The Surprising Alpha from Malkiel's Monkey and Upside-Down Strategies

Total Page:16

File Type:pdf, Size:1020Kb

The Surprising Alpha from Malkiel's Monkey and Upside-Down Strategies VOLUME 39 NUMBER 4 www.iijpm.com SUMMER 2013 The Surprising Alpha From Malkiel’s Monkey and Upside-Down Strategies ROBERT D. ARNOTT, JASON HSU, VITALI KALESNIK, AND PHIL TINDALL The Voices of Influence | iijournals.com JPM-COVER.inddCov103286.indd 11 16/07/138/5/13 10:471:16 PM AM The Surprising Alpha From Malkiel’s Monkey and Upside-Down Strategies RobeRt D. ARnott, JAson Hsu, VitAli KAlesniK, AnD PHil tindall RobeRt D. ARnott nvestment practitioners and many aca- intuitively, when we invert these strategies, the is the chairman and CEO demics are understandably preoccupied resulting portfolios continue to display value of Research Affiliates, LLC with identifying stock characteristics and and small cap bias. We demonstrate this para- in Newport Beach, CA. [email protected] strategies that offer the prospect of high doxical effect mathematically in Appendix A. Irisk-adjusted returns. Many sensible invest- The results we present are puzzling JAson Hsu ment beliefs, when translated into portfolio until one grasps the derivations in the litera- is the CIO at Research weights, result in historical outperformance ture, starting with Berk [1997]. Berk [1997] Affiliates, LLC in Newport relative to the cap-weighted benchmark. and Arnott et al. [2011] argue that low prices Beach, CA, and adjunct The naive expectation is that, when we create size and value effects. Berk ascribes this professor of finance at Anderson School of invert the weighting algorithms of these sen- to hidden risk factors; Arnott et al. [2011] Management at UCLA. sible investment heuristics, effectively turning ascribe this to mean-reverting errors in price. [email protected] them upside down, these inverted strategies Either way, falling prices lead to low book- should underperform by roughly as much as to-market ratios and low market capitaliza- VitAli KAlesniK the original algorithm outperformed. Instead, tion; whenever prices mean-revert, value is a senior vice president and head of equity research we find that these upside-down strategies also and small stocks outperform. Hsu [2006] at Research Affiliates, LLC beat the cap-weighted benchmark, often by and Arnott and Hsu [2008] offer a concep- in Newport Beach, CA. more than the upright originals. Indeed, even tual framework where non-price-weighted [email protected] a portfolio generated by Malkiel’s blindfolded portfolios, which contra-trade against price monkey1 throwing darts outperforms the changes at each rebalancing, necessarily result PHil tindall market.2 in value and size tilts, regardless of the weighting is a senior investment con- sultant at Towers Watson How can it be that a monkey—who method chosen. Limited in Westminster, may have great skill with darts, but presum- In summary, value and small-cap expo- London, UK. ably has no skill in evaluating investments— sures are naturally occurring portfolio char- [email protected] adds value? Our findings suggest that the acteristics, unless an investor constructs a investment beliefs upon which many invest- portfolio to have a positive relationship between ment strategies are ostensibly based play little price and portfolio weights. In this article, we or no role in their outperformance.3 illustrate these theoretical results with simple, This does not mean that these strategies’ easily replicable portfolio back-tests. We do not outperformance is suspect. Rather, as it turns attempt to comment on the interesting debate out, these investment beliefs work because regarding the nature of value and small-cap they introduce, often unintentionally, value premiums. and small cap tilts into the portfolio. Counter- Summer 2013 The Journal of PorTfolio ManageMenT RESEARCH DESIGN We rebalance all portfolios annually, on the last trading day of the year. We back-test the portfolio This research is motivated by the proliferation of schemes using as much historical data as are available in quasi-passive equity index strategies and their note- the CRSP/CompuStat merged database for the United worthy long-term outperformance against traditional States, and the Worldscope and Datastream databases for cap-weighted benchmarks in back-tests, despite some- other developed countries. When necessary for portfolio times diametrically opposed investment beliefs. This construction, we estimate the risk parameters, such as leads to a natural skepticism. It’s hard to believe that they variances and covariances, using the previous five years could all work, in light of the longstanding literature on of monthly data. For example, for a covariance-based the mean-variance efficiency of the cap-weighed bench- strategy portfolio for 2003, we will use the sample cova- mark and the underperformance of active management. riance matrix from 1998 to 2002.10 Appendix B contains However, the empirical evidence from domestic and a strategy summary. global market data, which extend back as far as data are We break our analysis into five categories. available, suggests a robust outperformance.4 Our examination of this puzzle starts with portfo- Reference Portfolios lios formulated from an array of arguably sensible invest- ment beliefs. We then invert these beliefs to create less We establish two reference portfolios. Our first intuitive strategies. In inverting the strategies, we tacitly reference portfolio is the cap-weighted portfolio, which examine whether these strategies outperform because most people consider a reasonable representation of they are predicated on meaningful investment theses and the market. Exhibit 1 summarizes key attributes of the deep insights on capital markets, or for reasons unrelated U.S. cap-weighted portfolio, using data from 1964 to to the investment theses. If the investment beliefs are 2012. the source of outperformance, then contradicting those The second line of Exhibit 1 displays the equal- beliefs should lead to underperformance. weighted (EW) portfolio, which represents perhaps For each of the investment beliefs, we create long- the strongest level of investor naiveté, tacitly believing only equity portfolios using simple weighting heuristics. that all stocks have identical expected returns and risk We then turn them upside down. For each quasi-index attributes. This makes EW an interesting and sensible strategy, we form two inverse portfolios: 1) an inverse secondary reference portfolio. One might also interpret ratio portfolio, formed by normalizing the inverse weight EW as an effective approach for capturing stock-price 1/w and 2) an inverse complement portfolio, formed mean reversion where, at each rebalancing, the portfolio by normalizing the original portfolio’s complementary mechanically buys stocks that have fallen in price relative 5 weight (max(w)-w). Except for some special situations, to others—unless they’ve fallen so far that they no longer the two inverse portfolios generally have comparable make the size cut for the country—and sells stocks that characteristics. We also compute portfolios based on have risen in price relative to others. 6 Malkiel’s blindfolded dart-throwing monkey. The EW portfolio produces 180 basis points To ensure that we invest in sufficiently liquid stocks, (bps) per year of incremental performance over the we restrict our universe to the largest 1,000 U.S. stocks by cap-weighted reference benchmark. This incremental 7 market capitalization. We extend the analysis to global performance is almost entirely due to substantial size markets at both an individual country level and a global and value factor loading; EW delivers a 0.15 percent portfolio level. For the global country portfolios, we use annualized FF4 alpha, with no statistical or economic the largest stocks by market capitalization, matching the significance. Throughout this article, it will become number of stocks to the most popular local cap-weighted increasingly clear why the EW portfolio is a sensible 8 benchmark indices. The global country results are gen- reference benchmark for other non-price-weighted erally qualitatively similar to the U.S. results, but often strategy indices. with a considerably larger magnitude of CAPM and Fama–French Four Factor model (FF4) alpha.9 The SurPriSing alPha froM Malkiel’S Monkey and upside-down STraTegieS Summer 2013 1 i b i t H x e Strategies, Inverse and Random Portfolios: United States (1964–2012) Performance Summary, Source: Research Affiliates, based on CRSP/Compustat data. Summer 2013 The Journal of PorTfolio ManageMenT Favoring High-Risk Stocks in our Portfolios variance, with roots dating back to the late 1960s, is the first among many.11 The CAPM Capital Market Line is Given the theoretical and empirical links between empirically flatter than theory would predict. Indeed, risk and return, one might expect a link between higher empirically, it often is downward sloping: in many mar- returns and higher-risk stocks. A naive way to act on this kets, we find that low-volatility stocks produce higher belief, for investors willing to accept higher risk in the returns than do high-volatility stocks. The minimum- quest for higher returns, would be to build a portfolio variance (MinVar) portfolio represents a simple strategy that tilts toward more volatile stocks, or higher-beta for capturing this anomaly. stocks, or stocks with higher downside semi-deviation. Well-respected quantitative index providers We might expect these strategies to earn higher port- have introduced two other new strategies, which lean folio returns, rewarding us for our willingness to bear heavily on the Markowitz mean-variance optimization one of these types of incremental risk. This investment framework. The risk-efficient index assumes, among belief anchors our second set of strategies: weighting a other things, that stock returns are related to downside portfolio proportional to conventional risk measures, semi-variances. The maximum-diversification index such as market beta, volatility, or downside semi- portfolio, on the other hand, assumes a linear relation- variance of the constituent stocks. The second block ship between stock returns and volatility. These differ of Exhibit 1—labeled “High Risk = High Reward”— from our earlier exploration of weighting in propor- explores these three strategies and their inverted forms.
Recommended publications
  • Disciplined Alpha Dividend As of 6/30/2021
    Disciplined Alpha Dividend As of 6/30/2021 Equity Sectors (Morningstar) Growth of $100,000 % Time Period: 1/1/2003 to 6/30/2021 Consumer Defensive 22.3 625,000 Healthcare 15.8 550,000 Consumer Cyclical 14.7 Financial Services 13.9 475,000 Industrials 12.6 400,000 Technology 8.2 325,000 Energy 4.4 250,000 Communication Services 3.7 Real Estate 2.5 175,000 Basic Materials 1.9 100,000 Total 100.0 25,000 Strategy Highlights Pursues a high level of current income and long-term capital appreciation utilizing Trailing Returns Inception Date: 1/1/2003 proprietary top-down and bottom-up analysis Seeks a substantially higher dividend yield than the broad market YTD 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs Incpt Invests primarily in 25- 50 companies with dividend growth potential Disciplined Alpha Dividend (Gross) 16.19 40.38 14.47 14.15 12.74 10.09 10.18 Offers the potential for competitive upside performance in strong market Disciplined Alpha Dividend (Net) 15.63 39.02 13.28 12.93 11.51 8.82 8.90 environments and the potential for lower downside risk in weak environments Morningstar US Value TR USD 17.03 41.77 10.76 11.29 10.92 7.61 9.43 Calendar Year Returns Disciplined Alpha Dividend – Top Holdings* 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 Portfolio Disciplined Alpha Dividend (Gross) 8.62 25.26 -3.48 16.20 17.06 -3.52 11.05 38.86 10.97 2.96 Weighting % Disciplined Alpha Dividend (Net) 7.51 23.91 -4.54 14.93 15.72 -4.58 9.81 37.33 9.67 1.77 Exxon Mobil Corp 2.52 Welltower Inc 2.43 Morningstar US Value TR USD -1.31 25.09 -7.51 14.23 20.79 -2.16
    [Show full text]
  • The Hidden Alpha in Equity Trading Steps to Increasing Returns with the Advanced Use of Information
    THE HIDDEN ALPHA IN EQUITY TRADING STEPS TO INCREASING RETURNS WITH THE ADVANCED USE OF INFORMATION TABLE OF CONTENTS 1 INTRODUCTION 4 2 MARKET FRAGMENTATION AND THE GROWTH OF INFORMATION 5 3 THE PROLIFERATION OF HIGH FREQUENCY TRADING 8 4 FLASH CRASHES, BOTCHED IPOS AND OTHER SYSTEMIC CONCERNS 10 5 THE CHANGING INVESTOR-BROKER RELATIONSHIP 11 6 THE INFORMATION OPPORTUNITY FOR INSTITUTIONAL INVESTORS 13 7 STEPS TO FINDING HIDDEN ALPHA AND INCREASED RETURNS 15 1. INTRODUCTION Following regulatory initiatives aimed at creating THE TIME DIFFERENCE IN TRADING competition between trading venues, the equities market has fragmented. Liquidity is now dispersed ROUTES; PEOPLE VS. COMPUTERS across many lit equity trading venues and dark pools. This complexity, combined with trading venues becoming electronic, has created profit opportunities for technologically sophisticated players. High frequency traders (HFTs) use ultra-high speed connections with trading venues and sophisticated trading algorithms to exploit inefficiencies created by the new market vs. structure and to identify patterns in 3rd parties’ trading that they can use to their own advantage. Person Computer For traditional investors, however, these new market conditions are less welcome. Institutional investors find JUST HOW FAST ARE TRADERS PROCESSING TRADES? themselves falling behind these new competitors, in » Traders that take advantage of technology can create large part because the game has changed and because programs that trade in milliseconds. In many cases they lack the tools
    [Show full text]
  • Sources of Hedge Fund Returns: Alpha, Beta, and Costs
    Yale ICF Working Paper No. 06-10 September 2006 The A,B,Cs of Hedge Funds: Alphas, Betas, and Costs Roger G. Ibbotson, Yale School of Management Peng Chen, Ibbotson Associates This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract=733264 Working Paper The A,B,Cs of Hedge Funds: Alphas, Betas, and Costs Roger G. Ibbotson, Ph.D. Professor in the Practice of Finance Yale School of Management 135 Prospect Street New Haven, CT 06520-8200 Phone: (203) 432-6021 Fax: (203) 432-6970 Chairman & CIO Zebra Capital Mgmt, LLC Phone: (203) 878-3223 Peng Chen, Ph.D., CFA President & Chief Investment Officer Ibbotson Associates, Inc. 225 N. Michigan Ave. Suite 700 Chicago, IL 60601-7676 Phone: (312) 616-1620 Fax: (312) 616-0404 Email: [email protected] August 2005 June 2006 September 2006 1 The A,B,Cs of Hedge Funds ABSTRACT In this paper, we focus on two issues. First, we analyze the potential biases in reported hedge fund returns, in particular survivorship bias and backfill bias, and attempt to create an unbiased return sample. Second, we decompose these returns into their three A,B,C components: the value added by hedge funds (alphas), the systematic market exposures (betas), and the hedge fund fees (costs). We analyze the performance of a universe of about 3,500 hedge funds from the TASS database from January 1995 through April 2006. Our results indicate that both survivorship and backfill biases are potentially serious problems. The equally weighted performance of the funds that existed at the end of the sample period had a compound annual return of 16.45% net of fees.
    [Show full text]
  • Arbitrage Pricing Theory: Theory and Applications to Financial Data Analysis Basic Investment Equation
    Risk and Portfolio Management Spring 2010 Arbitrage Pricing Theory: Theory and Applications To Financial Data Analysis Basic investment equation = Et equity in a trading account at time t (liquidation value) = + Δ Rit return on stock i from time t to time t t (includes dividend income) = Qit dollars invested in stock i at time t r = interest rate N N = + Δ + − ⎛ ⎞ Δ ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t before rebalancing, at time t t i=1 ⎝ i=1 ⎠ N N N = + Δ + − ⎛ ⎞ Δ + ε ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t ∑| Qi(t+Δt) - Qit | after rebalancing, at time t t i=1 ⎝ i=1 ⎠ i=1 ε = transaction cost (as percentage of stock price) Leverage N N = + Δ + − ⎛ ⎞ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t i=1 ⎝ i=1 ⎠ N ∑ Qit Ratio of (gross) investments i=1 Leverage = to equity Et ≥ Qit 0 ``Long - only position'' N ≥ = = Qit 0, ∑Qit Et Leverage 1, long only position i=1 Reg - T : Leverage ≤ 2 ()margin accounts for retail investors Day traders : Leverage ≤ 4 Professionals & institutions : Risk - based leverage Portfolio Theory Introduce dimensionless quantities and view returns as random variables Q N θ = i Leverage = θ Dimensionless ``portfolio i ∑ i weights’’ Ei i=1 ΔΠ E − E − E rΔt ΔE = t+Δt t t = − rΔt Π Et E ~ All investments financed = − Δ Ri Ri r t (at known IR) ΔΠ N ~ = θ Ri Π ∑ i i=1 ΔΠ N ~ ΔΠ N ~ ~ N ⎛ ⎞ ⎛ ⎞ 2 ⎛ ⎞ ⎛ ⎞ E = θ E Ri ; σ = θ θ Cov Ri , R j = θ θ σ σ ρ ⎜ Π ⎟ ∑ i ⎜ ⎟ ⎜ Π ⎟ ∑ i j ⎜ ⎟ ∑ i j i j ij ⎝ ⎠ i=1 ⎝ ⎠ ⎝ ⎠ ij=1 ⎝ ⎠ ij=1 Sharpe Ratio ⎛ ΔΠ ⎞ N ⎛ ~ ⎞ E θ E R ⎜ Π ⎟ ∑ i ⎜ i ⎟ s = s()θ ,...,θ = ⎝ ⎠ = i=1 ⎝ ⎠ 1 N ⎛ ΔΠ ⎞ N σ ⎜ ⎟ θ θ σ σ ρ Π ∑ i j i j ij ⎝ ⎠ i=1 Sharpe ratio is homogeneous of degree zero in the portfolio weights.
    [Show full text]
  • Betting Against Alpha
    Betting Against Alpha Alex R. Horenstein Department of Economics School of Business Administration University of Miami [email protected] December 11, 2017 Abstract. I sort stocks based on realized alphas estimated from the CAPM, Carhart (1997), and Fama-French Five Factor (FF5, 2015) models and nd that realized alphas are negatively related with future stock returns, future alpha, and Sharpe Ratios. Thus, I construct a Betting Against Alpha (BAA) factor that buys a portfolio of low-alpha stocks and sells a portfolio of high-alpha stocks. Using rank estimation methods, I show that the BAA factor spans a dimension of stock returns dierent than Frazzini and Pedersen's (2014) Betting Against Beta (BAB) factor. Additionally, the BAA factor captures information about the cross-section of stock returns missed by the CAPM, Carhart, and FF5 models. The performance of the BAA factor further improves if the low alpha portfolio is calculated from low beta stocks and the high alpha portfolio from high beta stocks. I call this factor Betting Against Alpha and Beta (BAAB). I discuss several reasons that support the existence of this counter-intuitive low-alpha anomaly. Keywords. betting against beta, betting against alpha, low-alpha anomaly, leverage, benchmark- ing. JEL classication. G10, G12. I thank Aurelio Vásquez, Manuel Santos, Markus Pelger and Min Ahn for their helpful comments and suggestions. 1 1 Introduction The primary purpose of this paper is to document a new anomaly and propose a new tradable factor based on it. I call this new anomaly the low-alpha anomaly: Portfolios constructed with assets having low realized alphas (overpriced according to the CAPM) have higher Sharpe Ratios, future alphas, and expected returns than portfolios constructed with assets having high-realized alphas (underpriced according to the CAPM).
    [Show full text]
  • The Capital Asset Pricing Model (Capm)
    THE CAPITAL ASSET PRICING MODEL (CAPM) Investment and Valuation of Firms Juan Jose Garcia Machado WS 2012/2013 November 12, 2012 Fanck Leonard Basiliki Loli Blaž Kralj Vasileios Vlachos Contents 1. CAPM............................................................................................................................................... 3 2. Risk and return trade off ............................................................................................................... 4 Risk ................................................................................................................................................... 4 Correlation....................................................................................................................................... 5 Assumptions Underlying the CAPM ............................................................................................. 5 3. Market portfolio .............................................................................................................................. 5 Portfolio Choice in the CAPM World ........................................................................................... 7 4. CAPITAL MARKET LINE ........................................................................................................... 7 Sharpe ratio & Alpha ................................................................................................................... 10 5. SECURITY MARKET LINE ...................................................................................................
    [Show full text]
  • Chapter 10: Arbitrage Pricing Theory and Multifactor Models of Risk and Return
    CHAPTER 10: ARBITRAGE PRICING THEORY AND MULTIFACTOR MODELS OF RISK AND RETURN CHAPTER 10: ARBITRAGE PRICING THEORY AND MULTIFACTOR MODELS OF RISK AND RETURN PROBLEM SETS 1. The revised estimate of the expected rate of return on the stock would be the old estimate plus the sum of the products of the unexpected change in each factor times the respective sensitivity coefficient: revised estimate = 12% + [(1 × 2%) + (0.5 × 3%)] = 15.5% 2. The APT factors must correlate with major sources of uncertainty, i.e., sources of uncertainty that are of concern to many investors. Researchers should investigate factors that correlate with uncertainty in consumption and investment opportunities. GDP, the inflation rate, and interest rates are among the factors that can be expected to determine risk premiums. In particular, industrial production (IP) is a good indicator of changes in the business cycle. Thus, IP is a candidate for a factor that is highly correlated with uncertainties that have to do with investment and consumption opportunities in the economy. 3. Any pattern of returns can be “explained” if we are free to choose an indefinitely large number of explanatory factors. If a theory of asset pricing is to have value, it must explain returns using a reasonably limited number of explanatory variables (i.e., systematic factors). 4. Equation 10.9 applies here: E(rp ) = rf + βP1 [E(r1 ) rf ] + βP2 [E(r2 ) – rf ] We need to find the risk premium (RP) for each of the two factors: RP1 = [E(r1 ) rf ] and RP2 = [E(r2 ) rf ] In order to do so, we solve the following system of two equations with two unknowns: .31 = .06 + (1.5 × RP1 ) + (2.0 × RP2 ) .27 = .06 + (2.2 × RP1 ) + [(–0.2) × RP2 ] The solution to this set of equations is: RP1 = 10% and RP2 = 5% Thus, the expected return-beta relationship is: E(rP ) = 6% + (βP1 × 10%) + (βP2 × 5%) 5.
    [Show full text]
  • WHERE DO ALPHAS COME FROM?: a MEASURE of the VALUE of ACTIVE INVESTMENT MANAGEMENT∗ Andrew W
    JOURNAL OF INVESTMENT MANAGEMENT, Vol. 6, No. 2, (2008), pp. 1–29 © JOIM 2008 JOIM www.joim.com WHERE DO ALPHAS COME FROM?: A MEASURE OF THE VALUE OF ACTIVE INVESTMENT MANAGEMENT∗ Andrew W. Lo† The value of active investment management is traditionally measured by alpha, beta, volatility, tracking error, and the Sharpe and information ratios. These are essentially static characteristics of the marginal distributions of returns at a single point in time, and do not incorporate dynamic aspects of a manager’s investment process. In this paper, I propose a measure of the value of active investment management that captures both static and dynamic contributions of a portfolio manager’s decisions. The measure is based on a decomposition of a portfolio’s expected return into two distinct components: a static weighted-average of the individual securities’ expected returns, and the sum of covariances between returns and portfolio weights. The former component measures the portion of the manager’s expected return due to static investments in the underlying securities, while the latter component captures the forecast power implicit in the manager’s dynamic investment choices. This measure can be computed for long-only investments, long/short portfolios, and asset allocation rules, and is particularly relevant for hedge-fund strategies where both components are significant contributors to their expected returns, but only one should garner the high fees that hedge funds typically charge. Several analytical and empirical examples are provided to illustrate the practical relevance of this decomposition. 1 Introduction ∗I thank Nicholas Chan, John Cox, Arnout Eikeboom, Lisa Goldberg, Mark Grinblatt, Stephanie Hogue, Rajnish Kamat, Philippe Luedi, Sara Salem, Nils Tuchschmid, an anonymous With the growing popularity of hedge funds and referee, and participants at the Le Club B 2006 Conference other absolute-return investment strategies, there and the JOIM 2007 Spring Conference for their helpful com- is a widening gap between the performance met- ments and discussion.
    [Show full text]
  • Short Selling Risk and Hedge Fund Performance.Pdf
    Short Selling Risk and Hedge Fund Performance Lei (Matthew) Ma* This Draft: December 2019 Abstract: Hedge funds, on average, outperform other actively managed funds. However, hedge fund managers often use trading strategies that are not used by other managed portfolios, and thus they bear unique risks. In particular, many hedge funds use short selling. I construct an option- based measure of short selling risk as the return spread between the decile of stocks with low option-implied short selling fees and the decile of those with high fees. I find that hedge funds that are significantly exposed to short selling risk outperform low-exposure funds by 0.45% per month on a risk-adjusted basis. However, there is no such relation for mutual funds that invest primarily on the long side. The results highlight that a significant proportion of abnormal performance of hedge funds is compensation for the risk they take on their short positions. JEL classification: G23; G11 Keywords: hedge funds, mutual funds, short selling risk, short risk exposure *Contact: Matthew Ma, Cox School of Business, Southern Methodist University, e-mail: [email protected]; I am grateful to Jonathan Brogaard, Jeff Coles, Mike Cooper, Mike Gallmeyer, Pab Jotikasthira, Matthew Ringgenberg, Mehrdad Samadi, Steve Stubben, Kumar Venkataraman, Kelsey Wei, Ingrid Werner, Julie Wu, Feng Zhang, Feng Zhao, and conference and seminar participants at the University of Utah, the University of Texas at Dallas, and Northern Finance Association Conference 2018 for insightful and helpful comments. All remaining errors are my own. 1 There is no “alpha.” There is just beta you understand and beta you do not understand, and beta you are positioned to buy versus beta you are already exposed to and should sell.
    [Show full text]
  • Stock Brokers of Dhaka Stock Exchange (Dse) 01-001 A.B Ispahani Securities Ltd
    INTRACO REFUELING STATION LTD. Stock Exchange/Merchant Bank wise Broker List Stock Exchange Stockbroker (TREC Holder) / Merchant Banker Name TREC No. / M.Bank SL No. 01 - STOCK BROKERS OF DHAKA STOCK EXCHANGE (DSE) 01-001 A.B ISPAHANI SECURITIES LTD. 01-002 S & H EQUITIES LIMITED 01-003 SHYAMOL EQUITY MANAGEMENT LIMITED 01-004 PHOENIX SECURITIES LIMITED 01-005 HARUN SECURITIES LTD. 01-006 A. K. KHAN SECURITIES LTD. 01-007 APEX INVESTMENTS LIMITED 01-008 CREST SECURITIES LTD. 01-009 INTERNATIONAL LEASING SECURITIES LTD. 01-010 KHWAJA EQUITY SERVICES LIMITED 01-011 BRAC EPL STOCK BROKERAGE LTD. 01-012 PASHA CAPITAL LTD. 01-013 MAH SECURITIES LIMITED 01-014 DMR SECURITIES SERVICES LTD. 01-015 MOHAMMADI STOCK MARKET LTD. 01-016 ACE CAPITAL MANAGEMENT SERVICE LTD. 01-017 ADIL SECURITIES LTD. 01-018 GREENLAND EQUITIES LTD. 01-019 AZAM SECURITIES LIMITED 01-020 BDBL SECURITIES LTD. 01-021 ROYAL CAPITAL LTD. 01-022 A.R CHOWDHURY SECURITIES LTD. 01-023 ERSHAD SECURITIES LIMITED 01-024 VISION CAPITAL MANAGEMENT LTD. 01-025 ARENA SECURITIES LTD. 01-026 EBL SECURITIES LIMITED 01-027 SAR SECURITIES LTD. 01-028 SADEQUE FINANCE MANAGEMENT LTD. 01-029 KAZI FIROZ RASHID SECURITIES LIMITED 01-030 B. D FINANCE SECURITIES LTD. 01-031 ETBL SECURITIES & EXCHANGE LTD. 01-032 BULBUL SECURITIES LTD. 01-033 IBRAHIM SECURITIES LIMITED 01-034 B & B ENTERPRISE LIMITED 01-035 RASHID INVESTMENT SERVICES LIMITED 01-037 DAULATUNNESSA EQUITIES LIMITED 01-038 QUAYUM SECURITIES LIMITED Page No : 1 INTRACO REFUELING STATION LTD. Stock Exchange/Merchant Bank wise Broker List Stock Exchange Stockbroker (TREC Holder) / Merchant Banker Name TREC No.
    [Show full text]
  • Dynamic Alpha: a Spectral Decomposition of Investment Performance Across Time Horizons
    This article was downloaded by: [18.4.72.125] On: 11 May 2020, At: 10:27 Publisher: Institute for Operations Research and the Management Sciences (INFORMS) INFORMS is located in Maryland, USA Management Science Publication details, including instructions for authors and subscription information: http://pubsonline.informs.org Dynamic Alpha: A Spectral Decomposition of Investment Performance Across Time Horizons Shomesh E. Chaudhuri, Andrew W. Lo To cite this article: Shomesh E. Chaudhuri, Andrew W. Lo (2019) Dynamic Alpha: A Spectral Decomposition of Investment Performance Across Time Horizons. Management Science 65(9):4440-4450. https://doi.org/10.1287/mnsc.2018.3102 Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and- Conditions This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact [email protected]. The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service. Copyright © 2018, INFORMS Please scroll down for article—it is on subsequent pages With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.) and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual professionals, and organizations of all types and sizes, to better understand and use O.R.
    [Show full text]
  • Portable Alpha WHITEPAPER OCTOBER 2020
    Portable alpha WHITEPAPER OCTOBER 2020 Portable alpha is a mechanism by which investors are able to combine an CONTRIBUTORS independent source of manager skill (“alpha”) with an underlying asset class Frank Benham, CFA, CAIA Colin Bebee, CFA investment (“beta”). By combining two uncorrelated return streams and Ryan Lobdell, CFA, CAIA utilizing a wider opportunity set for alpha generation, portable alpha represents W. Brian Dana, CAIA an efficient approach to adding excess return. Practically speaking, investors Gloria Hazard may also view it as a way to add leverage to their portfolio whereby the manager, through a turnkey approach, handles all of the complexities that are inherent with leverage. Moreover, as expected returns have fallen, portable alpha may potentially allow investors to better meet their return expectations, albeit with caveats. These challenges include increased risk, costs and complexity, identifying and then maintaining “alpha,” the potential misuse of leverage, and understanding the nature of the strategy. What is portable alpha? The return produced by any manager (or portfolio) can essentially be separated into two pieces: beta and alpha. Beta is the portion of a manager’s return that is attributable to the risk inherent in investing in a particular market. That is, beta is the part of a manager’s return that has nothing to do with skill (or luck) and everything to do with the performance of the asset class. Beta is cheap and easy to acquire (e.g., through derivatives, ETF’s, or index funds). Alpha, on the other hand, is the portion of a manager’s return that is attributable to the manager’s skill.
    [Show full text]