The Trustworthiness Deficit in Postgenomic Research on Human Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

The Trustworthiness Deficit in Postgenomic Research on Human Intelligence The Trustworthiness Deficit in Postgenomic Research on Human Intelligence BY SARAH S. RICHARDSON wkward.” “Troublesome.” “Charged.” I use the nascent term “postgenomics” here to refer A queasy lexicon pervades discussions of re- to the period since the completion of the major genome A search on the genomics of intellectual ability. sequencing projects in 2001. In the postgenomic era Science writer Nicholas Wade invoked this trope of un- genomics has become a foundational platform in most ease in his 2014 book A Troublesome Inheritance, which areas of life sciences research, proliferating the methods argued that postgenomic science shows that, contrary to and applications of genomic science. Postgenomics is previous consensus, racial, ethnic, and national differenc- characterized by deep contestations about what questions es in social behavior have a genetic origin.1 Wade claims can and cannot be answered using DNA sequence data. that the full implications of this new science have been In Postgenomics: Perspectives on Biology after the Genome, avoided by social scientists and geneticists, for whom it Hallam Stevens and I argue that the conditions of scien- uncomfortably challenges cherished ideas of social equal- tific knowledge production in genomics are destabiliz- ity. The first postgenomic dust-up over IQ and genomics ing shared understandings of what counts as scientific occurred in 2005 when University of Chicago geneticist knowledge in this arena. As genomics methodologies Bruce Lahn claimed that genes for large brain size were become ubiquitous, there is a renewed need for articula- more common among Europeans and Asians than in tion of community standards for research. Yet there is a African populations. Lahn implied that this was related dearth of venues for sustained conversations that might to the cultural achievements of non-African populations. lead to the establishment of scientific community stan- Analyzing the fall-out from this episode in a 2011 article, dards for research in transdisciplinary genomics research I argued that Lahn’s claim (now debunked) would not be endeavors.4 the last of this sort.2 The Lahn episode put all of the ethical and epistemic Though rebuked by scholars of race and genetics, challenges of the postgenomic moment on full display. Wade’s 2014 book has found a wide audience, sound- Researchers professed the importance of academic free- ing another warning of an older accord coming undone.3 dom, condemned racism, and managed media contro- In the past work on racial and ethnic variation in brain versy simultaneously to try to ameliorate harms. These and behavior was marginalized within genetics. Against approaches focused on the interpretation of the studies’ the backdrop of genetics’ eugenic legacy, wide consensus results, failing to recognize and raise fundamental ques- held such research to be both ethically problematic and tions about changing standards for making claims in the methodologically controversial. But today it is finding postgenomic sciences of human differences in cognition new opportunistic venues in a global, transdisciplinary, and behavior. As such, they revealed worrying deficits data-rich postgenomic research environment in which in the fields’ ability to govern and negotiate standards such a consensus is increasingly strained. for making postgenomic claims in the transdisciplinary space between human population variation research, studies of intelligence, neuroscience, and evolutionary Sarah S. Richardson, “The Trustworthiness Deficit in Postgenomic biology. Research on Human Intelligence,” The Genetics of Intelligence: Ethics and the Conduct of Trustworthy Research, special report, Hastings Center Report Today, researchers at BGI Shenzhen (formerly Beijing 45, no. 5 (2015): S15-S20. DOI: 10.1002/hast.493 Genomics Institute) in China, in collaboration with lead- SPECIAL REPORT: The Genetics of Intelligence: Ethics and the Conduct of Trustworthy Research S15 ing behavior geneticist Robert Plomin and with prominent not just to those of us with certain forms of privilege, figures such as Steven Pinker in advisory roles, are pursu- who see the world through certain lenses, from certain ing the genomics of intelligence on a newly grand scale.5 biased perspectives.8 They are sequencing large numbers of whole genomes of From this perspective, the trustworthiness of the results people considered highly intelligent (by varying empirical of basic science is—and should be—entangled with the and social measures) in the hope of finding gene variants trustworthiness of the social processes that produce, dis- predictive of intelligence. Troubling and at times outland- seminate, and use those results. Trustworthiness offers a ish futurist claims accompany this research. Scientists in- valuable framework for thinking through the mangle of volved in this research have openly discussed the possibility ethical and epistemic considerations provoked by proposals of marketing prenatal tests for intelligence, of genetic en- to research the genomics of individuals identified as highly gineering or selective embryo implantation to increase the intelligent. likelihood of a high-IQ child, and of genotyping children If we begin to probe the researchers’ request for access to to guide their education.6 In this permissive and contested CTY’s data, some troubling opacities emerge. For example, environment, what would trustworthy research on the ge- when asked by CTY, the researchers said they were not in- nomics of high intelligence look like? terested in racial or group differences in intelligence. They In the fall of 2014, The Hastings Center and the Johns also promised to donate ten dollars to a scholarship fund Hopkins Center for Talented Youth (CTY) gathered a for minority students for each participant who agreed to diverse group of experts to discuss a request by research- send a cheek swab to the study. However, it was known that ers seeking to study genetic markers associated with high the eligible study group within the Study of Exceptional intellectual functioning. The researchers sought access to Talent is 70 percent male and 94 percent of white or Asian test score data and contact information for participants ancestry. This skew in the data set could affect data inter- in a long-running CTY study known as the Study of pretation and the scope of the findings due to sex- and Exceptional Talent. As of May 2015, the study included population-based variation in genomic architecture. How almost 5,500 eligible eighteen-and-over individuals iden- would the researchers address this issue in the design, inter- tified over many decades of work at the highly regarded pretation, and communication of the results of the study? CTY as a part of their ongoing research on the trajectories As another example, the researchers revealed no com- of people who were identified as highly talented children.7 mercial interests. However, the research team has proposed The main question before CTY was whether it should that genetic testing could be used in schools to individu- make its data available to these researchers. One view was ally tailor educational programming that would involve the that it should, as long as the researchers were proposing marketing of “gene chips” to school systems. One of the methodologically sound science that would be subjected researchers is a principal in the BGI Cognitive Genomics to peer review before publication. The problem with this project, a for-profit enterprise with open ambitions of mar- view is that, in the case of genomic research on human keting genetic tests for intelligence. The exact role of BGI intelligence, we lack a trustworthy way to determine that in the study was not clarified, although researchers said this is the case. that the genome sequencing itself would not occur at BGI. All but a few privileged actors are necessarily dependent Would the CTY data be pooled with data supporting the on—and therefore must trust—the investigators leading any controversial BGI Cognitive Genomics project? Did the particular scientific endeavor because they lack the knowl- researchers envision commercial applications utilizing the edge or access to check their claims. “Trustworthiness” is CTY participants’ genomic data? What checks would the an epistemic-ethical feature of scientific work that allows us researchers put in place to reduce potential biases intro- to rely on its findings even when we cannot witness them duced by their own intellectual, institutional, and possible or do not have the tools to independently audit them. We financial investments and interests? find scientific projects “trustworthy” when we have good I invite the reader to take the standpoint of communities reasons to believe that they in fact do what they say they most historically open to harm from this kind of research: are going to do. As philosopher of science Naomi Scheman poor African American communities—one of which, it has influentially argued, should be noted, surrounds CTY and Johns Hopkins in The trustworthiness of scientific methods derives, in Baltimore, Maryland. There are well-motivated reasons practice, from the effective working of those institu- for this community to perceive genomic research on high- tional structures; and justified belief in that trustworthi- intelligence individuals as lacking trustworthiness. These ness arises from the justified belief that those institutions reasons are documented in Aaron Panofsky’s recent book do in practice what they are supposed to
Recommended publications
  • Independent Evidence for an Association Between General Cognitive Ability and a Genetic Locus for Educational Attainment J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hofstra Northwell Academic Works (Hofstra Northwell School of Medicine) Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2015 Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment J. W. Trampush Hofstra Northwell School of Medicine T. Lencz Hofstra Northwell School of Medicine S. Guha Northwell Health S. Mukherjee Northwell Health P. DeRosse Northwell Health See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Psychiatry Commons Recommended Citation Trampush JW, Lencz T, Guha S, Mukherjee S, DeRosse P, John M, Andreassen O, Deary I, Glahn D, Malhotra AK, . Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment. 2015 Jan 01; 168(5):Article 927 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/927. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Authors J. W. Trampush, T. Lencz, S. Guha, S. Mukherjee, P. DeRosse, M. John, O. A. Andreassen, I. J. Deary, D. C. Glahn, A. K. Malhotra, and +41 additional authors This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/927 HHS Public Access Author manuscript Author Manuscript Author ManuscriptAm J Med Author Manuscript Genet B Neuropsychiatr Author Manuscript Genet.
    [Show full text]
  • Genetic Influence on Cognitive Development Between Childhood
    Molecular Psychiatry https://doi.org/10.1038/s41380-018-0277-0 ARTICLE Genetic influence on cognitive development between childhood and adulthood 1 1 1 2 3 Josephine Mollon ● Emma E. M. Knowles ● Samuel R. Mathias ● Ruben Gur ● Juan Manuel Peralta ● 4,5,6 4,5,6 2 3 7 1,8 Daniel J. Weiner ● Elise B. Robinson ● Raquel E. Gur ● John Blangero ● Laura Almasy ● David C. Glahn Received: 17 April 2018 / Revised: 15 August 2018 / Accepted: 11 September 2018 © Springer Nature Limited 2018 Abstract Successful cognitive development between childhood and adulthood has important consequences for future mental and physical wellbeing, as well as occupational and financial success. Therefore, delineating the genetic influences underlying changes in cognitive abilities during this developmental period will provide important insights into the biological mechanisms that govern both typical and atypical maturation. Using data from the Philadelphia Neurodevelopmental Cohort (PNC), a large population-based sample of individuals aged 8 to 21 years old (n = 6634), we used an empirical relatedness matrix to establish the heritability of general and specific cognitive functions and determine if genetic factors influence 1234567890();,: 1234567890();,: cognitive maturation (i.e., Gene × Age interactions) between childhood and early adulthood. We found that neurocognitive measures across childhood and early adulthood were significantly heritable. Moreover, genetic variance on general cognitive ability, or g, increased significantly between childhood and early adulthood. Finally, we did not find evidence for decay in genetic correlation on neurocognition throughout childhood and adulthood, suggesting that the same genetic factors underlie cognition at different ages throughout this developmental period. Establishing significant Gene × Age interactions in neurocognitive functions across childhood and early adulthood is a necessary first step in identifying genes that influence cognitive development, rather than genes that influence cognition per se.
    [Show full text]
  • Whole‐Exome Sequencing in 20,197 Persons for Rare Variants In
    RESEARCH PAPER Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer’s disease Neha S. Raghavan1,2, Adam M. Brickman1,2,3, Howard Andrews1,2,4, Jennifer J. Manly1,2,3, Nicole Schupf1,2,3,7, Rafael Lantigua1,6, Charles J. Wolock8, Sitharthan Kamalakaran8, Slave Petrovski8,9, Giuseppe Tosto1,2,3, Badri N. Vardarajan1,2,3,5, David B. Goldstein3,6,8, Richard Mayeux1,2,3,4,7 & The Alzheimer’s Disease Sequencing Projecta 1The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 2The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 3Department of Neurology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 4Department of Psychiatry, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 5Department of Systems Biology, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 6Department of Medicine, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 7The Department of Epidemiology, Mailman School of Public Health, College of Physicians and Surgeons, Columbia University, The New York Presbyterian Hospital, New York, New York 8Institute of Genomic Medicine, Columbia University, The New York Presbyterian Hospital, New York, New York 9AstraZeneca Centre for Genomics Research, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Cambridge, CB2 0AA, United Kingdom Correspondence Abstract Richard Mayeux, Department of Neurology, Objective 710 West 168th Street, Columbia University, : The genetic bases of Alzheimer’s disease remain uncertain.
    [Show full text]
  • Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 'S Role in Working Memory
    Neuropsychopharmacology (2017) 42, 2612–2622 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 's Role in Working Memory 1 1 2 3 4,5 3 Donna Cosgrove , Omar Mothersill , Kimberley Kendall , Bettina Konte , Denise Harold , Ina Giegling , 3 6 6 7 Annette Hartmann , Alex Richards , Kiran Mantripragada , The Wellcome Trust Case Control Consortium , Michael J Owen6, Michael C O’Donovan6, Michael Gill4, Dan Rujescu3, James Walters2, Aiden Corvin4, Derek W Morris1 and Gary Donohoe*,1 1 The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland; 2Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; 3Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany; 4 Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland; 5 6 School of Biotechnology, Dublin City University, Dublin, Ireland; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK With 4100 common variants associated with schizophrenia risk, establishing their biological significance is a priority. We sought to establish cognitive effects of
    [Show full text]
  • Cognitive Genomics: Linking Genes to Behavior in the Human Brain
    PERSPECTIVE Cognitive genomics: Linking genes to behavior in the human brain Genevieve Konopka Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA ABSTRACT Correlations of genetic variation in DNA with functional brain activity have already provided a starting point for delving into human cognitive mechanisms. However, these analyses do not provide the specific genes driving the associations, which are complicated by intergenic Downloaded from http://direct.mit.edu/netn/article-pdf/1/1/3/1091843/netn_a_00003.pdf by guest on 30 September 2021 localization as well as tissue-specific epigenetics and expression. The use of brain-derived an open access journal expression datasets could build upon the foundation of these initial genetic insights and yield genes and molecular pathways for testing new hypotheses regarding the molecular bases of human brain development, cognition, and disease. Thus, coupling these human brain gene expression data with measurements of brain activity may provide genes with critical roles in brain function. However, these brain gene expression datasets have their own set of caveats, most notably a reliance on postmortem tissue. In this perspective, I summarize and examine the progress that has been made in this realm to date, and discuss the various frontiers remaining, such as the inclusion of cell-type-specific information, additional physiological measurements, and genomic data from patient cohorts. Progress in understanding the inner workings of the brain has come a long way from the preneu- roscience era of phrenology, when we were limited to conjectures about human behavior Citation: Konopka G. (2017). Cognitive genomics: Linking genes to behavior based on the shape of the skull.
    [Show full text]
  • 1 Functional Network Dynamics in a Neurodevelopmental Disorder Of
    bioRxiv preprint doi: https://doi.org/10.1101/463323; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Dynamic functional connectivity networks and gene expression Functional network dynamics in a neurodevelopmental disorder of known genetic origin Erin Hawkins*1, Danyal Akarca*1, Mengya Zhang1, Diandra Brkic1, Mark Woolrich2, Kate Baker1,3, & Duncan Astle1 *these authors took joint responsibility for first authorship 1 MRC Cognition and Brain Sciences Unit, University of Cambridge 15 Chaucer Road, Cambridge, CB2 7EF, UK 2 Oxford Centre for Human Brain Activity, University of Oxford University Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK 3 Department of Medical Genetics, University of Cambridge Cambridge Institute for Medical Research, Cambridge, CB2 0XY, UK. Corresponding author: Erin Hawkins Email: [email protected] Telephone: +44 (0)1223 273 686 1 bioRxiv preprint doi: https://doi.org/10.1101/463323; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Dynamic functional connectivity networks and gene expression Abstract Cognitive processing depends on the temporal co-ordination of functional brain networks. This fundamental aspect of neurophysiology potentially bridges the genetic regulation of neuronal activity and developmental cognitive impairments.
    [Show full text]
  • Gene Discovery and Polygenic Prediction from a 1.1-Million-Person GWAS of Educational Attainment
    Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment AUTHORS: James J. Lee1,†, Robbee Wedow2,3,4,†, Aysu Okbay5,6,*†, Edward Kong7, Omeed Maghzian7, Meghan Zacher8, Tuan Anh Nguyen-Viet9, Peter Bowers7, Julia Sidorenko10,11, Richard Karlsson Linnér5,6, Mark Alan Fontana12, Tushar Kundu9, Chanwook Lee7, Hui Li7, Ruoxi Li9, Rebecca Royer9, Pascal N. Timshel13,14, Raymond K. Walters15,16, Emily A. Willoughby1, Loïc Yengo10, 23andMe Research Team17, COGENT (Cognitive Genomics Consortium), Social Science Genetic Association Consortium, Maris Alver11, Yanchun Bao18, David W. Clark19, Felix R. Day20, Nicholas A. Furlotte17, Peter K. Joshi19, Kathryn E. Kemper10, Aaron Kleinman17, Claudia Langenberg20, Reedik Mägi11, Joey W. Trampush21, Shefali Setia Verma22, Yang Wu10, Max Lam Zhan Yang23, Jing Hua Zhao20, Zhili Zheng10,24, Jason D. Boardman2,3,4, Harry Campbell19, Jeremy Freese25, Kathleen Mullan Harris26,27, Caroline Hayward28, Pamela Herd29, Meena Kumari18, Todd Lencz30,31,32, Jian'an Luan20, Anil K. Malhotra30,31,32, Andres Metspalu11, Lili Milani11, Ken K. Ong20, John R. B. Perry20, David J. Porteous33, Marylyn D. Ritchie22, Melissa C. Smart18, Blair H. Smith34, Joyce Y. Tung17, Nicholas J. Wareham20, James F. Wilson19,28, Jonathan P. Beauchamp35, Dalton C. Conley36, Tõnu Esko11, Steven F. Lehrer37,38,39, Patrik K. E. Magnusson40, Sven Oskarsson41, Tune H. Pers13,14, Matthew R. Robinson10,42, Kevin Thom43, Chelsea Watson9, Christopher F. Chabris44, Michelle N. Meyer45, David I. Laibson7, Jian
    [Show full text]
  • Ninety-Nine Independent Genetic Loci Influencing General Cognitive Function Include Genes
    bioRxiv preprint doi: https://doi.org/10.1101/176511; this version posted August 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ninety-nine independent genetic loci influencing general cognitive function include genes associated with brain health and structure (N = 280,360) Gail Davies1,182, Max Lam2,182, Sarah E Harris1,3, Joey W Trampush4, Michelle Luciano1, W David Hill1, Saskia P Hagenaars1,5, Stuart J Ritchie1, Riccardo E Marioni1,3, Chloe Fawns-Ritchie1, David CM Liewald1, Judith A Okely1, Ari V Ahola-Olli6,7, Catriona LK Barnes8, Lars Bertram9, Joshua C Bis10 Katherine E Burdick11,12,13, Andrea Christoforou14,15, Pamela DeRosse2,16, Srdjan Djurovic14,17, Thomas Espeseth18,19, Stella Giakoumaki20, Sudheer Giddaluru14,15, Daniel E Gustavson21,22, Caroline Hayward23,24, Edith Hofer25,26, M Arfan Ikram27,28,29, Robert Karlsson30, Emma Knowles31, Jari Lahti32,33, Markus Leber34, Shuo Li35, Karen A Mather36, Ingrid Melle14,18, Derek Morris37, Christopher Oldmeadow38, Teemu Palviainen39, Antony Payton40, Raha PaZoki41, Katja Petrovic25, Chandra A Reynolds42, Muralidharan Sargurupremraj43, Markus ScholZ44,45, Jennifer A Smith46,47, Albert V Smith48,49, Natalie TerZikhan27,50, Anbu Thalamuthu36, Stella Trompet51, Sven J van der Lee27, Erin B Ware47, Beverly G Windham52, Margaret J Wright53,54, Jingyun Yang55,56, Jin Yu16, David Ames57,58, Najaf Amin27, Philippe Amouyel59,60,61, Ole A Andreassen18,62, Nicola Armstrong63,
    [Show full text]
  • Comparative Analysis of Target Gene Exon Sequencing by Cognitive Technology Using a Next Generation Sequencing Platform in Patients with Lung Cancer
    MOLECULAR AND CLINICAL ONCOLOGY 14: 36, 2021 Comparative analysis of target gene exon sequencing by cognitive technology using a next generation sequencing platform in patients with lung cancer YU CHEN1,2, WENQING YAN1,2, ZHI XIE1,2, WEIBANG GUO1,2, DANXIA LU1,2, ZHIYI LV1,2 and XUCHAO ZHANG1,2 1Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080; 2Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China Received March 31, 2020; Accepted December 9, 2020 DOI: 10.3892/mco.2020.2198 Abstract. Next generation sequencing (NGS) technology analysis and the GLCI bioinformatician was 43.48%. In 65 is an increasingly important clinical tool for therapeutic (56.52%) samples, WfG analysis identified and interpreted, decision‑making. However, interpretation of NGS data on average, 1.54 more mutation sites in each sample than the presents challenges at the point of care, due to limitations in manual GLCI review. These mutation sites were located on understanding the clinical importance of gene variants and 27 genes, including EP300, ARID1A, STK11 and DNMT3A. efficiently translating results into actionable information for Mutations in the EP300 gene were most prevalent, and present the clinician. The present study compared two approaches for in 30.77% samples. The Tumor Mutation Burden (TMB) inter‑ annotating and reporting actionable genes and gene mutations preted by WfG analysis (1.82) was significantly higher than from tumor samples: The traditional approach of manual cura‑ the TMB (0.73) interpreted by GLCI review.
    [Show full text]
  • Predicting Factors That Affect the Brain in 35 Countries Worldwide
    ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide Paul Thompson, Ole Andreassen, Alejandro Arias-Vasquez, Carrie Bearden, Premika Boedhoe, Rachel Brouwer, Randy Buckner, Jan Buitelaar, Kazima Bulayeva, Dara Cannon, et al. To cite this version: Paul Thompson, Ole Andreassen, Alejandro Arias-Vasquez, Carrie Bearden, Premika Boedhoe, et al.. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, Elsevier, 2015, 10.1016/j.neuroimage.2015.11.057. hal-01380998 HAL Id: hal-01380998 https://hal.archives-ouvertes.fr/hal-01380998 Submitted on 17 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License YNIMG-12784; No. of pages: 20; 4C: 4, 10, 11, 12 NeuroImage xxx (2016) xxx–xxx Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide☆,☆☆,★ Paul M. Thompson a,s, Ole A. Andreassen b,c, Alejandro Arias-Vasquez d, Carrie E. Bearden e,f,g, Premika S. Boedhoe h,bk,bl, Rachel M.
    [Show full text]
  • Rare Disruptive Variants in the DISC1 Interactome and Regulome: Association with Cognitive Ability and Schizophrenia
    OPEN Molecular Psychiatry (2018) 23, 1270–1277 www.nature.com/mp ORIGINAL ARTICLE Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia S Teng1,2,10, PA Thomson3,4,10, S McCarthy1,10, M Kramer1, S Muller1, J Lihm1, S Morris3, DC Soares3, W Hennah5, S Harris3,4, LM Camargo6, V Malkov7, AM McIntosh8, JK Millar3, DH Blackwood8, KL Evans4, IJ Deary4,9, DJ Porteous3,4 and WR McCombie1 Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339).
    [Show full text]
  • GWAS Meta-Analysis Reveals Novel Loci and Genetic Correlates for General Cognitive Function: a Report from the COGENT Consortium
    OPEN Molecular Psychiatry (2017) 22, 336–345 www.nature.com/mp IMMEDIATE COMMUNICATION GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium JW Trampush1,56, MLZ Yang2,56,JYu1,3, E Knowles4, G Davies5,6, DC Liewald6, JM Starr5,7, S Djurovic8,9, I Melle9,10, K Sundet10,11, A Christoforou9,12, I Reinvang11, P DeRosse1,3, AJ Lundervold13, VM Steen9,12, T Espeseth10,11, K Räikkönen14, E Widen15, A Palotie15,16,17, JG Eriksson18,19,20,21, I Giegling22, B Konte22, P Roussos23,24,25, S Giakoumaki26, KE Burdick23,25, A Payton27,28, W Ollier29, M Horan30, O Chiba-Falek31, DK Attix31,32, AC Need33, ET Cirulli34, AN Voineskos35, NC Stefanis36,37,38, D Avramopoulos39,40, A Hatzimanolis36,37,38, DE Arking40, N Smyrnis36,37, RM Bilder41, NA Freimer41, TD Cannon42, E London41, RA Poldrack43, FW Sabb44, E Congdon41, ED Conley45, MA Scult46, D Dickinson47, RE Straub48, G Donohoe49, D Morris50, A Corvin50, M Gill50, AR Hariri46, DR Weinberger48, N Pendleton29,30, P Bitsios51, D Rujescu22, J Lahti14,52, S Le Hellard9,12, MC Keller53, OA Andreassen9,10,54, IJ Deary5,6, DC Glahn4, AK Malhotra1,3,55 and T Lencz1,3,55 The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾ 1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT).
    [Show full text]