG1 (22) International Filing Date: 5GG (GB). 17 November 2014 (17.1 1.2014) (81) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of national protection available): AE, AG, AL, AM, (26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (30) Priority Data: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 61/905,835 18 November 2013 (18. 11.2013) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicant: CRISPR THERAPEUTICS AG [CH/CH]; KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, Aeschenvorstadt 36, CH-4051 Basel (CH). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (72) Inventors: CHARPENTIER, Emmanuelle; Boeckler- SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, strasse 18, 38102 Braunschweig (DE). -
Porphyromonas Spp. Have an Extensive
Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: A systematic review and meta-analysis Luis Acuña-Amador, Frédérique Barloy-Hubler To cite this version: Luis Acuña-Amador, Frédérique Barloy-Hubler. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: A systematic review and meta-analysis. Anaerobe, Elsevier Masson, 2020, 66, pp.102280. 10.1016/j.anaerobe.2020.102280. hal-02974793 HAL Id: hal-02974793 https://hal.archives-ouvertes.fr/hal-02974793 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Porphyromonas spp. have an extensive host range in ill and healthy individuals and an 2 unexpected environmental distribution: a systematic review and meta-analysis. 3 4 Luis Acuña-Amadora,* and Frédérique Barloy-Hublerb 5 6 aLaboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en 7 Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, 8 Costa Rica 9 bInstitut de Génétique et Développement de Rennes, IGDR-CNRS, UMR6290, Université de 10 Rennes 1, Rennes, France 11 * [email protected], +506 2511-8616 1 12 ABSTRACT 13 Studies on the anaerobic bacteria Porphyromonas, mainly focused on P.