Bucharest, May 23, 2015

Total Page:16

File Type:pdf, Size:1020Kb

Bucharest, May 23, 2015 TECHNICAL UNIVERSITY OF CIVIL ENGINEERING BUCHAREST THE 13TH WORKSHOP OF SCIENTIFIC COMMUNICATIONS, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Bucharest, May 23, 2015 EDITORS: Pavel MATEI - Head of Department of Mathematics and Computer Science Ghiocel GROZA Daniel TUDOR Mariana ZAMFIR Organizing Committee: Romică TRANDAFIR Ion MIERLUŞ-MAZILU Gabriela-Roxana DOBRE CONTENT Sever Achimescu IHARA ZETA FUNCTIONS OF GRAPHS ASSOCIATED 1 Stelian Corneliu Andronescu TO NON-CONGRUENT NUMBERS Ileana Bucur CONTRACTIVE SEQUENCES IN METRIC SPACES 4 ON SOME EXAMPLES OF SPECTRAL GROUPS OF Dan Caragheorgheopol 9 AUTOMORPHISMS IN QUANTUM LOGICS CONSUMER MODELS AND THE COMMON INFLUENCE Daniel Ciuiu 15 OF INCREASING VAT AND DECREASING WEDGES SOLVING THE BILEVEL LINEAR PROGRAMMING Ştefania Constantinescu 20 PROBLEM BY THE MONTE CARLO METHOD SOME RESULTS IN THE EQUIVARIANT ALGEBRAIC Cristian Costinescu 26 TOPOLOGY Nicolae Dăneț CLOSURE SUBLINEAR OPERATORS 32 FROM VECTOR SPACES TO INTERVAL-SPACES via Rodica-Mihaela Dăneț THE TECHNIQUE OF THE AUXILIARY SUBLINEAR 38 FUNCTIONAL Gabriela-Roxana Dobre TABU SEARCH OPTIMIZATION WITH APPLICATIONS 44 IN GROUNDWATER MANAGEMENT Ștefania Donescu ON THE CIRCULAR EQUILIBRIUM FOR A CLASS OF 51 Ligia Munteanu NONLINEAR DYNAMICAL SYSTEMS Marinică Gavrilă EXTREMAL POINTS IN LINEAR SPACES 57 Corina Grosu MULTI INDEXED LAGUERRE POLYNOMIALS AND CHI 61 Marta Grosu SQUARE CORRELATION Ghiocel Groza ON BOUNDED ENTIRE REAL FUNCTIONS 67 Lucian Niță Ghiocel Groza ON A CLASS OF SYMMETRIC (0,1)-MATRICES 73 Alina Elisabeta Sandu PREDICTING THE EARTHQUAKE MAGNITUDE FROM Iuliana Iatan SEISMICITY INDICATORS USING A PROBABILISTIC 79 NEURAL NETWORK Ruxandra Diana Ilie A COMPUTATIONAL METHOD FOR DESCRIBING THE 84 Veturia Chiroiu BEHAVIOR OF THE NATURAL (MAIZE) COMPOSITES PARTIAL DIFFERENTIAL EQUATIONS NUMERICALLY Marilena Jianu 90 SOLVED USING TAYLOR EXPANSION Anca Nicoleta Marcoci APPLICATIONS OF SAWYER’S DUALITY PRINCIPLE 96 Liviu Gabriel Marcoci BOUNDEDNESS ON SOME WEIGHTED SPACES 102 George Daniel Mateescu DYNAMIC WEB PAGES 106 Pavel Matei A VARIATIONAL METHOD FOR THE p -LAPLACIAN 110 Maria Mihailova IGUAL PROJECT AS A SPRINGBOARD TO MODERN 116 Ion Mierluș-Mazilu EDUCATION IN LATIN AMERICA AFFINE SURFACES IN R4 AND R5. Adela Mihai LAPLACE OPERATOR AND CORRESPONDING 122 Daniel Tudor BELTRAMI FORMULAE AN INTEGRAL FOR VECTOR FUNCTIONS WITH Lucian Niță 127 RESPECT TO VECTOR MEASURES A DENSITY THEOREM IN THE SET OF CONTINUOUS Gavriil Păltineanu 130 FUNCTIONS WITH VALUES IN THE UNIT INTERVAL Viorel Petrehuș SOME CONSERVATIVE NUMERICAL 134 APPROXIMATIONS OF DYNAMICAL SYSTEMS Emil Popescu SYMMETRIES IN BUCKINGHAM-TYPE PROBLEMS 138 Iuliana Popescu BIFURCATION ANALYSIS OF NATURAL CONVECTION Simona Cristina Nartea 143 FLOWS - MATHEMATICAL MODELLING Adrian Gabriel Ghiauș Marian-Valentin Popescu A COLLECTIVELY COINCIDENCE RESULT IN Rodica-Mihaela Dăneț 149 ALGEBRAIC TOPOLOGY AND ITS APPLICATION Nicoleta Popescu Sever Angel Popescu SHIFT OPERATORS ON SEQUENCES 155 AN APPLICATION IN SPSS FOR CALCULATE THE Alina Elisabeta Sandu 161 PEARSON CORRELATION COEFFICIENT A NORMAL SCORE PARAMETERIZATION FOR Bogdan Sebacher CHANNELIZED RESERVOIRS ESTIMATION USING THE 167 ITERATIVE ADAPTIVE GAUSSIAN MIXTURE FILTER ABOUT METHODS OF SOLVING MULTI-OBJECTIVE Narcisa Teodorescu 173 FRACTIONAL PROGRAMMING PROBLEMS Romică Trandafir TRANSMUTED GENERALIZED PARETO 177 Vasile Preda DISTRIBUTION HOW TO TEACH ELEMENTARY GEOMETRIC Mariana Zamfir 183 PROPERTIES OF PLANE CURVES USING MATHCAD Mariana Zamfir ON RESTRICTIONS AND QUOTIENTS OF 189 Tania-Luminița Costache DECOMPOSABLE OPERATORS IN BANACH SPACES The 13th Workshop of Scientific Communications, Department of Mathematics and Computer Science, May 23, 2015, p. 1-3 IHARA ZETA FUNCTIONS OF GRAPHS ASSOCIATED TO NON-CONGRUENT NUMBERS Sever ACHIMESCU Department of Mathematics and Computer Science Technical University of Civil Engineering Bucharest Bd. Lacul Tei 124, sector 2, 38RO-020396 Bucharest, Romania E-mail: [email protected] Stelian Corneliu ANDRONESCU Department of Mathematics and Computer Science Technical University of Pitesti Str. Targu din Vale Nr.1 , Pitesti, Romania E-mail: [email protected] Abstract: For a number of the form n=p1p2…pt, t 3 we associate, following [1], a graph G(n). We compute the Ihara zeta function of G(n). Mathematics Subject Classification (2010): 68R10, 14G10, 11M99 Key words: congruent numbers, Ihara zeta function, finite digraphs. 1. Introduction Zeta Functions and L-function of an elliptic curve. We recall basic facts from [2]. For an elliptic curve E over Q we denote Δ its discriminant. For each prime p we denote Ep the reduction of E modulo p, defined over Fp. Let # Ep(Fp) be the number of projective solutions. Put app 1 # Ep(Fp) for all primes p. The local L-factor corresponding to the prime p is defined to be the formal power series 2 L p (u) 1 (1 a pu pu ) if p does not divide Δ 2 L p (u) 1 (1 a p u ) if p divides Δ The L-function of E is the product s L(s, E) L p ( p ) p The local zeta function of E is # Ep(F )un pn Z(u, E p ) exp( ) n1 n It is known that E(Q) is an abelian group The weak version of the Birch Swinnerton-Dyer conjecture is: Rank(E(Q))=ord s1 L(s,E(Q)) 1 Congruent Numbers. A positive integer n is said to be a congruent number if it is the area of a right triangle with sides positive integers. For example n=6 is a congruent number since it is the area of the right triangle with sides (3,4,5). Finding all the congruent numbers is perhaps one of the oldest problems in mathematics. Assuming the weak Birch Swinnerton-Dyer to be true, J. Tunnell gave in 1983 an algorithmic criterion to decide whether an arbitrarily fixed positive integer n is congruent or not. We send the reader to [4] for more details. There are other criteria for the congruence problem but they give an answer for particular positive integers n; they are not as general as Tunnell’s criterion. For example in [1] Feng proved the non-congruence for infinitely many positive numbers n using graphs. In [1] Feng proved also that the Birch Swinnerton-Dyer conjecture is true for infinitely many elliptic curves, given by the equation 2 En : y x(x n)(x n) with n noncongruent numbers of a particular form: n=p1p2…pt, t 1, p1 3(mod 8), pi 1(mod 8), i 2 or n=p1p2…pt, t 1, p1 5(mod 8), pi 1(mod 8), i 2 The following basic but very important result (proved in [4]) has been used in [1]: n is a noncongruent number iff rank( En (Q))=0 We find interesting the fact that by studying one graph one can conclude the non-congruence of infinitely many n’s. Ihara Zeta Functions of Finite Oriented (Directed) Connected Graphs. We follow [4],[5]. An oriented (directed) graph is denoted X=(V,E) with E a subset of the Cartesian product V V. Let e=(a,b) be an edge; we denote o(e)=a (the origin of e) and t(e)=b (the terminus of e) and e =(b,a). A prime cycle in X is an equivalent class of a sequence of edges such that each vertex of one of these edges is exactly once target for one edge and exactly once terminus for one edge. The length of a prime cycle p is defined to be the number of edges defining the cycle p and it is denoted by |p|. The Ihara Zeta Function of X is Z(u)= (1 u | p| ) 1 p where the product is taken on all prime cycles p. 2. Ihara Zeta Functions of G(n) For a number of the form n=p1p2…pt, t 3 we associate, following [1], a graph G(n). We compute the Ihara zeta function of G(n). We define a directed graph G(n) as follows: the vertices of G(n) are all prime factors of n and p j for pi p j there exists an edge ( pi , p j ) in G(n) iff the Legendre symbol ( ) 1 . We put pi m ( ) 1 for all odd m. 2 2 Examples. 1) n 105 357 We have: 3 5 3 7 7 5 ( ) 1 ( ) , ( ) =-1, ( ) =1, ( ) =-1= ( ) . 5 3 7 3 5 7 The edges are (3,5),(5,3),(3,7),(5,7),(7,5). The prime cycles are: [(3,5),(5,3)],[(5,7),(7,5)], [(3,7),(7,5),(5,3)]. The Ihara Zeta Function is Z(u)=1/((1-u2)(1-u2)(1-u3)) 2) n 1155 357 11 We have: 3 11 5 11 7 11 ( ) =1, ( ) =-1, ( ) =1= ( ) , ( ) -=1, ( ) =1. 11 3 11 5 11 7 The edges are (3,5),(5,3),(3,7),(5,7),(7,5), (11,3)(7,11). The prime cycles are: [(3,5),(5,3)],[(5,7),(7,5)], [(3,7),(7,5),(5,3)],[(7,11),(11,3),(3,7)] [(3,5),(5,7),(7,11),(11,3)]. The Ihara Zeta Function is Z(u)=1/((1-u2)(1-u2)(1-u3) (1-u3) (1-u4)) References [1] Feng.K.: Non-congruent numbers, odd graphs and the Birch-Swinnerton Dyer conjecture, Acta Arithmetica 75(1), 1996. [2] Knapp, A.W.:Elliptic Curves, Mathematical Notes 40, Princeton University Text, 1992. [3] Kotani,M. and Sunada,T.: Zeta funcions of Finite Graphs, J. Math. Sci. Univ. Tokyo 7, 7- 25, 2000. [4] Koblitz, N.: Introduction to Elliptic Curves and Modular Forms, GTM 97, Springer,1984. [5] Terras, A.:Zeta Functions of Graphs-A Stroll through the Garden, Cambridge Studies in Advanced Mathematics, 128 , 2010. 3 The 13th Workshop of Scientific Communications, Department of Mathematics and Computer Science, May 23, 2015, p. 4-8 CONTRACTIVE SEQUENCES IN METRIC SPACES Ileana BUCUR Technical University of Civil Engineering Bucharest, Bucharest, Romania E-mail: [email protected] Abstract: In this paper we define the notions of contractive and semi-contractive sequences in metric spaces and we show that every semi-contractive sequence is a Cauchy sequence.
Recommended publications
  • Package 'Popbio'
    Package ‘popbio’ February 1, 2020 Version 2.7 Author Chris Stubben, Brook Milligan, Patrick Nantel Maintainer Chris Stubben <[email protected]> Title Construction and Analysis of Matrix Population Models License GPL-3 Encoding UTF-8 LazyData true Suggests quadprog Description Construct and analyze projection matrix models from a demography study of marked individu- als classified by age or stage. The package covers methods described in Matrix Population Mod- els by Caswell (2001) and Quantitative Conservation Biology by Morris and Doak (2002). RoxygenNote 6.1.1 NeedsCompilation no Repository CRAN Date/Publication 2020-02-01 20:10:02 UTC R topics documented: 01.Introduction . .3 02.Caswell . .3 03.Morris . .5 aq.census . .6 aq.matrix . .7 aq.trans . .8 betaval............................................9 boot.transitions . 11 calathea . 13 countCDFxt . 14 damping.ratio . 15 eigen.analysis . 16 elasticity . 18 1 2 R topics documented: extCDF . 19 fundamental.matrix . 20 generation.time . 21 grizzly . 22 head2 . 24 hudcorrs . 25 hudmxdef . 25 hudsonia . 26 hudvrs . 27 image2 . 28 Kendall . 29 lambda . 31 lnorms . 32 logi.hist.plot . 33 LTRE ............................................ 34 matplot2 . 37 matrix2 . 38 mean.list . 39 monkeyflower . 40 multiresultm . 42 nematode . 43 net.reproductive.rate . 44 pfister.plot . 45 pop.projection . 46 projection.matrix . 48 QPmat . 50 reproductive.value . 51 resample . 52 secder . 53 sensitivity . 55 splitA . 56 stable.stage . 57 stage.vector.plot . 58 stoch.growth.rate . 59 stoch.projection . 60 stoch.quasi.ext . 62 stoch.sens . 63 stretchbetaval . 64 teasel . 65 test.census . 66 tortoise . 67 var2 ............................................. 68 varEst . 69 vitalsens . 70 vitalsim . 71 whale . 74 woodpecker . 74 Index 76 01.Introduction 3 01.Introduction Introduction to the popbio Package Description Popbio is a package for the construction and analysis of matrix population models.
    [Show full text]
  • Workshop on Modern Applied Mathematics PK 2012 Kraków 23 — 24 November 2012
    Workshop on Modern Applied Mathematics PK 2012 Kraków 23 — 24 November 2012 Warsztaty z Nowoczesnej Matematyki i jej Zastosowań Kraków 23 — 24 listopada 2012 Kraków 23 — 24 November 2012 3 Contents 1 Introduction 5 1.1 Organizing Committee . 6 1.2 Scientific Committee . 6 2 List of Participants 7 3 Abstracts 11 3.1 On residually finite groups Orest D. Artemovych . 11 3.2 Some properties of Bernstein-Durrmeyer operators Magdalena Baczyńska . 12 3.3 Some Applications of Gröbner Bases Katarzyna Bolek . 14 3.4 Criteria for normality via C0-semigroups and moment sequences Dariusz Cichoń . 15 3.5 Picard–Fuchs operator for certain one parameter families of Calabi–Yau threefolds Sławomir Cynk . 16 3.6 Inference with Missing data Christiana Drake . 17 3.7 An outer measure on a commutative ring Dariusz Dudzik . 18 3.8 Resampling methods for weakly dependent sequences Elżbieta Gajecka-Mirek . 18 3.9 Graphs with path systems of length k in a hamiltonian cycle Grzegorz Gancarzewicz . 19 3.10 Hausdorff gaps and automorphisms of P(N)=fin Magdalena Grzech . 20 3.11 Functional Regression Models with Structured Penalties Jarosław Harezlak, Madan Kundu . 21 3.12 Approximation of function of two variables from exponential weight spaces Monika Herzog . 22 3.13 The existence of a weak solution of the semilinear first-order differential equation in a Banach space Mariusz Jużyniec . 25 3.14 Bayesian inference for cyclostationary time series Oskar Knapik . 26 4 Workshop on Modern Applied Mathematics PK 2012 3.15 Hausdorff limit in o-minimal structures Beata Kocel–Cynk . 27 3.16 Resampling methods for nonstationary time series Jacek Leśkow .
    [Show full text]
  • Projects and Publications of the Applied Mathematics Division
    NATIONAL BUREAU OF STANDARDS REPORT 4546 PROJECTS and PUBLICATIONS of the APPLIED MATHEMATICS DIVISION A Quarterly Report October through December 1 955 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS FOR OFFICIAL DISTRIBUTION U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astin, Director THE NATIONAL BUREAU OF STANDARDS The 6cope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report. Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instru- ments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments. Chemistry. Organic Coatings. Surface Chemistry. Organic
    [Show full text]
  • Projects and Publications of the Applied Mathematics Division
    NATIONAL BUREAU OF STANDARDS REPORT 4658 PROJECTS and PUBLICATIONS of the APPLIED MATHEMATICS DIVISION A Quarterly Report January through March, 1956 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS FOR OFFICIAL DISTRIBUTION U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astin, Director THE NATIONAL BUREAU OF STANDARDS The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section is engaged in specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report. Electricity and Electronics. Resistance and Reactance. Electron Tubes. Electrical Instru- ments. Magnetic Measurements. Process Technology. Engineering Electronics. Electronic Instrumentation. Electrochemistry. Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology. Heat and Power. Temperature Measurements. Thermodynamics. Cryogenic Physics. Engines and Lubrication. Engine Fuels. Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment. AEC Radiation Instruments. Chemistry. Organic Coatings. Surface Chemistry. Organic
    [Show full text]
  • Package 'Matrix'
    Package ‘Matrix’ March 8, 2019 Version 1.2-16 Date 2019-03-04 Priority recommended Title Sparse and Dense Matrix Classes and Methods Contact Doug and Martin <[email protected]> Maintainer Martin Maechler <[email protected]> Description A rich hierarchy of matrix classes, including triangular, symmetric, and diagonal matrices, both dense and sparse and with pattern, logical and numeric entries. Numerous methods for and operations on these matrices, using 'LAPACK' and 'SuiteSparse' libraries. Depends R (>= 3.2.0) Imports methods, graphics, grid, stats, utils, lattice Suggests expm, MASS Enhances MatrixModels, graph, SparseM, sfsmisc Encoding UTF-8 LazyData no LazyDataNote not possible, since we use data/*.R *and* our classes BuildResaveData no License GPL (>= 2) | file LICENCE URL http://Matrix.R-forge.R-project.org/ BugReports https://r-forge.r-project.org/tracker/?group_id=61 Author Douglas Bates [aut], Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Timothy A. Davis [ctb] (SuiteSparse and 'cs' C libraries, notably CHOLMOD, AMD; collaborators listed in dir(pattern = '^[A-Z]+[.]txt$', full.names=TRUE, system.file('doc', 'SuiteSparse', package='Matrix'))), Jens Oehlschlägel [ctb] (initial nearPD()), Jason Riedy [ctb] (condest() and onenormest() for octave, Copyright: Regents of the University of California), R Core Team [ctb] (base R matrix implementation) 1 2 R topics documented: Repository CRAN Repository/R-Forge/Project matrix Repository/R-Forge/Revision 3291 Repository/R-Forge/DateTimeStamp 2019-03-04 11:00:53 Date/Publication 2019-03-08 15:33:45 UTC NeedsCompilation yes R topics documented: abIndex-class . .4 abIseq . .6 all-methods . .7 all.equal-methods .
    [Show full text]
  • ESD.342 Network Representations Lecture 4
    Basic Network Properties and How to Calculate Them • Data input • Number of nodes • Number of edges • Symmetry • Degree sequence • Average nodal degree • Degree distribution • Clustering coefficient • Average hop distance (simplified average distance) • Connectedness • Finding and characterizing connected clusters 2/16/2011 Network properties © Daniel E Whitney 1997-2006 1 Matlab Preliminaries • In Matlab everything is an array •So – a = [ 2 5 28 777] – for i = a – do something –end • Will “do something” for i = the values in array a • [a;b;c] yields a column containing a b c • [a b c] yields a row containing a b c 2/16/2011 Network properties © Daniel E Whitney 1997-2006 2 Matrix Representation of Networks »A=[0 1 0 1;1 0 1 1;0 1 0 0;1 1 0 0] 1 2 A = 0 1 0 1 1 3 4 0 1 1 0 1 0 0 1 1 0 0 » A is called the adjacency matrix A(i, j) = 1 if there is an arc from i to j A( j,i) = 1 if there is also an arc from j to i In this case A is symmetric and the graph is undirected 2/16/2011 Network properties © Daniel E Whitney 1997-2006 3 Directed, Undirected, Simple • Directed graphs have one-way arcs or links • Undirected graphs have two-way edges or links • Mixed graphs have some of each • Simple graphs have no multiple links between nodes and no self-loops 2/16/2011 Network properties © Daniel E Whitney 1997-2006 4 Basic Facts About Undirected Graphs • Let n be the number of nodes and m be the number of edges •Thenaverage nodal degree is < k >= 2m /n •TheDegree sequence is a list of the nodes and their respective degrees n • The sum of these degrees
    [Show full text]
  • Solution of the Incompressible Navier- Stokes Equations on Unstructured Meshes
    Solution of the Incompressible Navier- Stokes Equations on Unstructured Meshes by David J. Charlesworth Submitted for the Degree o f Doctor o f Philosophy The Department o f Mechanical Engineering University College London August 2003 UMI Number: U6028B6 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U602836 Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Since Patankar first developed the SIMPLE (Semi Implicit Method for Pressure Linked Equations) algorithm, the incompressible Navier-Stokes equations have been solved using a variety of pressure-based methods. Over the last twenty years these methods have been refined and developed however the majority of this work has been based around the use of structured grids to mesh the fluid domain of interest. Unstructured grids offer considerable advantages over structured meshes when a fluid in a complex domain is being modelled. By using triangles in two dimensions and tetrahedrons in three dimensions it is possible to mesh many problems for which it would be impossible to use structured grids. In addition to this, unstructured grids allow meshes to be generated with relatively little effort, in comparison to structured grids, and therefore shorten the time taken to model a particular problem.
    [Show full text]
  • Manifold Learning with Tensorial Network Laplacians
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2021 Manifold Learning with Tensorial Network Laplacians Scott Sanders East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Data Science Commons, Geometry and Topology Commons, and the Other Applied Mathematics Commons Recommended Citation Sanders, Scott, "Manifold Learning with Tensorial Network Laplacians" (2021). Electronic Theses and Dissertations. Paper 3965. https://dc.etsu.edu/etd/3965 This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Manifold Learning with Tensorial Network Laplacians A thesis presented to the faculty of the Department of Mathematics and Statistics East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences by Scott Sanders August 2021 Jeff Knisley, Ph.D., Chair Michele Joyner, Ph.D. Nicole Lewis, Ph.D. Keywords: Tensors, Laplacian matrix, networks, data science, Poisson. ABSTRACT Manifold Learning with Tensorial Network Laplacians by Scott Sanders The interdisciplinary field of machine learning studies algorithms in which functional- ity is dependent on data sets. This data is often treated as a matrix, and a variety of mathematical methods have been developed to glean information from this data struc- ture such as matrix decomposition. The Laplacian matrix, for example, is commonly used to reconstruct networks, and the eigenpairs of this matrix are used in matrix decomposition.
    [Show full text]
  • Author Index ______
    ______AUTHOR INDEX ______ a space; Homology group; Infinite­ Arellano, E. Ramirez de see: Ramirez de form in logarithms; Siegel theorem; dimensional space; Local decompo­ Arellano, E. Transcendental number sition; Metrizable space; Pontryagin __A __ Argand, J .R. see: Arithmetic; Complex Ball, R. see: Helical calculus duality; Projection spectrum; Suslin number; Imaginary number Balusabramanian, R. see: Waring prob­ theorem; Topological space; Width Aristotle see: Modal logic; Space-time lem Abel, N.H. see: Abel differential Alexander, J.W. see: Alexander dual­ Arkhangel'skil, A.V. see: Feathering Banach, S. see: Area; Banach indica­ equation; Abel-Goncharov prob­ ity; Alexander invariants; Duality; Arno I'd, V.I. see: Composite function; trix; Banach-Mazur functional; Ba­ lem; Abel problem; Abel theorem; Homology group; Jordan theorem; Quasi-periodic motion nach space; Banach-Steinhaus the­ Abel transformation; Abelian group; Knot theory; Manifold; Pontryagin Arsenin, V. Ya. see: Descriptive set the­ orem; Completely-continuous oper­ Abelian integral; Abelian variety; duality; Reaction-diffusion equation; ory ator; Contracting-mapping princi­ Algebra; Algebraic equation; Alge­ Topology of imbeddings Artin, E. see: Abstract algebraic ge­ ple; Franklin system; Hahn-Banach braic function; Algebraic geometry; Alexandrov, A.B. see: Boundary prop­ ometry; Algebra; Algebraic number theorem; Lacunary system; Linear Binomial series; Convergence, types erties of analytic functions theory; Alternative rings and alge­ operator; Luzin N -property; Non­ of; Elliptic function; Finite group; Alling, N.L. see: Surreal numbers bras; Commutative algebra; Con­ differentiable function; Nuclear op­ Galois theory; Group; Interpola­ Almgren, F.J. see: Plateau problem, gruence modulo a prime number; erator; Open-mapping theorem; Or­ tion; Inversion of an elliptic integral; multi-dimensional Divisorial ideal; Foundations of ge­ thogonal series; Tonelli plane vari­ Jacobi elliptic functions; Liouville­ Alvarez-Gaume, L.
    [Show full text]
  • Matrices and Graphs of Relations [The Gist of Sec
    Matrices and Graphs of Relations [the gist of Sec. 7.2 of Grimaldi] If A = n and B = p, and the elements are ordered and labeled (A = a ;a ;:::;a| | , etc.),| then| any relation from A to B (i.e., a subset of A B) can { 1 2 n} R × be represented by a matrix with n rows and p columns: Mjk , the element in row j and column k, equals 1 if aj bk and 0 otherwise. Such a matrix is somewhat less inscrutable than a long list ofR ordered pairs. Example: Let A = B = 1; 2; 3; 4 . The relation { } = (1; 2); (1; 3); (1; 4); (2; 3); (3; 1); (3; 4) R { } has the matrix 0111 0 00101 : B 1001C @ 0000A Boolean arithmetic Recall the operation tables for logical AND and OR: 0 1 0 1 —–—–—∧| | —–—–—∨| | 0 0 0 0 0 1 —–—–—| | —–—–—| | 1 0 1 1 1 1 | | | | Let’s compare this with arithmetical TIMES and PLUS: 0 1 + 0 1 —–—–—×| | —–—–—| | 0 0 0 0 0 1 —–—–—| | —–—–—| | 1 0 1 1 1 2 | | | | (If the addition is modulo 2, then the 2 in the crucial corner becomes 0.) We see that the logical operations are identical to the arithmetical ones, except that “1+1” must be redefined to be 1, not 2 or 0. Finally, notice that the logical relation of implication is equivalent to “less than or equal” in this numerical representation: 0 1 −→— –—–— | | 0 1 1 — –—–—| | 1 0 1 | | 1 Now recall (or learn, from Appendix 2) that multiplication of matrices is defined by (MN) = M N ik X ij jk j (i.e., each element of the product is calculated by taking the “dot product” of a row of M with a column of N; the number of columns of M must be equal to the number of rows of N for this to make sense).
    [Show full text]
  • MATLAB Programming © COPYRIGHT 1984 - 2005 by the Mathworks, Inc
    MATLAB® The Language of Technical Computing Programming Version 7 How to Contact The MathWorks: www.mathworks.com Web comp.soft-sys.matlab Newsgroup [email protected] Technical support [email protected] Product enhancement suggestions [email protected] Bug reports [email protected] Documentation error reports [email protected] Order status, license renewals, passcodes [email protected] Sales, pricing, and general information 508-647-7000 Phone 508-647-7001 Fax The MathWorks, Inc. Mail 3 Apple Hill Drive Natick, MA 01760-2098 For contact information about worldwide offices, see the MathWorks Web site. MATLAB Programming © COPYRIGHT 1984 - 2005 by The MathWorks, Inc. The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro- duced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions.
    [Show full text]
  • I. Two-Valued Classical Propositional Logic C2 8 1
    Published by Luniver Press Beckington, Frome BA11 6TT, UK www.luniver.com Alexander S. Karpenko Lukasiewicz Logics and Prime Numbers (Luniver Press, Beckington, 2006). First Edition 2006 Copyright © 2006 Luniver Press . All rights reserved . British Library Cataloguing in Publication Data A catalog record is available from the British Library. Library of Congress Cataloguing in Publication Data A catalog record is available from the Library of Congress. All rights reserve d. This book, or parts thereof, may not be reproduced in a form or by any means , electronic or mechanical, including photocopying , recording or by any information storage and retrieval system, without permission in writing from the copyright holder. ISBN-13: 978-0-955 1170-3-9 ISBN-10: 0-955 1170-3-6 While every attempt is made to ensure that the information in this publicatic is correct. no liability can be accepted by the authors or publishers for loss. damage or injury caused by any errors in, or omission from, the informatior given . Alexander S. Karpenko Russian Academy of Sciences, Institute of Philosophy, Department of Logic ŁUKASIEWICZ'S LOGICS AND PRIME NUMBERS CONTENTS Introduction 4 I. Two-valued classical propositional logic C2 8 1. Logical connectives. Truth-tables .......................................... 8 2. The laws of classical propositional logic ................................. 10 3. Functional completeness ......................................................... 12 3.1. Sheffer stroke ........................................................................ 13 4. Axiomatization. Adequacy ……………………………… …. 17 II. Łukasiewicz’s three-valued logic Ł3 17 1. Logical fatalism………………………………………………. 17 2. Truth-tables. Axiomatization ………………………………… 19 3. Differences between Ł3 and C2 ………………………………. 21 4. An embedding C2 into Ł3 and three-valued isomorphs of C2… 23 III. Łukasiewicz’s finite-valued logics 27 1.
    [Show full text]