Four New Records of Celastraceae for Brunei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion. -
Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both. -
Celastraceae
Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Celastraceae Family Profile Celastraceae Family Description A family of about 94 genera and 1400 species, worldwide; 22 genera occur naturally in Australia. Genera Brassiantha - A genus of two species in New Guinea and Australia; one species occurs naturally in Australia. Simmons et al (2012). Celastrus - A genus of 30 or more species, pantropic; two species occur naturally in Australia. Jessup (1984). Denhamia - A genus of about 17 species in the Pacific and Australia; about 15 species occur in Australia. Cooper & Cooper (2004); McKenna et al (2011); Harden et al (2014); Jessup (1984); Simmons (2004). Dinghoua - A monotypic genus endemic to Australia. Simmons et al (2012). Elaeodendron - A genus of about 80 species, mainly in the tropics and subtropics particularly in Africa; two species occur naturally in Australia. Harden et al. (2014); Jessup (1984) under Cassine; Simmons (2004) Euonymus - A genus of about 180 species, pantropic, well developed in Asia; one species occur naturally in Australia. Hou (1975); Jessup (1984); Simmons et al (2012). Gymnosporia - A genus of about 100 species in the tropics and subtropics, particularly Africa; one species occurs naturally in Australia. Jordaan & Wyk (1999). Hedraianthera - A monotypic genus endemic to Australia. Jessup (1984); Simmons et al (2012). Hexaspora - A monotypic genus endemic to Australia. Jessup (1984). Hippocratea - A genus of about 100 species, pantropic extending into the subtropics; one species occurs naturally in Australia. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Guide to the Euonymus of New York City
New York City EcoFlora Guide to the Euonymus (Euonymus) of New York City Euonymus is a genus of 130–140 species in the mostly tropical Celastraceae (Staff-Tree) family. The family comprises about 95 genera and 1,350 species. Only three genera occur in the northern hemisphere, Euonymus, Celastrus and Parnassia, all three found or once found in New York City. Euonymus species occur nearly worldwide with most species native to eastern Asia. They are trees, shrubs or woody vines, the stems often angled or winged, sometimes climbing by adventitious roots; leaves deciduous or evergreen, opposite, the blades simple, margins crenate or toothed; inflorescences terminal or axillary; flowers in small clusters, petals usually green, sometimes white or purple; fruit usually brightly colored, lobed capsules; seeds enveloped in brightly colored tissue (aril), often contrasting with the fruit wall. Euonymus (as well as most members of the Celastraceae family) can often be recognized by “gestalt”. The leaves and often the stems too have a distinctive, but somewhat variable yellow-green color that is hard to describe but nearly unlike any other plants. The leaves are usually leathery, and almost always have distinctively scalloped (crenate) margins (the margins rarely completely smooth or toothed). There are four species native to North America, one species endemic to California, Oregon and Washington (Euonymus occidentalis); a predominately Midwestern species (Euonymus obovatus); a widespread northeastern species (Euonymus atropurpureus) and a widespread southeastern species (Euonymus americanus). Two species are indigenous to New York City. The predominately southeastern US species, Euonymus americanus, American Strawberry Bush is endangered in New York State. -
Celastraceae (Bittersweet Family) Traits, Key, & Comparison Chart Genus Traits of Parnassia (Grass-Of-Parnassus)
Celastraceae (Bittersweet Family) Traits, Key, & Comparison Chart © S.J. Meades. Flora of Newfoundland and Labrador (Jan. 2020) Traits of Parnassia (Celastraceae)................................................................................................... 1 Key .................................................................................................................................................. 2 Comparison Chart .......................................................................................................................... 3 References ...................................................................................................................................... 4 Genus Traits of Parnassia (grass-of-Parnassus) [Parnassia is the only genus of the Celastraceae Family in NL] • Herbaceous plants with basal rosettes of petiolate leaves and 0 or 1 sessile cauline leaf; stems and leaves are glabrous (without hairs). • Flowers solitary, terminal on erect stems, bisexual, and 5-merous. • Flowers have 5 green sepals, 5 white petals with prominent veins, 5 stamens (maturing sequentially), and a single pistil. • Five staminodia (modified sterile stamens; singular: staminodium) are situated opposite the petals and alternate with the fertile stamens. Each staminodium has 3–27 slender segments that terminate in a spherical yellow gland. • The pistil has an ovoid, superior ovary, ivory white or green, which has 4 carpels but only 1 locule (interior chamber); stigmas are 4 and sessile; styles are lacking. • The fruit -
Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia
www.ccsenet.org/jas Journal of Agricultural Science Vol. 3, No. 3; September 2011 Vascular Plant Composition and Diversity of a Coastal Hill Forest in Perak, Malaysia S. Ghollasimood (Corresponding author), I. Faridah Hanum, M. Nazre, Abd Kudus Kamziah & A.G. Awang Noor Faculty of Forestry, Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia Tel: 98-915-756-2704 E-mail: [email protected] Received: September 7, 2010 Accepted: September 20, 2010 doi:10.5539/jas.v3n3p111 Abstract Vascular plant species and diversity of a coastal hill forest in Sungai Pinang Permanent Forest Reserve in Pulau Pangkor at Perak were studied based on the data from five one hectare plots. All vascular plants were enumerated and identified. Importance value index (IVI) was computed to characterize the floristic composition. To capture different aspects of species diversity, we considered five different indices. The mean stem density was 7585 stems per ha. In total 36797 vascular plants representing 348 species belong to 227 genera in 89 families were identified within 5-ha of a coastal hill forest that is comprises 4.2% species, 10.7% genera and 34.7% families of the total taxa found in Peninsular Malaysia. Based on IVI, Agrostistachys longifolia (IVI 1245), Eugeissona tristis (IVI 890), Calophyllum wallichianum (IVI 807), followed by Taenitis blechnoides (IVI 784) were the most dominant species. The most speciose rich families were Rubiaceae having 27 species, followed by Dipterocarpaceae (21 species), Euphorbiaceae (20 species) and Palmae (14 species). According to growth forms, 57% of all species were trees, 13% shrubs, 10% herbs, 9% lianas, 4% palms, 3.5% climbers and 3% ferns. -
Comparison of Different Classifications on the Celastraceae
UNITED STATES DEPARTMENT OF AGRICLJLTURE AGRICULTURAL RESEARCH SERVICE NORTHEASTERN REGlON AGRICULTURAL RESEARCH CENTER BELTSVILLE. MARYLAND 20705 Novenber 7, 1974 / Subject: ConpadSon of Different Classifications on the Celastraceae in Africa with Discussions on the Status of Gymnosporia and Other Genera To : R. E. Perdue, Jr., Chief ,.. Medicinal Plant Resources ~aboratory Currently, the taxonomy of the Celastraceae is in a state of confusion. A few recent revisions limited mostly ,to political boundaries, have helped to clarify the systematics in a few genera; however, the continued disagreement among generic relationships seems to make it nore difficult for the non-specialist. Because of special efforts to procure plant samples in this family, frequent synonomy has led to confusion as well as duplica- tion, especially in Africa where a number of samples have been received from floristically related countries in which different authorities are recogcized for the Celastracean Flora. This report, primarily, will 'deal with the systematic problems of the African Celasrrtseae. Until recently, the Hippocrateaceae was treated as a separate family from the Celastraceae (Smith, 1940; Loesener, 1942; Wilczek, 1960; Hallee, 1962). L Robson (1965, 1966), Ding Hou (1963, 1964), Blakelock (1958), and Codd (1972) have united the Hippocrateaceae with the Celastraceae; but, their reasons for uniting the two families are not in agreement. The Celastraceae is believed by Codd and Kobson to comprise about 60 to 70 genera, but Ding Hou has indicated that there are about 90 genera. For the purpose of identifying two major complexes, which taxonomists are not in agreement, I will refer to the Celastraceae and Hippocrateaceae as two separate families. -
Saxifragaceae
Flora of China 8: 269–452. 2001. SAXIFRAGACEAE 虎耳草科 hu er cao ke Pan Jintang (潘锦堂)1, Gu Cuizhi (谷粹芝 Ku Tsue-chih)2, Huang Shumei (黄淑美 Hwang Shu-mei)3, Wei Zhaofen (卫兆芬 Wei Chao-fen)4, Jin Shuying (靳淑英)5, Lu Lingdi (陆玲娣 Lu Ling-ti)6; Shinobu Akiyama7, Crinan Alexander8, Bruce Bartholomew9, James Cullen10, Richard J. Gornall11, Ulla-Maj Hultgård12, Hideaki Ohba13, Douglas E. Soltis14 Herbs or shrubs, rarely trees or vines. Leaves simple or compound, usually alternate or opposite, usually exstipulate. Flowers usually in cymes, panicles, or racemes, rarely solitary, usually bisexual, rarely unisexual, hypogynous or ± epigynous, rarely perigynous, usually biperianthial, rarely monochlamydeous, actinomorphic, rarely zygomorphic, 4- or 5(–10)-merous. Sepals sometimes petal-like. Petals usually free, sometimes absent. Stamens (4 or)5–10 or many; filaments free; anthers 2-loculed; staminodes often present. Carpels 2, rarely 3–5(–10), usually ± connate; ovary superior or semi-inferior to inferior, 2- or 3–5(–10)-loculed with axile placentation, or 1-loculed with parietal placentation, rarely with apical placentation; ovules usually many, 2- to many seriate, crassinucellate or tenuinucellate, sometimes with transitional forms; integument 1- or 2-seriate; styles free or ± connate. Fruit a capsule or berry, rarely a follicle or drupe. Seeds albuminous, rarely not so; albumen of cellular type, rarely of nuclear type; embryo small. About 80 genera and 1200 species: worldwide; 29 genera (two endemic), and 545 species (354 endemic, seven introduced) in China. During the past several years, cladistic analyses of morphological, chemical, and DNA data have made it clear that the recognition of the Saxifragaceae sensu lato (Engler, Nat. -
2006 Vol. 9, Issue 1
Department of Botany & the U.S. National Herbarium TheThe PlantPlant PressPress New Series - Vol. 9 - No. 1 January-March 2006 Botany Profile Botanist Taps Rubber Relationships By Gary A. Krupnick n September 2005, Kenneth J. Wurdack has a long history associated Ricinus communis) and has notoriety Wurdack joined the Department as with the Department. In addition to for the toxin ricin (Ricinus). Wurdack’s IResearch Scientist and Assistant roaming the halls when he was a child, he original interest in Euphorbiaceae was Curator of Botany. As the second new was a formal volunteer from 1985 to inspired by the late Grady Webster curator hired in 13 years, he joins the 1990. During his final years as a graduate (1927-2005), the preeminent and most Department just a month after Jun Wen student (2000-2002), he worked as the influential euphorb specialist of the past (see Plant Press, vol. 8, no. 4; 2005). Laboratory Manager in the Cullman Prog- century. His research interest is mainly the ram for Molecular Systematic Studies at DNA studies are rewriting Euphor- systematics and evolution of the rubber the New York Botanical Garden. He then biaceae systematics. Molecular data family, Euphorbiaceae, in the broad returned to the Smithsonian Institution have shown that the family is polyphyl- sense (sensu lato), but also the order where he held a postdoctoral fellow etic and contains seven lineages (Cen- Malpighiales (to which euphorbs position in the Department of Botany and troplacus, Euphorbiaceae s.s., Panda- belong), Thymelaeaceae, horizontal gene the Laboratories of Analytical Biology ceae, Paradrypetes, Phyllanthaceae, transfer, and ant-plant interactions. -
First Report of Euonymus Fortunei (Celastraceae) Naturalized in Texas
Nesom, G. L. 2010. First report of Euonymus fortunei (Celastraceae) naturalized in Texas. Phytoneuron 2010-1: 1-9. (8 January) [photos added to text, Aug 2021] FIRST REPORT OF EUONYMUS FORTUNEI (CELASTRACEAE) NATURALIZED IN TEXAS GUY L. NESOM 2925 Hartwood Drive Fort Worth, TX 76109, USA www.guynesom.com ABSTRACT Euonymus fortunei is documented here for the first time to occur outside of cultivation in Texas. The population, which is perhaps a large clone spread from an original planting, is in Overton Park in the central part of Fort Worth. Flowers and fruits have not been observed. Color photos are included. KEY WORDS: Euonymus fortunei, Celastraceae, naturalized, Texas Euonymus fortunei (Turcz.) Hand.-Mazz. Winter creeper, climbing euonymus Texas. Tarrant Co.: Fort Worth, Overton Park near intersection of Owenwood Drive and Glenwood Drive, terrace bank on south side of Overton Creek, along 60 feet of embankment and covering ca. 600-800 square feet, apparently spread downslope from original plantings near a house ca. 50 feet above, in a thicket of Prunus caroliniana, Photinia serratifolia, Ligustrum lucidum, Ligustrum quihoui, Nandina domestica, under Ulmus crassifolia and young Bumelia lanuginosa and Celtis laevigata, with Hedera helix, the euonymus also spreading out of the thicket into adjacent mowed areas, 18 May 2009, G.L. Nesom 2010-01 (BRIT, OKL, TEX, to be deposited). Euonymus fortunei is an evergreen, trailing or scandent subshrub native to southeastern Asia. At the Overton Park site, it densely covers the ground, intermixed in one area with Hedera helix, and has grown nearly 10 feet out of the thicket into grassy areas into a constantly mowed area. -
Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R
Eastern Kentucky University Encompass Biological Sciences Faculty and Staff Research Biological Sciences January 2011 Systematics and Biogeography of the Clusioid Clade (Malpighiales) Brad R. Ruhfel Eastern Kentucky University, [email protected] Follow this and additional works at: http://encompass.eku.edu/bio_fsresearch Part of the Plant Biology Commons Recommended Citation Ruhfel, Brad R., "Systematics and Biogeography of the Clusioid Clade (Malpighiales)" (2011). Biological Sciences Faculty and Staff Research. Paper 3. http://encompass.eku.edu/bio_fsresearch/3 This is brought to you for free and open access by the Biological Sciences at Encompass. It has been accepted for inclusion in Biological Sciences Faculty and Staff Research by an authorized administrator of Encompass. For more information, please contact [email protected]. HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Organismic and Evolutionary Biology have examined a dissertation entitled Systematics and biogeography of the clusioid clade (Malpighiales) presented by Brad R. Ruhfel candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Typed name: Prof. Charles C. Davis Signature ( ^^^M^ *-^£<& Typed name: Profy^ndrew I^4*ooll Signature / / l^'^ i •*" Typed name: Signature Typed name Signature ^ft/V ^VC^L • Typed name: Prof. Peter Sfe^cnS* Date: 29 April 2011 Systematics and biogeography of the clusioid clade (Malpighiales) A dissertation presented by Brad R. Ruhfel to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2011 UMI Number: 3462126 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.