Digifed-Bootcamp-OC2-Iot-AI.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Digifed-Bootcamp-OC2-Iot-AI.Pdf AI & IoT Bootcamp 30 November 2020 Digital Catapult, Ikerlan, University of Ljubljana This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 864266. 1 Welcome 2 Welcome At this table, you can’t speak, and it is normal. To display the presentation To chat with us full screen To zoom in and out 3 Agenda • Introduction, objectives and agenda (10 minutes) • Partners’ presentations • University of Ljubljana • IKERLAN • Digital Catapult • Open floor discussion with Q&A 4 University of Ljubljana Jure Trilar 5 IoT & AI technology suport services from University of Ljubljana Prototype supporting interesting use-cases Electrical switch with Ethereum support Open source platform IoT prototyping & service design BigData analytics Percipio<BigData> analytics tool 30. 11. 2020 6 SWETHER - Electrical switch wih Ethereum support • Maturity/TRL: • Function: IoT-Blockchain Prototyping kit • Technology Readiness Level • Principle: • 1 2 3 4 5 6 7 8 9 • End-to-end prototype kit • Control electrical switch via blockchain transactions • Application cases: • charging of electric vehicles, • arbitrary control of IoT devices, • device-to-device transactions and interactions. 30. 11. 2020 7 IoT prototyping & service design • Maturity/TRL: • Function: Integration of commercial IoT sensors & platform and implementation • Technology Readiness Level consultation • 1 2 3 4 5 6 7 8 9 • Principle: • Capacity to developed own IoT boards, • due to popular demand we can help develop services on widely available commercial platforms such as: - Libelium, Raspberry Pie, Arduino,… • Sensors based on context and environment • Proper mode of connectivity 4/5G, LPWAN (LoRa, NB) • Various modes of computing/databases • Cases: • Smart City, • Smart Agriculture, • Smart Industry… 30. 11. 2020 8 percipio<BigData> analytics tool • Maturity/TRL: • Function: Big Data Analytics Tool: „Find • Technology Readiness Level the (un)known unknowns and discover new insights!“ • 1 2 3 4 5 6 7 8 9 • Principle: • Context selection • Correlation and trends dashboard • Key Performances: • Sources • 250M tech and sci articles • Patents • Web and social media 30. 11. 2020 9 Ikerlan Xabier Iturbe 10 IKERLAN in a Nutshell Since 1974! 350 150 HIGH-SKILLED ICT PROFESSIONALS TECHNOLOGY 24.1 M€ 13 M€ TRANSFER TURNOVER PROJECTS FUNDAMENTAL 10 M€ RESEARCH 2 M€ INVESTMENT IN WORLD-CLASS LABS 45 PhDs 30. 11. 2020 11 Information and Communication Technologies IoT & Digital Platforms Data Analytics & Artificial Intelligence • Smart Digital Platforms: • Short-range IoT connectivity: • Highly scalable. • BLE, ZigBee, NFC, UWB, WiFi. • Public, private and hybrid cloud architectures. • Long-range connectivity: • Artificial Intelligence and Data Analysis: • Non-licensed bands: LoRa, Sigfox. • Predictive maintenance. • Licensed bands: 2G/3G/4G (NB-IoT, LTE-M) and • Data Lakes for Data Analytics. towards 5G. • Data interpretability and AI-algorithms: • IoT / IIoT protocols and interoperability: • Smart Digital Platforms • MQTT, CoAP, DDS, LwM2M, AMQP, Websoket, NodeRed, etc. • Smart Interaction with data platforms : • Indoor (UWB, BLE) and outdoor (GPS, GNSS, cellular) • Natural interaction with data (chatbots, etc.). location • Development of platforms based on micro-services • Intelligence of Things: and “serverless” • IA + ML on edge nodes. 30. 11. 2020 IKERLAN 12 Dependable Embedded Systems • Maturity/TRL: • Function: Development of dependable systems by experts in safety and real-time • Technology Readiness Level electronics engineering • 1 2 3 4 5 6 7 8 9 • Principle: • Applications: • Embededd Systems developement certified up to SIL4 • Development of software for control-units on transport (e.g., traction, elevation) • Software developement and virtualization for real-time control • Development and validation of up to SIL4 • Automated Testing and Validation (HiL) certified applications (e.g., railway signaling) • Artificial vision for embedded safety • Virtualization of applications and plants (e.g., an elevation system) • Key Performances: • +20 years experience on electronic and safe embedded systems developement • Safety Certified methodology (TÜV) • Uniqueness: • +10 Fuctional Safety Engeeniers • 1 Fuctional Safety Expert (unique in Spain) • Referential on the development of advanced and safe functionality executed in complex chips (SoC, multicore, GPUs) 30. 11. 2020 IKERLAN 13 HW and Communication Systems HARDWARE SYSTEMS COMMUNICATION SYSTEMS ·HW developments: ·Industrial connectivity · Sensorization solutions · Low consumption electronics · Wireless & Wired solutions for embedded · Signal conditioning systems ·SW developments · System software (OS, drivers) · Wired · FPGA and programmable logic ·Real-time communications ·Integration and assembly · Applied to industrial control and sensorization · Electronic cards mounting (PCB assembly) · Extreme conditions / hostile environments ·Antennas ·Non functional developments · Design, simulation and characterization · Standards compliance ·Verification and validation · Tests and troubleshooting (EMC, electrical security, environmental) · Wireless communication systems · In-house designed channel emulator 30. 11. 2020 IKERLAN 14 Industrial cybersecurity • Function: Protection of embedded • Maturity/TRL: electronic systems and digital platforms • Technology Readiness Level • Principle: • 1 2 3 4 5 6 7 8 9 • Embedded System Security • Applications: • Security Evaluation • Cybersecure Digital platform and IIoT oriented • Cybersecure IoT, Cloud and User Interfaces to teleservice. • Key Performances: • Cybersecure Digital platform for fleets of • Security Life-Cycle and Certification automatic warehouses. Multi-business • Trust Technologies based on Distributed deployment, multi-warehouse Ledger Technologies • Uniqueness: • Certified methodologies and addressing compliance with product cybersecurity standards • Cybersecurity solutions covering the entire value chain: from the sensor, the electronics, the embedded software, the connectivity solution, the processing and data ingestion platform, to the analytics and its advanced display 30. 11. 2020 IKERLAN 15 EXAMPLES 30. 11. 2020 16 AI-powered Digital Platforms • Maturity: • Function: Digital Platform to provide tools to develop AI-powered fog/edge-to-cloud solutions. 1 2 3 4 5 6 7 8 9 • Heterogenous cloud architecture (private, public and • Principle : hybrid). • Fog/Edge-to-cloud dynamic architectures. • Smart Data Lakes provisioning. • AI-powered Digital platform scenario. • Microservice-oriented service deployment. • Microservices oriented edge devices architecture. • Key performances: • Uniqueness: • AI-powered Digital Platform. • Artificial Intelligence→ fog-to-cloud architecture. • Data Lake provision for Data analytics. AI-powered predictive techniques. • Microservices based architecture→ Deployment • of AI-models to the edge. • Applications: • Edge computing → Early analytics in the edge • Industry 4.0 & Smart Factories. node to reduce delay. • Smart Cities. IKERLAN IKERLAN • Smart Living and Ageing Well. KONNEKT Box KONNEKT cloud • Smart Mobility. • Smart Buildings. • Etc. IKERLAN KONNEKT 30. 11. 2020Node IKERLAN 17 Autonomous Wireless Sensor Node • Function: detect temperature and acceleration • Maturity: events, wireless data transmission, energy- 1 2 3 4 5 6 7 harvesting • Complete prototype (with RF) is working • Principle : • Miniaturization in progress • Several transducers for sensing • Additional sensing and optimization in progress • Indoor photovoltaic cells (off-the-shelf) • Key performances: • Uniqueness: • Sensing data local processing • Low power → sense & harvest at the same time Wireless robust coms (BLE, TDMA based) • High processing capabilities • • Robust and synchronized communications • Up to +-16us accuracy • Applications: • Smart logistics, smart factory: impact and temperature measurements • Industrial environment Indoor sensing 30. 11. 2020 IKERLAN 18 Safety and real-time software on COTS platforms • Maturity: • Function: certificatuion of embedded real- 1 2 3 4 5 6 7 8 9 time and non-real time software • Principle : • Integrated in product • Selection of multicore commercial HW • Integration of an embedded hypervisor • Key performances: • Software development based on modeling • Safety up to PL-D level (SIL-2) • Safety concept based on industrial • x1,5 performance machinery standard (ISO13489) • Applications: • Wind-turbine control • Uniqueness: • Operation monitorization • Affordable cutting-edge HW • Local recording of key variables • Simplification of complex SW development • Safety cognizant 30. 11. 2020 IKERLAN 19 Digital Catapult Dr. Csaba Kiraly | Internet of Things Engineer 20 IoT Benchmarking: the Future Networks Lab A unique facility that is fast forwarding the adoption of future networks technologies to deliver value to industry Infrastructure: LoRaWAN, Sigfox, NB-IoT, 5G Keysight N6705C DC power analyzer Redwood 5020A LoRaWAN tester RSC Step Attenuator 11 LoRaWAN GWs geolocation testbed in London Expertise • short-range: 802.15.4, BLE, RFID, NFC, UWB, WuR • long-range: LoRa (LoRa2.4), LoRaWAN, Sigfox, NB-IoT • multi-radio platforms • testing and benchmarking methodology • test plans and reports 21 IoT Benchmarking: tests Power consumption laboratory tests • Current/power consumption measurements • Active/inactive states of a device Global Data Value Unit • Report: peak current, current/power per state Current avg 34.25 mA • Battery lifetime estimation for specific application/use-case
Recommended publications
  • From Cyber-Physical Systems to the Web of Things
    60 APRIL 2020 COVID-19 holds humanity in its grip High Performance Computing in the race against the coronavirus “Around the corner” with Eduardo Quiñones HiPEAC Member Efforts to Combat COVID-19 contents 4 6 16 Policy Corner by Sandro D’Elia A conversation with “Around the corner” Cristina Silvano with Eduardo Quiñones 3 Welcome 24 Innovation Europe Koen De Bosschere An open platform for dependable computing 4 Policy corner 25 Innovation Europe Cyber-what? The ARETE project and MULTIFORESEE project Sandro D’Elia 26 Innovation Europe 6 News MASPATECHNOLOGIES 16 Cyber-physical systems special feature 27 Innovation Europe “Around the corner” with Eduardo Quiñones: MICADO: Measurement and instrumentation for cleaning on smart transport and cities and decommissioning operations CLASS and ELASTIC - When Cyber meets Physical 28 HiPEAC futures 18 Industry focus HiPEAC Jobs Career Center: An Engine for Health Care Innovation A well-established mentoring scheme! Ramona Marfievici (Digital Catapult), John Farserotu Three-minute thesis: Programming and Optimization (CSEM), Marcello Coppola (STMicroelectronics), of Big-Data Applications on Heterogeneous Ana Gheorghe (Digital Catapult), Isabelle Dor (CEA) Computing Systems 20 Innovation Europe Hacking into a cure for rare diseases: A deeper look into the system made possible by COEMS The BitsxlaMarató hackathon 21 Innovation Europe ADMORPH: Towards adaptively morphing embedded systems 22 Innovation Europe HiPEAC is the European network on high performance and embedded AITIA: Embedded AI techniques for industrial applications architecture and compilation. 23 Innovation Europe SELENE: Self-monitored dependable platform for high-performance safety-critical systems hipeac.net @hipeac hipeac.net/linkedin HiPEAC has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no.
    [Show full text]
  • Digital Techniques to Improve Competitiveness John Pattinson
    Digital Techniques to Improve Competitiveness John Pattinson Commercial Product Lead - IoT | Digital Catapult [email protected] Digital Catapult is the UK’s leading advanced digital technology innovation centre. We drive early adoption of advanced digital technology across the manufacturing and creative sectors. 2 Digital Catapult is a non profit sitting in a unique position to move markets as the bridge across the system TECHNOLOGY READINESS 3 The right technologies, with the highest impact potential, to move markets and improve UK competitiveness Future Networks Artificial Intelligence Distributed Immersive Systems 5G, IoT & Low AI & Machine Virtual Reality, Powered Wide Area Learning Blockchain, smart Augmented Networks (LPWAN) contracts & ledgers Reality, mixed reality and haptics Providing high quality, Enables real time mega process Unlocks distruptive new value Transforms the way we accessible data that tracks optimisation through streams & business models experience data to enable assets & secures the integrity unprecedented, insight analysis from the ability to securely zero burden new service of claims & prediction capacity share data at scale adoption or better training Challenges and opportunities for supply chains 5 Geographic Geographic territory territory Tier 0: Retail Tier 1: Product Manufacturing Tier 2: Processing Tier 3: Consolidation Geographic Tier 4: Primary production territory supply chain visibility limited to a small number factories situation in most markets some limited awareness of Tier 2
    [Show full text]
  • Making Blockchain Happen
    Making Blockchain Happen Making Blockchain Happen November 2019 Robert M. Learney, Lead Technologist – Blockchain & DLT [email protected] Introduction to Digital Catapult Unique position – vendor-neutral technology & innovation specialists ACCELERATORS Introduction to Digital Catapult Advanced Digital Technologies – we work across 4 technology areas which have maximum economic impact potential Future Networks Immersive Artificial Intelligence Distributed Systems – 5G – VR & AR & Mixed – Artificial Intelligence – DLT – IoT (LoRa & Sigfox) – Haptics – Machine Learning – Blockchain Introduction to Digital Catapult Industry Focus – Remit is to focus on two broad industry sectors with the greatest growth potential for the UK economy Manufacturing Creative Increasing the number of trailblazer companies Delivering advanced digital research, working with advanced digital technologies in development and innovation for the UK’s the UK manufacturing sector world-leading creative sector Introducing DLT Why use Distributed Ledger Technology? Why DLT? § Why DLT? § Why DLT? § Why DLT? § Why DLT? This is a Tragedy of the Commons Why DLT? 3 4 § 1 6 Why DLT? What is Distributed Ledger Technology? Introducing DLT Introducing DLT Introducing DLT Introducing DLT Introducing DLT Introducing DLT Introducing DLT Key Features of DLT: - High availability - Synchronised records - Secure against intrusion - Cryptographic keys - Impossible to alter history DLT Anatomy Synchronised Distributed DLT Consensus Copies Protocol P2P Message Cryptographic
    [Show full text]
  • TECHNOLOGY and INNOVATION REPORT 2021 Catching Technological Waves Innovation with Equity
    UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT TECHNOLOGY AND INNOVATION REPORT 2021 Catching technological waves Innovation with equity Geneva, 2021 © 2021, United Nations All rights reserved worldwide Requests to reproduce excerpts or to photocopy should be addressed to the Copyright Clearance Center at copyright.com. All other queries on rights and licences, including subsidiary rights, should be addressed to: United Nations Publications 405 East 42nd Street New York, New York 10017 United States of America Email: [email protected] Website: https://shop.un.org/ The designations employed and the presentation of material on any map in this work do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has been edited externally. United Nations publication issued by the United Nations Conference on Trade and Development. UNCTAD/TIR/2020 ISBN: 978-92-1-113012-6 eISBN: 978-92-1-005658-8 ISSN: 2076-2917 eISSN: 2224-882X Sales No. E.21.II.D.8 ii TECHNOLOGY AND INNOVATION REPORT 2021 CATCHING TECHNOLOGICAL WAVES Innovation with equity NOTE Within the UNCTAD Division on Technology and Logistics, the STI Policy Section carries out policy- oriented analytical work on the impact of innovation and new and emerging technologies on sustainable development, with a particular focus on the opportunities and challenges for developing countries. It is responsible for the Technology and Innovation Report, which seeks to address issues in science, technology and innovation that are topical and important for developing countries, and to do so in a comprehensive way with an emphasis on policy-relevant analysis and conclusions.
    [Show full text]
  • UK Immersive Tech: VC Investment Report Supported by HTC’S VIVE X
    UK Immersive Tech: VC Investment Report supported by HTC’s VIVE X 1 3 Foreword 4 Introduction 5 10 Featured Companies 30 Immerse UK ‘21 to Watchʼ 33 Investor Survey Data 35 Thanks & Acknowledgements 36 HTC 37 Immerse UK Report Contents Report 2 Foreword June 2021 Welcome This report by Immerse UK and HTC VIVE X is the first of its kind. It Despite these successes, the report also shows that there’s features 31 highly innovative, fast-growing immersive technology some way to go. The UK attracted more than $15bn in (XR) ventures that have already raised significant amounts of external tech venture funding in 2020 in spite of the Covid-19 crisis, investment from a wide range of sources. according to Tech Nation, but immersive ventures are only taking a very small share of that capital. Meanwhile, an even These companies show the huge potential of the XR sector, which includes virtual reality (VR), augmented reality (AR), mixed reality smaller number of those companies receiving funding are (MR), haptics, and a wide range of enabling technologies. The led by women or people from diverse backgrounds. There’s a ventures highlighted here demonstrate some of the various cross- lot more work to be done in encouraging company founders sector applications of this technology ranging from media and from a more diverse range of social, cultural, and educational entertainment to medicine, manufacturing, education, training, backgrounds. fitness, and humanitarianism. We hope this report demonstrates the breadth of talent that There have been some particularly interesting areas of growth in exists across the whole of the UK, and that it will inspire more the industry over the past year.
    [Show full text]
  • Lessons in Practical AI Ethics: Taking the UK’S AI Ecosystem from ‘What’ to ‘How’
    Lessons in practical AI ethics: Taking the UK’s AI ecosystem from ‘what’ to ‘how’ April 2020 1 Lessons in practical AI ethics Contents 2 From Theory to Practice: Applied ethics for artificial intelligence (AI) systems 4 Introduction 5 The gap in the landscape 6 The disconnect between theory and practice in ethical AI 7 Addressing the gap through Digital Catapult’s AI Ethics initiatives 8 Key learnings 9 Context and core initiatives 10 The AI Ethics Committee 13 The Ethics Framework 15 Ethics consultations 16 Ethics deep dives 16 Ethics workshops 17 The Applied AI Ethics Hub 18 Key findings: Frequently recurring ethical considerations 19 Be clear about the benefits of your product or service 19 Know and manage your risks 21 Use data responsibly 22 Be worthy of trust 22 Promote diversity, equality and inclusion 23 Be open and understandable in communication 23 Consider your business model 24 Key findings: Observations from ethics initiatives 25 Internal and Ethics Committee observations 26 Feedback from participating companies 28 Conclusion and next steps 30 Footnotes 1 Lessons in practical AI ethics From Theory to Practice: Applied ethics for artificial intelligence (AI) system The widespread development and deployment of artificial intelligence (AI) technologies is deeply impacting individual lives, society, and the environment. Now more than ever, at a time when our reliance on digital technologies is increasing due to the COVID-19 pandemic, it is crucial to ensure that AI systems are designed, developed, and deployed in ways that are socially beneficial and environmentally sustainable. This is an urgent challenge for our times.
    [Show full text]
  • Evaluating Immersive User Experience and Audience Impact Report
    Evaluating Immersive User Experience and Audience Impact A report produced by Nesta and i2 Media Research for Digital Catapult, June 2018 CONTENTS REPORT AUTHORS 1 Executive summary Dr Jane Lessiter 5 Introduction and reseach context Sam Mitchell 6 Methodology Eva Ferrari 13 Background, literature review and focus groups Polly Borden 21 Research findings Hasan Bakhshi 36 Key predictors of impact in immersive experiences Professor Jonathan Freeman 38 Toolkit development 41 Conclusion 43 Appendices 44 References & Footnotes This report was produced by Nesta and i2 Media Research for Digital Catapult, and funded by Innovate UK. Digital Catapult, Immerse UK and the High Value Manufacturing Catapult have been working together on a large-scale programme of business support, funded by Innovate UK, for the UK’s immersive technology industries since September 2017. This report forms part of that work along with the following complimentary reports: – The Immersive Economy in the UK (Innovate UK, Immerse UK and Nesta) – Growing Your VR/AR Business in the UK: A business and legal handbook (Digital Catapult and PwC) – Immersive Content Formats for Future Audiences (Digital Catapult & Limina Immersive) – Creative Tools and Workflows for Immersive Content Creation (Digital Catapult, Opposable Group and TechSpark) – Immersive in manufacturing – the adoption and use of immersive technologies in manufacturing and a report covering the feasibility of the use of immersion in a digital twin (High Value Manufacturing Catapult) Innovate UK is part of UK Research and Innovation, a non-departmental public body funded by a grant-in-aid from the UK government. We drive productivity and economic growth by supporting businesses to develop and realise the potential of new ideas, including those from the UK’s world-class research base.
    [Show full text]
  • Data Sharing in Infrastructure a Final Report for the National Infrastructure Commission
    New Technologies Case Study: Data Sharing in Infrastructure A final report for the National Infrastructure Commission Deloitte Confidential: Public Sector – For Approved External Use November 2017 1 New Technologies Case Study: Data Sharing in Infrastructure Deloitte Confidential: Public Sector – For Approved External Use Important notice from Deloitte This final report (the “Final Report”) has been prepared by Deloitte LLP (“Deloitte”) for the National Infrastructure Commission (NIC) in accordance with the contract with them dated 19th September 2017 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of analysing barriers to data sharing in the UK’s infrastructure sectors, as set out in the Contract. It should not be used for any other purpose or in any other context, and Deloitte accepts no responsibility for its use in either regard, including its use by NIC for decision making or reporting to third parties. The Final Report is provided exclusively for NIC’s use under the terms of the Contract. No party other than NIC is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than NIC in respect of the Final Report or any of its contents. The information contained in the Final Report has been obtained from NIC and third party sources that are clearly referenced in the appropriate sections of the Final Report. Deloitte has neither sought to corroborate this information nor to review its overall reasonableness.
    [Show full text]
  • Enabling Trust in Data Exchange for Materials 4.0
    Enabling Trust in Data Exchange for Materials 4.0 Commissioned by the Henry Royce Institute for advanced materials research and innovation July 2021 In collaboration with About roadmapping and landscaping This report is commissioned by the Henry Royce Institute for advanced materials as part of its role around convening and supporting the UK advanced materials community to help promote and develop new research activity. The overriding objective is to bring together the advanced materials community to discuss, analyse and assimilate opportunities for emerging materials research for economic and societal benefit. Such research is ultimately linked to both national and global drivers, namely the transition to zero carbon, sustainable manufacturing, digital and communications, the circular economy and health and wellbeing. Enabling Trust in Data Exchange for Materials 4.0 2 Contents Foreword 4 Executive summary 5 Challenges that distributed systems can address 6 The potential benefits and impact to industry 14 Operational 15 Strategic 16 Ecosystem 16 The key enablers to create impact from distributed systems 25 Governance 26 Business model and incentivisation 27 Interoperability 27 Permissioning 28 Case studies 31 Weather Ledger 32 Pharmaceutical supply chain Field Lab 34 VITALam 36 INTELI 38 Sellafield: Nuclear Ledger 40 Sellafield: Nuclear Skills Passport 42 Digital Sandwich 44 Enabling Trust in Data Exchange for Materials 4.0 3 Foreword Materials 4.0 aims to radically change the rate and responsiveness of materials innovation, increasing the impact it has on society and the economy. The materials and manufacturing sector forms 15% of UK GDP and has a key role to play in achieving technological and societal goals such as the transition to net zero carbon.
    [Show full text]
  • Digital Technology and the Planet: Harnessing Computing to Achieve Net Zero Issued: December 2020 DES7035 ISBN: 978-1-78252-501-1 © the Royal Society
    Digital technology and the planet Harnessing computing to achieve net zero Digital technology and the planet: Harnessing computing to achieve net zero Issued: December 2020 DES7035 ISBN: 978-1-78252-501-1 © The Royal Society The text of this work is licensed under the terms of the Creative Commons Attribution License which permits unrestricted use, provided the original author and source are credited. Erratum: The first edition of this report incorrectly stated there were no data centres The license is available at: creativecommons.org/licenses/by/4.0 from Google, Amazon or Microsoft in the UK, while there are at least two from Microsoft. Images are not covered by this license. This error has been corrected on p74. The first edition also stated that ‘If individuals This report and other project outputs can be keep their phones for four years instead of viewed at: royalsociety.org/topics-policy/ two, this contribution is halved’, which was projects/digital-technology-and-the-planet/ corrected on p75 to ‘Keeping phones for twice as long can significantly reduce this share of emissions’. The conclusions of this report Cover image © NicoElNino. remain unchanged. CONTENTS Contents Foreword 5 Executive summary 6 Recommendations 8 Introduction 15 Chapter one – Transforming the future 23 The potential of digital technology to support a low-carbon economy 24 A future digitally-enabled net zero economy and society 25 Digital technologies for the planet 33 Creating policy frameworks to support the use of digital technologies for net zero 38 Chapter
    [Show full text]
  • Download the Report
    OK Computer? The safety and security dimensions of Industry 4.0 A report prepared by Policy Links (Institute for Manufacturing, University of Cambridge) for the Global Manufacturing & Industrialisation Summit (GMIS) and Lloyd’s Register Foundation (LRF) Authors David Leal-Ayala Jennifer Castañeda-Navarrete Carlos López-Gómez Contributors Kieron Swift Ella Whellams This report was commissioned by the Global Manufacturing & Industrialisation Summit (GMIS) and Lloyd’s Register Foundation (LRF). It has been produced without formal GMIS or LRF editing and the views expressed here do not imply the expression of any opinion on the part of GMIS or LRF. Mention of firm names or commercial products does not constitute an endorsement by the authors, GMIS or LRF. The copyright of all materials in this publication rests with the respective content authors and expert contributors. All rights reserved – no reproduction without permission. Enquiries for permissions to use any material should be directed to: Dr David Leal-Ayala, Policy Links, IfM Education and Consultancy Services, University of Cambridge. The Global Manufacturing and Industrialisation The Lloyd’s Register Foundation is a UK charity Summit (GMIS) was established in 2015 as established in 2012. With our mission to protect the an industry association to build bridges safety of life and property, and to advance transport between manufacturers, governments & NGOs, and engineering education and research, the technologists, and investors in harnessing the Foundation has an important role to play in meeting Fourth Industrial Revolution’s transformation the challenges of today and the future. Our vision of manufacturing to the regeneration of the is to be known worldwide as a leading supporter of global economy.
    [Show full text]
  • Business Futures 2021: Signals of Change Summary | Accenture
    #BusinessFutures2021 BUSINESS FUTURES 2021 Signals of Change The essential radar that leaders need to see and seize the future From insights to action, the path to extraordinary value starts here. #BusinessFutures2021 Contents 03 Introduction 110 What else is on our Business Futures radar? 08 01. Learning From the Future 113 About the authors 23 02. Pushed to the Edge 115 Acknowledgments 40 03. Sustainable Purpose 116 About the research 57 04. Supply Unbounded 125 Survey demographics 75 05. Real Virtualities 128 References 91 06. The New Scientific Method Business Futures 2021: Signals of Change 2 #BusinessFutures2021 Choose to change Out of global crisis comes a new world of opportunities. This past year, business models have In the process of tackling global challenges been reinvented. Supply chains have been that even the most forward-thinking leaders restructured. Work that we assumed required never fathomed, organizations once resistant being in an office has been reimagined. to change have transformed. Sixty-three Productivity, we now know, can thrive virtually. percent of high-growth companies have moved away from focusing on where Meanwhile, promises of new scientific people physically work and have adopted breakthroughs—from synthetic biology to “productivity anywhere” workforce models.2 machine learning—are suddenly realized. In 2020, an AI-developed drug reached clinical How do we capitalize on this new momentum? trial in just 12 months compared to the typical How do we accelerate the innovation we have four and a half years.1 tapped? How do we optimize for the new global reality? Business Futures 2021: Signals of Change 3 #BusinessFutures2021 Making sense of a new reality As the world recovers from a global pandemic, leaders face an unprecedented challenge: to identify what works for a new and evolving today and what will be required to thrive tomorrow.
    [Show full text]