CHAPTER 7 Capital Asset Pricing and Arbitrage Pricing Theory

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 7 Capital Asset Pricing and Arbitrage Pricing Theory 7.1 THE CAPITAL ASSET PRICING MODEL CHAPTER 7 Capital Asset Pricing and Arbitrage Pricing Theory Capital Asset Pricing Model (CAPM) Assumptions Equilibrium model that underlies all modern Individual investors are price takers financial theory Single -period investment horizon Derived using principles of diversification Investments are limited to traded financial with simplified assumptions assets Markowitz, Sharpe, Lintner and Mossin are No taxes nor transaction costs researchers credited with its development Assumptions (cont.) Resulting Equilibrium Conditions Information is costless and available to all All investors will hold the same portfolio investors for risky assets – market portfolio Investors are rational mean -variance Market portfolio contains all securities optimizers and the proportion of each security is its Homogeneous expectations market value as a percentage of total market value 7-1 Resulting Equilibrium Conditions (cont.) Figure 7.1 The Efficient Frontier and the Capital Market Line Risk premium on the market depends on the average risk aversion of all market participants Risk premium on an individual security is a function of its covariance with the market The Risk Premium of the Market Portfolio Expected Returns On Individual Securities The risk premium on individual M = Market portfolio securities is a function of the individual r = Risk free rate f security ’s contribution to the risk of the E(r ) - r = Market risk premium M f market portfolio Individual security ’s risk premium is a E(r M) - rf = Market price of risk = M f function of the covariance of returns σ M with the assets that make up the market = Slope of the CAPM portfolio Expected Returns On Individual Securities: Figure 7.2 The Security Market Line an Example and Positive Alpha Stock Using the Dell example: Er− r Er − r ()Mf= () Df 1 βD Rearranging gives us the CAPM ’s expected return -beta relationship Er= r + Er − r ()D fβ D () M f 7-2 SML Relationships Sample Calculations for SML E(r m) - rf = .08 rf = .03 2 β = [COV(r i,r m)] / σm E(r m) – rf = market risk premium m f βx = 1.25 E(r x) = .03 + 1.25(.08) = .13 or 13% SML = r f + β[E(r m) - rf] βy = .6 e(r y) = .03 + .6(.08) = .078 or 7.8% Graph of Sample Calculations E(r) SML 7.2 THE CAPM AND INDEX MODELS Rx=13% .08 Rm=11% Ry=7.8% 3% ß .6 1.0 1.25 ßyy ßm ßxx Estimating the Index Model Table 7.1 Monthly Return Statistics for T-bills, S&P 500 and General Motors Using historical data on T -bills, S&P 500 and individual securities Regress risk premiums for individual stocks against the risk premiums for the S&P 500 Slope is the beta for the individual stock 7-3 Figure 7.3 Cumulative Returns for Figure 7.4 Characteristic Line for GM T-bills, S&P 500 and GM Stock Table 7.2 Security Characteristic GM Regression: What We Can Learn Line for GM: Summary Output GM is a cyclical stock Required Return: rrr+ −=+ x = fβ( M f ) 2.75 1.24 5.5 9.57% Next compute betas of other firms in the industry Predicting Betas The beta from the regression equation is an estimate based on past history THE CAPM AND THE REAL WORLD Betas exhibit a statistical property – Regression toward the mean 7-4 CAPM and the Real World The CAPM was first published by Sharpe 7.4 MULTIFACTOR MODELS AND THE Journal of Finance in the in 1964 CAPM Many tests of the theory have since followed including Roll ’s critique in 1977 and the Fama and French study in 1992 Multifactor Models Fama French Three-Factor Model Limitations for CAPM Returns are related to factors other than Market Portfolio is not directly observable market returns Research shows that other factors affect Size returns Book value relative to market value Three factor model better describes returns Table 7.3 Summary Statistics for Rates of Table 7.4 Regression Statistics for the Return Series Single-index and FF Three-factor Model 7-5 Arbitrage Pricing Theory Arbitrage - arises if an investor can 7.5 FACTOR MODELS AND THE construct a zero beta investment portfolio ARBITRAGE PRICING THEORY with a return greater than the risk -free rate If two portfolios are mispriced, the investor could buy the low -priced portfolio and sell the high -priced portfolio In efficient markets, profitable arbitrage opportunities will quickly disappear Figure 7.5 Security APT and CAPM Compared Line Characteristics APT applies to well diversified portfolios and not necessarily to individual stocks With APT it is possible for some individual stocks to be mispriced - not lie on the SML APT is more general in that it gets to an expected return and beta relationship without the assumption of the market portfolio APT can be extended to multifactor models 7-6.
Recommended publications
  • Disciplined Alpha Dividend As of 6/30/2021
    Disciplined Alpha Dividend As of 6/30/2021 Equity Sectors (Morningstar) Growth of $100,000 % Time Period: 1/1/2003 to 6/30/2021 Consumer Defensive 22.3 625,000 Healthcare 15.8 550,000 Consumer Cyclical 14.7 Financial Services 13.9 475,000 Industrials 12.6 400,000 Technology 8.2 325,000 Energy 4.4 250,000 Communication Services 3.7 Real Estate 2.5 175,000 Basic Materials 1.9 100,000 Total 100.0 25,000 Strategy Highlights Pursues a high level of current income and long-term capital appreciation utilizing Trailing Returns Inception Date: 1/1/2003 proprietary top-down and bottom-up analysis Seeks a substantially higher dividend yield than the broad market YTD 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs Incpt Invests primarily in 25- 50 companies with dividend growth potential Disciplined Alpha Dividend (Gross) 16.19 40.38 14.47 14.15 12.74 10.09 10.18 Offers the potential for competitive upside performance in strong market Disciplined Alpha Dividend (Net) 15.63 39.02 13.28 12.93 11.51 8.82 8.90 environments and the potential for lower downside risk in weak environments Morningstar US Value TR USD 17.03 41.77 10.76 11.29 10.92 7.61 9.43 Calendar Year Returns Disciplined Alpha Dividend – Top Holdings* 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 Portfolio Disciplined Alpha Dividend (Gross) 8.62 25.26 -3.48 16.20 17.06 -3.52 11.05 38.86 10.97 2.96 Weighting % Disciplined Alpha Dividend (Net) 7.51 23.91 -4.54 14.93 15.72 -4.58 9.81 37.33 9.67 1.77 Exxon Mobil Corp 2.52 Welltower Inc 2.43 Morningstar US Value TR USD -1.31 25.09 -7.51 14.23 20.79 -2.16
    [Show full text]
  • 11.50 Margin Constraints and the Security Market Line
    Margin Constraints and the Security Market Line Petri Jylh¨a∗ June 9, 2016 Abstract Between the years 1934 and 1974, the Federal Reserve frequently changed the initial margin requirement for the U.S. stock market. I use this variation in margin requirements to test whether leverage constraints affect the security market line, i.e. the relation between betas and expected returns. Consistent with the theoretical predictions of Frazzini and Ped- ersen (2014), but somewhat contrary to their empirical findings, I find that tighter leverage constraints result in a flatter security market line. My results provide strong empirical sup- port for the idea that funding constraints faced by investors may, at least partially, help explain the empirical failure of the capital asset pricing model. JEL Classification: G12, G14, N22. Keywords: Leverage constraints, Security market line, Margin regulations. ∗Imperial College Business School. Imperial College London, South Kensington Campus, SW7 2AZ, London, UK; [email protected]. I thank St´ephaneChr´etien,Darrell Duffie, Samuli Kn¨upfer,Ralph Koijen, Lubos Pastor, Lasse Pedersen, Joshua Pollet, Oleg Rytchkov, Mungo Wilson, and the participants at American Economic Association 2015, Financial Intermediation Research Society 2014, Aalto University, Copenhagen Business School, Imperial College London, Luxembourg School of Finance, and Manchester Business School for helpful comments. 1 Introduction Ever since the introduction of the capital asset pricing model (CAPM) by Sharpe (1964), Lintner (1965), and Mossin (1966), finance researchers have been studying why the return difference between high and low beta stocks is smaller than predicted by the CAPM (Black, Jensen, and Scholes, 1972). One of the first explanation for this empirical flatness of the security market line is given by Black (1972) who shows that investors' inability to borrow at the risk-free rate results in a lower cross-sectional price of risk than in the CAPM.
    [Show full text]
  • The Hidden Alpha in Equity Trading Steps to Increasing Returns with the Advanced Use of Information
    THE HIDDEN ALPHA IN EQUITY TRADING STEPS TO INCREASING RETURNS WITH THE ADVANCED USE OF INFORMATION TABLE OF CONTENTS 1 INTRODUCTION 4 2 MARKET FRAGMENTATION AND THE GROWTH OF INFORMATION 5 3 THE PROLIFERATION OF HIGH FREQUENCY TRADING 8 4 FLASH CRASHES, BOTCHED IPOS AND OTHER SYSTEMIC CONCERNS 10 5 THE CHANGING INVESTOR-BROKER RELATIONSHIP 11 6 THE INFORMATION OPPORTUNITY FOR INSTITUTIONAL INVESTORS 13 7 STEPS TO FINDING HIDDEN ALPHA AND INCREASED RETURNS 15 1. INTRODUCTION Following regulatory initiatives aimed at creating THE TIME DIFFERENCE IN TRADING competition between trading venues, the equities market has fragmented. Liquidity is now dispersed ROUTES; PEOPLE VS. COMPUTERS across many lit equity trading venues and dark pools. This complexity, combined with trading venues becoming electronic, has created profit opportunities for technologically sophisticated players. High frequency traders (HFTs) use ultra-high speed connections with trading venues and sophisticated trading algorithms to exploit inefficiencies created by the new market vs. structure and to identify patterns in 3rd parties’ trading that they can use to their own advantage. Person Computer For traditional investors, however, these new market conditions are less welcome. Institutional investors find JUST HOW FAST ARE TRADERS PROCESSING TRADES? themselves falling behind these new competitors, in » Traders that take advantage of technology can create large part because the game has changed and because programs that trade in milliseconds. In many cases they lack the tools
    [Show full text]
  • Sources of Hedge Fund Returns: Alpha, Beta, and Costs
    Yale ICF Working Paper No. 06-10 September 2006 The A,B,Cs of Hedge Funds: Alphas, Betas, and Costs Roger G. Ibbotson, Yale School of Management Peng Chen, Ibbotson Associates This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=733264 Working Paper The A,B,Cs of Hedge Funds: Alphas, Betas, and Costs Roger G. Ibbotson, Ph.D. Professor in the Practice of Finance Yale School of Management 135 Prospect Street New Haven, CT 06520-8200 Phone: (203) 432-6021 Fax: (203) 432-6970 Chairman & CIO Zebra Capital Mgmt, LLC Phone: (203) 878-3223 Peng Chen, Ph.D., CFA President & Chief Investment Officer Ibbotson Associates, Inc. 225 N. Michigan Ave. Suite 700 Chicago, IL 60601-7676 Phone: (312) 616-1620 Fax: (312) 616-0404 Email: [email protected] August 2005 June 2006 September 2006 1 The A,B,Cs of Hedge Funds ABSTRACT In this paper, we focus on two issues. First, we analyze the potential biases in reported hedge fund returns, in particular survivorship bias and backfill bias, and attempt to create an unbiased return sample. Second, we decompose these returns into their three A,B,C components: the value added by hedge funds (alphas), the systematic market exposures (betas), and the hedge fund fees (costs). We analyze the performance of a universe of about 3,500 hedge funds from the TASS database from January 1995 through April 2006. Our results indicate that both survivorship and backfill biases are potentially serious problems. The equally weighted performance of the funds that existed at the end of the sample period had a compound annual return of 16.45% net of fees.
    [Show full text]
  • Arbitrage Pricing Theory: Theory and Applications to Financial Data Analysis Basic Investment Equation
    Risk and Portfolio Management Spring 2010 Arbitrage Pricing Theory: Theory and Applications To Financial Data Analysis Basic investment equation = Et equity in a trading account at time t (liquidation value) = + Δ Rit return on stock i from time t to time t t (includes dividend income) = Qit dollars invested in stock i at time t r = interest rate N N = + Δ + − ⎛ ⎞ Δ ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t before rebalancing, at time t t i=1 ⎝ i=1 ⎠ N N N = + Δ + − ⎛ ⎞ Δ + ε ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t ∑| Qi(t+Δt) - Qit | after rebalancing, at time t t i=1 ⎝ i=1 ⎠ i=1 ε = transaction cost (as percentage of stock price) Leverage N N = + Δ + − ⎛ ⎞ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t i=1 ⎝ i=1 ⎠ N ∑ Qit Ratio of (gross) investments i=1 Leverage = to equity Et ≥ Qit 0 ``Long - only position'' N ≥ = = Qit 0, ∑Qit Et Leverage 1, long only position i=1 Reg - T : Leverage ≤ 2 ()margin accounts for retail investors Day traders : Leverage ≤ 4 Professionals & institutions : Risk - based leverage Portfolio Theory Introduce dimensionless quantities and view returns as random variables Q N θ = i Leverage = θ Dimensionless ``portfolio i ∑ i weights’’ Ei i=1 ΔΠ E − E − E rΔt ΔE = t+Δt t t = − rΔt Π Et E ~ All investments financed = − Δ Ri Ri r t (at known IR) ΔΠ N ~ = θ Ri Π ∑ i i=1 ΔΠ N ~ ΔΠ N ~ ~ N ⎛ ⎞ ⎛ ⎞ 2 ⎛ ⎞ ⎛ ⎞ E = θ E Ri ; σ = θ θ Cov Ri , R j = θ θ σ σ ρ ⎜ Π ⎟ ∑ i ⎜ ⎟ ⎜ Π ⎟ ∑ i j ⎜ ⎟ ∑ i j i j ij ⎝ ⎠ i=1 ⎝ ⎠ ⎝ ⎠ ij=1 ⎝ ⎠ ij=1 Sharpe Ratio ⎛ ΔΠ ⎞ N ⎛ ~ ⎞ E θ E R ⎜ Π ⎟ ∑ i ⎜ i ⎟ s = s()θ ,...,θ = ⎝ ⎠ = i=1 ⎝ ⎠ 1 N ⎛ ΔΠ ⎞ N σ ⎜ ⎟ θ θ σ σ ρ Π ∑ i j i j ij ⎝ ⎠ i=1 Sharpe ratio is homogeneous of degree zero in the portfolio weights.
    [Show full text]
  • Frictional Finance “Fricofinance”
    Frictional Finance “Fricofinance” Lasse H. Pedersen NYU, CEPR, and NBER Copyright 2010 © Lasse H. Pedersen Frictional Finance: Motivation In physics, frictions are not important to certain phenomena: ……but frictions are central to other phenomena: Economists used to think financial markets are like However, as in aerodynamics, the frictions are central dropping balls to the dynamics of the financial markets: Walrasian auctioneer Frictional Finance - Lasse H. Pedersen 2 Frictional Finance: Implications ¾ Financial frictions affect – Asset prices – Macroeconomy (business cycles and allocation across sectors) – Monetary policy ¾ Parsimonious model provides unified explanation of a wide variety of phenomena ¾ Empirical evidence is very strong – Stronger than almost any other influence on the markets, including systematic risk Frictional Finance - Lasse H. Pedersen 3 Frictional Finance: Definitions ¾ Market liquidity risk: – Market liquidity = ability to trade at low cost (conversely, market illiquidity = trading cost) • Measured as bid-ask spread or as market impact – Market liquidity risk = risk that trading costs will rise • We will see there are 3 relevant liquidity betas ¾ Funding liquidity risk: – Funding liquidity for a security = ability to borrow against that security • Measured as the security’s margin requirement or haircut – Funding liquidity for an investor = investor’s availability of capital relative to his need • “Measured” as Lagrange multiplier of margin constraint – Funding liquidity risk = risk of hitting margin constraint
    [Show full text]
  • Effects of Estimating Systematic Risk in Equity Stocks in the Nairobi Securities Exchange (NSE) (An Empirical Review of Systematic Risks Estimation)
    International Journal of Academic Research in Accounting, Finance and Management Sciences Vol. 4, No.4, October 2014, pp. 228–248 E-ISSN: 2225-8329, P-ISSN: 2308-0337 © 2014 HRMARS www.hrmars.com Effects of Estimating Systematic Risk in Equity Stocks in the Nairobi Securities Exchange (NSE) (An Empirical Review of Systematic Risks Estimation) Paul Munene MUIRURI Department of Commerce and Economic Studies Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya, E-mail: [email protected] Abstract Capital Markets have become an integral part of the Kenyan economy. The manner in which securities are priced in the capital market has attracted the attention of many researchers for long. This study sought to investigate the effects of estimating of Systematic risk in equity stocks of the various sectors of the Nairobi Securities Exchange (NSE. The study will be of benefit to both policy makers and investors to identify the specific factors affecting stock prices. To the investors it will provide useful and adequate information an understanding on the relationship between risk and return as a key piece in building ones investment philosophy. To the market regulators to establish the NSE performance against investors’ perception of risks and returns and hence develop ways of building investors’ confidence, the policy makers to review and strengthening of the legal and regulatory framework. The paper examines the merged 12 sector equity securities of the companies listed at the market into 4sector namely Agricultural; Commercial and Services; Finance and Investment and Manufacturing and Allied sectors. This study Capital Asset Pricing Model (CAPM) of Sharpe (1964) to vis-à-vis the market returns.
    [Show full text]
  • Betting Against Alpha
    Betting Against Alpha Alex R. Horenstein Department of Economics School of Business Administration University of Miami [email protected] December 11, 2017 Abstract. I sort stocks based on realized alphas estimated from the CAPM, Carhart (1997), and Fama-French Five Factor (FF5, 2015) models and nd that realized alphas are negatively related with future stock returns, future alpha, and Sharpe Ratios. Thus, I construct a Betting Against Alpha (BAA) factor that buys a portfolio of low-alpha stocks and sells a portfolio of high-alpha stocks. Using rank estimation methods, I show that the BAA factor spans a dimension of stock returns dierent than Frazzini and Pedersen's (2014) Betting Against Beta (BAB) factor. Additionally, the BAA factor captures information about the cross-section of stock returns missed by the CAPM, Carhart, and FF5 models. The performance of the BAA factor further improves if the low alpha portfolio is calculated from low beta stocks and the high alpha portfolio from high beta stocks. I call this factor Betting Against Alpha and Beta (BAAB). I discuss several reasons that support the existence of this counter-intuitive low-alpha anomaly. Keywords. betting against beta, betting against alpha, low-alpha anomaly, leverage, benchmark- ing. JEL classication. G10, G12. I thank Aurelio Vásquez, Manuel Santos, Markus Pelger and Min Ahn for their helpful comments and suggestions. 1 1 Introduction The primary purpose of this paper is to document a new anomaly and propose a new tradable factor based on it. I call this new anomaly the low-alpha anomaly: Portfolios constructed with assets having low realized alphas (overpriced according to the CAPM) have higher Sharpe Ratios, future alphas, and expected returns than portfolios constructed with assets having high-realized alphas (underpriced according to the CAPM).
    [Show full text]
  • The Capital Asset Pricing Model (Capm)
    THE CAPITAL ASSET PRICING MODEL (CAPM) Investment and Valuation of Firms Juan Jose Garcia Machado WS 2012/2013 November 12, 2012 Fanck Leonard Basiliki Loli Blaž Kralj Vasileios Vlachos Contents 1. CAPM............................................................................................................................................... 3 2. Risk and return trade off ............................................................................................................... 4 Risk ................................................................................................................................................... 4 Correlation....................................................................................................................................... 5 Assumptions Underlying the CAPM ............................................................................................. 5 3. Market portfolio .............................................................................................................................. 5 Portfolio Choice in the CAPM World ........................................................................................... 7 4. CAPITAL MARKET LINE ........................................................................................................... 7 Sharpe ratio & Alpha ................................................................................................................... 10 5. SECURITY MARKET LINE ...................................................................................................
    [Show full text]
  • How Did Too Big to Fail Become Such a Problem for Broker-Dealers?
    How did Too Big to Fail become such a problem for broker-dealers? Speculation by Andy Atkeson March 2014 Proximate Cause • By 2008, Broker Dealers had big balance sheets • Historical experience with rapid contraction of broker dealer balance sheets and bank runs raised unpleasant memories for central bankers • No satisfactory legal or administrative procedure for “resolving” failed broker dealers • So the Fed wrestled with the question of whether broker dealers were too big to fail Why do Central Bankers care? • Historically, deposit taking “Banks” held three main assets • Non-financial commercial paper • Government securities • Demandable collateralized loans to broker-dealers • Much like money market mutual funds (MMMF’s) today • Many historical (pre-Fed) banking crises (runs) associated with sharp changes in the volume and interest rates on loans to broker dealers • Similar to what happened with MMMF’s after Lehman? • Much discussion of directions for central bank policy and regulation • New York Clearing House 1873 • National Monetary Commission 1910 • Pecora Hearings 1933 • Friedman and Schwartz 1963 Questions I want to consider • How would you fit Broker Dealers into the growth model? • What economic function do they perform in facilitating trade of securities and financing margin and short positions in securities? • What would such a theory say about the size of broker dealer value added and balance sheets? • What would be lost (socially) if we dramatically reduced broker dealer balance sheets by regulation? • Are broker-dealer liabilities
    [Show full text]
  • Return, Risk and the Security Market Line Systematic and Unsystematic
    Expected and Unexpected Returns • The return on any stock traded in a Return, Risk and the Security financial market is composed of two parts. c The normal, or expected, part of the return is Market Line the return that investors predict or expect. d The uncertain, or risky, part of the return Chapter 18 comes from unexpected information revealed during the year. • Total return – Expected return = Unexpected return R – E(R) = U Systematic and Unsystematic Diversification and Risk Risk Systematic risk • In a large portfolio, some stocks will go up in value because of positive company-specific Risk that influences a large number of events, while others will go down in value assets. Also called market risk. because of negative company-specific events. Unsystematic risk • Unsystematic risk is essentially eliminated by Risk that influences a single company or diversification, so a portfolio with many assets a small group of companies. Also called has almost no unsystematic risk. unique or asset-specific risk. • Unsystematic risk is also called diversifiable risk, while systematic risk is also called nondiversifiable risk. Total risk = Systematic risk + Unsystematic risk The Systematic Risk Principle Measuring Systematic Risk • The systematic risk principle states that Beta coefficient (β) the reward for bearing risk depends only Measure of the relative systematic risk of an on the systematic risk of an investment. asset. Assets with betas larger than 1.0 • So, no matter how much total risk an asset have more systematic risk than average, has, only the systematic portion is relevant and vice versa. in determining the expected return (and • Because assets with larger betas have the risk premium) on that asset.
    [Show full text]
  • Chapter 10: Arbitrage Pricing Theory and Multifactor Models of Risk and Return
    CHAPTER 10: ARBITRAGE PRICING THEORY AND MULTIFACTOR MODELS OF RISK AND RETURN CHAPTER 10: ARBITRAGE PRICING THEORY AND MULTIFACTOR MODELS OF RISK AND RETURN PROBLEM SETS 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times the respective sensitivity coefficient: revised estimate = 12% + [(1 × 2%) + (0.5 × 3%)] = 15.5% 2. The APT factors must correlate with major sources of uncertainty, i.e., sources of uncertainty that are of concern to many investors. Researchers should investigate factors that correlate with uncertainty in consumption and investment opportunities. GDP, the inflation rate, and interest rates are among the factors that can be expected to determine risk premiums. In particular, industrial production (IP) is a good indicator of changes in the business cycle. Thus, IP is a candidate for a factor that is highly correlated with uncertainties that have to do with investment and consumption opportunities in the economy. 3. Any pattern of returns can be “explained” if we are free to choose an indefinitely large number of explanatory factors. If a theory of asset pricing is to have value, it must explain returns using a reasonably limited number of explanatory variables (i.e., systematic factors). 4. Equation 10.9 applies here: E(rp ) = rf + βP1 [E(r1 ) rf ] + βP2 [E(r2 ) – rf ] We need to find the risk premium (RP) for each of the two factors: RP1 = [E(r1 ) rf ] and RP2 = [E(r2 ) rf ] In order to do so, we solve the following system of two equations with two unknowns: .31 = .06 + (1.5 × RP1 ) + (2.0 × RP2 ) .27 = .06 + (2.2 × RP1 ) + [(–0.2) × RP2 ] The solution to this set of equations is: RP1 = 10% and RP2 = 5% Thus, the expected return-beta relationship is: E(rP ) = 6% + (βP1 × 10%) + (βP2 × 5%) 5.
    [Show full text]