The Clock Gene Per2 Links the Circadian System to the Estrogen Receptor

Total Page:16

File Type:pdf, Size:1020Kb

The Clock Gene Per2 Links the Circadian System to the Estrogen Receptor Oncogene (2007) 26, 7916–7920 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc SHORT COMMUNICATION The clock gene Per2 links the circadian system to the estrogen receptor S Gery, RK Virk, K Chumakov, A Yu, HP Koeffler Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, University of California, Los Angeles, CA, USA Circadian rhythms regulate diverse physiological pro- 2007). Consequently in various tissues, circadian cesses including homeostatic functions of steroid hor- rhythms impinge upon many physiological processes mones and their receptors. Estrogen receptor-a (ERa)is and pathological conditions, including cancer (Fu et al., essential for normal mammary gland physiology and is a 2002; Matsuo et al., 2003; Lowrey and Takahashi, 2004; prognostic marker for the treatment of breast cancer. We Ko and Takahashi, 2006). Recent studies suggested that report that Per2, a core clock gene, links the circadian circadian disruption is associated with breast tumor- cycle to the ERa signaling network. Binding of enhances igenesis (Hansen, 2001; Chen et al., 2005). The steroid ERa degradation, while suppression of Per2 levels leads to hormone estrogen is essential for normal mammary ERa stabilization. In turn, Per2 itself is estrogen inducible gland physiology, and is also a potent mammary in these cells, suggesting a feedback mechanism to attenuate mitogen (Sternlicht, 2006; Yager and Davidson, 2006). stimulation by estrogen. In addition, overexpression of Per2 Although the circadian clock has been linked to several in breast cancer cells leads to significant growth inhibition, steroid hormone activities, the molecular mechanisms loss of clonogenic ability and apoptosis. Taken together, underlying the function of core clock genes in mammary these results further support a critical role for peripheral tissue are largely unknown. We hypothesized that circadian regulation in tissue homeostasis and suggest a circadian regulation may be implicated in hormone novel role for clock genes in estrogen receptor-positive homeostasis and hormone-related tumorigenesis in breast cancer. breast epithelia cells. Oncogene (2007) 26, 7916–7920; doi:10.1038/sj.onc.1210585; Estrogen stimulation is thought to be a major factor published online 18 June 2007 contributing to the development of breast cancer. Deregulation of the core clock factor, Per2, has been Keywords: circadian rhythms; ERa; breast cancer; reported in several human malignancies including breast Per2; transcriptional activation; estrogen cancer (Chen et al., 2005). We hypothesized that Per2 function in mammary epithelia cells could be linked to the ERa signaling pathway. ERa regulates transcription of target genes through an interaction with consensus Most physiological processes in mammals are influenced estrogen response elements (EREs). We performed by circadian rhythms. These rhythms are driven by a reporter assays with an ERE-luciferase reporter gene master clock within the hypothalamic suprachiasmatic to test the effect of Per2 on ERa transactivation nuclei (SCN) that synchronizes numerous subsidiary (Figure 1a). The ERa-positive breast cancer cell line, oscillators in peripheral tissues. The circadian clockwork MCF-7, was cotransfected with ERE-luciferase and in both the SCN and the peripheral cells is composed of either Per2 or empty vector. While 17-b estradiol (E2) transcription-translation feedback loops maintained by induced high luciferase activity in the control cells, Per2 a core set of clock genes (Shearman et al., 2000; Reppert expression substantially reduced this activity. Per2 also and Weaver, 2002; Schibler and Sassone-Corsi, 2002; inhibited E2-activated ERE transcription in two addi- Ishida, 2007). Two transcription factors, Clock and tional ERa-positive cancer cell lines, T47D (breast) and Bmal1, activate their targets, Period (Per1, 2 and 3) and Ishikawa (endometrial). In contrast, silencing of Per2 by cryptochrome (Cry1 and Cry2); subsequently, the Per small interfering RNA (siRNA) (as shown in Figure 1d) and Cry proteins interfere with Bmal1:Clock activity in those cells enhanced the ERE reporter activity thereby forming the major negative circadian feedback (Figure 1a). We also examined whether Per2 can loop. The central clock, through neural, hormonal and endogenously suppress ERa-responsive genes (Figures metabolic signals, synchronizes the peripheral oscilla- 1b and c). MCF-7 cells transfected with either Per2 or a tors, which in turn drive the expression of downstream control vector were treated with E2; and the mRNA clock-controlled genes in a tissue-specific manner levels of the known ERa targets, pS2, cyclin D1 and (Panda et al., 2002; Storch et al., 2002; Miller et al., CCN1 were measured by real-time PCR (Figure 1b). While expression of Per2 alone had little effect on Correspondence: S Gery, Cedars-Sinai Medical Center, Davis Building expression of those genes, it strongly inhibited E2-mediated 5066, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA. E-mail: [email protected] induction of pS2, and further reduced the levels of Received 26March 2007; revised 8 May 2007; accepted 9 May 2007; cyclin D1 and CCN1 below basal level. Moreover, published online 18 June 2007 Per2 siRNA enhanced E2-activation of the ERa target Per2 links the circadian system to ER S Gery et al 7917 a b 300 c EV Per2 siCon siPer2 2 pS2 EV 200 Per2 Cyclin D1 1 100 0 (% of EV+E2) CCN1 200 Luciferase activity 0 Cyclin D1 −−+ − + ++−−+ − + E2 MCF-7 T47D Ishikawa 100 β-actin 4 siCon E2 −−++−−++ siPer2 0 Relative expression 200 d 2 CCN1 siCon siPer2 siCon siPer2 100 (% of siCon+E2) Per2 Luciferase activity 0 −−+ − + ++−−+ − + E2 0 β MCF-7 T47D Ishikawa E2 − + − + − + − + -actin EV 293T MCF-7 Per2 siCon siPer2 Figure 1 Per2 suppresses ERa transcriptional activation. (a) MCF-7, T47D (breast) and Ishikawa (endometrial) cancer cell lines were cotransfected with ERE-luciferase construct and either empty vector (EV) or Per2 (Per2, upper panel) or with either a control siRNA (siCon) or Per2 siRNA (siPer2, bottom panel). Luciferase activity was measured either with or without treatment of cells with E2 (1 mM, 16h). Results represent the percentages of luciferase activity with either E2-treated EV-transfected cells (upper panel) or E2- treated siCon-transfected cells (bottom panel) set to 100%. Shown are the means7s.d. of triplicate samples. (b and c) MCF-7 cells transfected with either empty vector or Per2 were selected with G418 for 5 days. Surviving cells were treated with E2 (1 mM, 16h) and harvested for RNA and whole-cell protein. In addition, MCF-7 cells were transfected with either siCon or siPer2. Two days later, cells were treated with E2 (1 mM, 16h) and harvested for RNA and whole-cell protein. ( b) Real-time PCR analysis of the indicated genes. (c) Western blot analysis of the indicated proteins. (d) 293T and MCF-7 cells were transfected with either siCon or siPer2. Nuclear lysates were analysed for Per2 expression by immunoblotting. Cells culture, constructs, real-time PCR conditions and sources of antibodies and regents have been described in the Supplementary Information. genes (Figure 1b). Western blot analysis showed a prevent nuclear localization of ERa.Colocalizationof parallel effect of Per2 on the protein levels of cyclin D1 Per2 and ERa was noted in both cell lines. Notably, Per2- and CCN1 (Figure 1c). These results suggest that Per2 expressing MCF-7 cells exhibited changes in morphology could be involved in breast cancer prevention by inhibit- indicative of apoptosis, such as cell rounding and ing E2-induced proliferation. Recently, Per2 was also detachment, while the 293T cells had normal morphology. suggested to play a role in normal mammary cell differen- ERa is a short-lived protein and binding of E2 further tiation (Metz et al., 2006). accelerates its degradation (Reid et al., 2002). While In the absence of ligand, ERa is sequestered in the Per2 expression had no effect on ERa mRNA levels cytoplasm in an inhibitory protein complex. Upon (Figure 2d), it markedly downregulated ERa protein binding to E2, ERa undergoes conformational changes levels in MCF-7 cells (Figure 2e). PS-341, a specific facilitating cofactor binding and nuclear localization proteasome inhibitor, blocked Per2-stimulated down- (McDonnell and Norris, 2002). Immunoprecipitation regulation of ERa (Figure 2f) showing that Per2- experiments showed that Per2 associates with ERa in mediated ERa degradation is through the proteasome 293T and MCF-7 cells, and E2 stimulation enhances pathway. Moreover, suppression of endogenously the interaction (Figure 2a). Moreover, glutathione expressed Per2 by siRNA led to stabilization of ERa S-transferase (GST) pull-down assays, with an in vitro- (Figure 2g), suggesting that Per2 is necessary for translated Per2 and a GST-ERa fusion protein, efficient proteasome-induced degradation of ERa.A demonstrated direct binding of these proteins (Figure 2b). recent study showed that several nuclear receptors are As Per2 shuttles between the nucleus and the cytoplasm clock-controlled genes (Yang et al., 2006). Although (Yagita et al., 2002), it could change the subcellular ERa does not exhibit a circadian expression pattern in distribution of ERa. To test this possibility, 293T cells normal cells, it is downregulated in Clock mutant mice cotransfected with ERa and V5-tagged mPer2, and (Miller et al., 2007), suggesting that core circadian MCF-7 cells transfected with V5-tagged mPer2 were components have an important
Recommended publications
  • NPAS2 As a Transcriptional Regulator of Non-Rapid Eye Movement Sleep: Genotype and Sex Interactions
    NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: Genotype and sex interactions Paul Franken*†‡, Carol A. Dudley§, Sandi Jo Estill§, Monique Barakat*, Ryan Thomason¶, Bruce F. O’Hara¶, and Steven L. McKnight‡§ §Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; *Department of Biological Sciences, Stanford University, Stanford, CA 94305; ¶Department of Biology, University of Kentucky, Lexington, KY 40506; and †Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne-Dorigny, Switzerland Contributed by Steven L. McKnight, March 13, 2006 Because the transcription factor neuronal Per-Arnt-Sim-type sig- delta frequency range is a sensitive marker of time spent awake (4, nal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor 7) and local cortical activation (8) and is therefore widely used as and an effector of intracellular energy balance, and because sleep an index of NREMS need and intensity. is thought to correct an energy imbalance incurred during waking, The PAS-domain proteins, CLOCK, BMAL1, PERIOD-1 we examined NPAS2’s role in sleep homeostasis using npas2 (PER1), and PER2, play crucial roles in circadian rhythm gener- knockout (npas2؊/؊) mice. We found that, under conditions of ation (9). The NPAS2 paralog CLOCK, like NPAS2, can induce the increased sleep need, i.e., at the end of the active period or after transcription of per1, per2, cryptochrome-1 (cry1), and cry2. PER and sleep deprivation (SD), NPAS2 allows for sleep to occur at times CRY proteins, in turn, inhibit CLOCK- and NPAS2-induced when mice are normally awake. Lack of npas2 affected electroen- transcription, thereby closing a negative-feedback loop that is cephalogram activity of thalamocortical origin; during non-rapid thought to underlie circadian rhythm generation.
    [Show full text]
  • Play Clock Operator Guide
    NFHS GENERAL INSTRUCTIONS FOR FOOTBALL GAME AND PLAY CLOCK OPERATORS A. The game and play clock operators should report to the game officials at the stadium at least 30 minutes before game time for the following purposes: 1. To synchronize timer’s watch with official game time as established by the game official responsible for timing. 2. To advise game officials whether the game clock operator and/or play clock operator will be in the press box or on the field/side- line. Determine procedure for communications with both operators and test procedures prior to the games. 3. To discuss coordination of starting, stopping and adjusting the game clock or play clock in accordance with the playing rules. 4. To discuss if the game clock horn (mechanical signal) can be turned off. Preference is for the game clock horn (mechanical signal) to be turned off for the duration of the game. B. The game clock is normally started 30 minutes before game time. The halftime intermission will start on the referee’s signal when the players and game officials leave the field. All pregame and halftime activities shall be synchronized with the game clock. The mandatory three-minute warm-up period will be put on the game clock after the intermission time has elapsed and shall be started immediately. C. The game clock operator shall have an extra stopwatch available. In case of failure of the game clock, the game clock operator shall immediately contact the game officials, giving them the correct data regarding the official time. The game official responsible for timing will then pick up the correct game time on the stopwatch.
    [Show full text]
  • Agonists and Knockdown of Estrogen Receptor Β Differentially Affect
    Schüler-Toprak et al. BMC Cancer (2016) 16:951 DOI 10.1186/s12885-016-2973-y RESEARCH ARTICLE Open Access Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro Susanne Schüler-Toprak1*, Julia Häring1, Elisabeth C. Inwald1, Christoph Moehle2, Olaf Ortmann1 and Oliver Treeck1 Abstract Background: Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods: MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results: Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism.
    [Show full text]
  • A Wheel of Time: the Circadian Clock, Nuclear Receptors, and Physiology
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE A wheel of time: the circadian clock, nuclear receptors, and physiology Xiaoyong Yang1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA It is a long-standing view that the circadian clock func- The rhythmic production and circulation of many tions to proactively align internal physiology with the hormones and metabolites within the endocrine system 24-h rotation of the earth. Recent studies, including one is instrumental in regulating regular physiological pro- by Schmutz and colleagues (pp. 345–357) in the February cesses such as reproduction, blood pressure, and metabo- 15, 2010, issue of Genes & Development, delineate strik- lism. Levels of circulating estrogen and progesterone ingly complex connections between molecular clocks and fluctuate with the menstrual cycle, which in turn affect nuclear receptor signaling pathways, implying the exis- circadian rhythms in women (Shechter and Boivin 2010). tence of a large-scale circadian regulatory network co- In parallel with a diurnal rhythm in circulating adrenocor- ordinating a diverse array of physiological processes to ticotropic hormone, secretion of glucocorticoids and aldo- maintain dynamic homeostasis. sterone from the adrenal gland rises before awakening (Weitzman 1976). Glucocorticoids boost energy produc- tion, and aldosterone increases blood pressure, together gearing up the body for the activity phase. Similarly, Light from the sun sustains life on earth. The 24-h plasma levels of thyroid-stimulating hormone and triiodo- rotation of the earth exposes a vast number of plants thyronine have a synchronous diurnal rhythm (Russell and animals to the light/dark cycle.
    [Show full text]
  • Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
    General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland.
    [Show full text]
  • Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
    Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm.
    [Show full text]
  • Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
    Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries
    [Show full text]
  • The Period of the Circadian Oscillator Is Primarily Determined by the Balance Between Casein Kinase 1 and Protein Phosphatase 1
    The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1 Hyeong-min Leea,1,2, Rongmin Chena,1, Hyukmin Kima, Jean-Pierre Etchegarayb,3, David R. Weaverb, and Choogon Leea,4 aDepartment of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306; and bDepartment of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved August 30, 2011 (received for review May 4, 2011) Mounting evidence suggests that PERIOD (PER) proteins play a PAGE—occurs progressively over several hours (12, 19), which is central role in setting the speed (period) and phase of the circadian critical for stretching the feedback loop to ∼24 h. However, PER2 clock. Pharmacological and genetic studies have shown that changes can be maximally phosphorylated by CK1ε in vitro kinase reac- in PER phosphorylation kinetics are associated with changes in tions within 30 min (20, 21), suggesting that PER phosphorylation circadian rhythm period and phase, which can lead to sleep disorders must be counterbalanced by phosphatases in vivo. such as Familial Advanced Sleep Phase Syndrome in humans. We Because the phase and period of the clock are primarily de- and others have shown that casein kinase 1δ and ε (CK1δ/ε) are termined by temporal regulation of PER phosphorylation (12, 15, essential PER kinases, but it is clear that additional, unknown mech- 21–26), the characterization of PER kinases and phosphatases is anisms are also crucial for regulating the kinetics of PER phosphor- vital to understanding the circadian clock mechanism.
    [Show full text]
  • A Mutant Drosophila Homolog of Mammalian Clock Disrupts
    Cell, Vol. 93, 791±804, May 29, 1998, Copyright 1998 by Cell Press AMutantDrosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless Ravi Allada,*²³§ Neal E. White,³ Aronson et al., 1994; Shearman et al., 1997; Sun et al., W. Venus So,²³ Jeffrey C. Hall,²³ 1997; Tei et al., 1997). ²³ and Michael Rosbash* k In Drosophila, there are two well-characterized clock *Howard Hughes Medical Institute genes: period (per) and timeless (tim). Protein levels, ² NSF, Center for Biological Timing RNA levels, and transcription rates of these two genes ³ Department of Biology undergo robust circadian oscillations (Zerr et al., 1990; Brandeis University Hardin et al., 1990, 1992; Hardin, 1994; Sehgal et al., Waltham, Massachusetts 02254 1995; So and Rosbash, 1997). In addition, mutations § Department of Pathology in the two proteins (PER and TIM) alter or abolish the Brigham and Women's Hospital periodicity and phase of these rhythms, demonstrating Boston, Massachusetts 02115 that both proteins regulate their own transcription (Har- din et al., 1990; Sehgal et al., 1995; Marrus et al., 1996). Although there is no evidence indicating that the effects Summary on transcription are direct, PER contains a PAS domain, which has been shown to mediate interactions between We report the identification, characterization, and transcription factors (Huang et al., 1993; Lindebro et cloning of a novel Drosophila circadian rhythm gene, al., 1995). Most of these PAS-containing transcription dClock. The mutant, initially called Jrk, manifests dom- factors also contain the well-characterized basic helix- inant effects: heterozygous flies have a period alter- loop-helix (bHLH) DNA-binding domains (Crews, 1998).
    [Show full text]
  • Circadian Rhythmicity and the Influence of 'Clock
    2311 Z Kiss and P M Ghosh Prostate cancer and the 23:11 T123–T134 Thematic Review ‘clock’ genes WOMEN IN CANCER THEMATIC REVIEW Circadian rhythmicity and the influence of ‘clock’ genes on prostate cancer Zsofia Kiss1,2 and Paramita M Ghosh1,2,3 1VA Northern California Health Care System, Mather, California, USA Correspondence 2Department of Urology, University of California at Davis, Sacramento, California, USA should be addressed 3Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, to P M Ghosh California, USA Email [email protected] Abstract Key Words The androgen receptor (AR) plays a key role in the development and progression f circadian clock of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out f androgen receptor higher incidences of CaP in some select groups, such as airline pilots and night shift f melatonin workers in comparison with those working regular hours. The common finding in these f per1 ‘high-risk’ groups was that they all experienced a deregulation of the body’s internal f bmal1 circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen Endocrine-Related Cancer Endocrine-Related production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT).
    [Show full text]
  • Correlation Between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-Like Growth Factor-I
    3268 Correlation between Circadian Gene Variants and Serum Levels of Sex Steroids and Insulin-like Growth Factor-I Lisa W. Chu,1,2 Yong Zhu,3 Kai Yu,1 Tongzhang Zheng,3 Anand P. Chokkalingam,4 Frank Z. Stanczyk,5 Yu-Tang Gao,6 and Ann W. Hsing1 1Division of Cancer Epidemiology and Genetics and 2Cancer Prevention Fellowship Program, Office of Preventive Oncology, National Cancer Institute, NIH, Bethesda, Maryland; 3Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut; 4Division of Epidemiology, School of Public Health, University of California at Berkeley, Berkeley, California; 5Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China Abstract A variety of biological processes, including steroid the GG genotype. In addition, the PER1 variant was hormone secretion, have circadian rhythms, which are associated with higher serum levels of sex hormone- P influenced by nine known circadian genes. Previously, binding globulin levels ( trend = 0.03), decreasing we reported that certain variants in circadian genes 5A-androstane-3A,17B-diol glucuronide levels P P were associated with risk for prostate cancer. To pro- ( trend = 0.02), and decreasing IGFBP3 levels ( trend = vide some biological insight into these findings, we 0.05). Furthermore, the CSNK1E variant C allele was examined the relationship of five variants of circadian associated with higher
    [Show full text]
  • Effects of Circadian Clock Genes and Health-Related
    RESEARCH ARTICLE Effects of circadian clock genes and health- related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis Eugene Lin1,2,3*, Po-Hsiu Kuo4, Yu-Li Liu5, Albert C. Yang6,7, Chung-Feng Kao8, Shih- Jen Tsai6,7* 1 Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, 2 Vita Genomics, Inc., Taipei, Taiwan, 3 TickleFish Systems Corporation, Seattle, Western Australia, United States of America, a1111111111 4 Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan a1111111111 University, Taipei, Taiwan, 5 Center for Neuropsychiatric Research, National Health Research Institutes, a1111111111 Miaoli County, Taiwan, 6 Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, 7 Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan, 8 Department of Agronomy, College a1111111111 of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan a1111111111 * [email protected] (EL); [email protected] (SJT) Abstract OPEN ACCESS Citation: Lin E, Kuo P-H, Liu Y-L, Yang AC, Kao C- Increased risk of developing metabolic syndrome (MetS) has been associated with the cir- F, Tsai S-J (2017) Effects of circadian clock genes cadian clock genes. In this study, we assessed whether 29 circadian clock-related genes and health-related behavior on metabolic (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, syndrome in a Taiwanese population: Evidence from association and interaction analysis. PLoS CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, ONE 12(3): e0173861. https://doi.org/10.1371/ PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and journal.pone.0173861 VIPR2) are associated with MetS and its individual components independently and/or Editor: Etienne Challet, CNRS, University of through complex interactions in a Taiwanese population.
    [Show full text]