United States Patent Office Patented Apr

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Apr 2,979,521 United States Patent Office Patented Apr. 11, 1961 1 2 . Sulfuric acid monohydrate is H2SO4 or SOHO. The term "sulfuric acid monohydrate' identifies HSO and 2,979,521. excludes water in excess of the one mole combined with PREPARATION OF GLYCEROL SULFURIC ACDS the one mole of SO3 to form H2SO. Frederick William Gray, Belleville, N.J., assignor to Col . It is necessary at this point to define a few more terms gate-Pamolive Company, Jersey City, N.J., a corpor used in the specification and claims. ration of Delaware . The term "glycerol sulfuric acid' describes any of the glycerol mono-, di- and tri-sulfuric acids, and mixtures No Drawing. Original application Feb. 9, 1955, Ser. thereof. The degree of sulfation of such acids and No. 487,209, now Patent No. 2,868,812, dated Jan. O mixtures is indicated by a number between 0 and 3. 13, 1959. Divided and this application May 7, 1958, Thus, a degree of sulfation of 2.1 might indicate a mix Ser. No. 733,480 ture composed of glycerol di- and tri-sulfuric acids, or 7 Claims. (C. 260-458) more likely one of glycerol disulfuric acid with small amounts of the mono- and tri-sulfuric acids. The present invention relates to processes for the pro 5 "Non-gaseous sulfur trioxide' is the sulfur trioxide in duction of glycerol sulfuric acids. oleum or fuming sulfuric acid, which, if removed, would Included in the invention are methods of producing the leave sulfuric acid monohydrate. It is also liquid sulfur glycerol trisulfuric acid and glycerol sulfuric acid inter trioxide. The term does not include solid sulfur trioxide. mediate useful in the production of the trisulfuric acid. In manufacturing a monoglyceride sulfate detergent of These materials are of particular suitability for the pro 20 higher content of active detersive ingredient than that duction of monoglyceride sulfate detergents and deter generally produced one molecular proportion fatty tri gent intermediates from fatty triglycerides. glyceride, usually coconut oil, hydrogenated tallow or In subsequent descriptions, the words fatty triglyceride, hydrogenated soya oil, and preferably coconut oil, is glycerol trisulfuric acid and sulfuric acid monohydrate, reacted with a mixture of two molecular proportions of as used in the specification and claims have the following 25 glycerol trisulfuric acid and from 4.0 to 4.8, preferably meaning. from 4.2 to 4.6, molecular proportions, of sulfuric acid Fatty triglycerides are those whose acyl groups. aver monohydrate, at a temperature between 30 C. and age from 12 to 18 carbon atoms and are of a degree of 65 C., preferably with the final portion of the reaction unsaturation insufficient to substantially interfere with being conducted at a temperature between 50 C. and the manufacture of the detergent compositions described 30 65 C., to produce a detergent composition intermediate. in this application. Only a relatively small part of the In a preferred process the fatty triglyceride, preferably acyl groups present in such triglycerides may be of a coconut oil, is added, with agitation, within about ten to chain length outside the 12 to 18 carbon atom range. fifteen minutes to a mixture or solution of glycerol tri Such triglycerides are usually employed in the forms of sulfuric acid and/in sulfuric acid monohydrate at a tem coconut or palm kernel oils. However, tallows, greases, 35 perature between 30° C. and 45° C. (higher if the tri lard, cottonseed oil, soybean oil, palm oil and corn oil, glyceride is solid at those temperatures) after which the or fractions or mixtures of any thereof, may be used if reaction mixture is aged with agitation at from 50° C. they are first hydrogenated to remove undesirable unsatu to 65 C., desirably 50° C. to 60° C., for 2 to 2 hours, rated linkages. It is desirable that saturated triglycerides preferably 1 to 1/2 hours. If the reaction mixture is be employed, and since even coconut and palm kernel AO one that becomes excessively viscous a non-interfering oils contain some unsaturated triglycerides, it is some non-aqueous solvent, e.g., ethylene chloride, may be times preferable to hydrogenate these oils too before added to thin it and so enable the reaction to proceed reacting them according to the invented process. In this more readily. The speed of reaction may be increased specification, except for the examples given the term by increasing the degree of contact of the reactants, e.g., "coconut oil" is inclusive of hydrogenated, as well as 45 by improving mixing techniques, and consequently the non-hydrogenated coconut oil. mixing times may be correspondingly decreased. Glycerol trisulfuric acid, . Upon reacting the specified amounts of glycerol tri sulfuric acid, fatty triglyceride and sulfuric acid mono hydrate the following reaction is believed to occur. 50 O C-O-C-R is produced when glycerol is sulfated under proper con CH-OSOE ditions. The degrees of sulfation of glycerol sulfated by 2CH-OSOH --(40 to 4.8)HSO various methods have been determined by titration with 55 E-O-C-R cold sodium hydroxide, and it appears that to secure a C-OSOE O satisfactory detergent product from glycerol, fat and sul fation agent, one should first react the glycerol and sulfa ls. tion agent to produce glycerol trisulfuric acid free of CH-OSO3H CH-OSOE CH-OSOE glycerol mono- and di-sulfuric acids. The aforemen 60 &E-oson &H-osoir H-OSO tioned titration result indicates that the intermediate --(4.0 to 4.8)HSO necessary for the production of a satisfactory fatty acid l O " O O monoester of glycerol monosulfuric acid by the above Hi-o-R, E-05 R, Hi-or, method is glycerol trisulfuric acid and it is referred to as where R, R2, Rs are the same or different fatty radicals such. However it must be borne in mind that this term 65 of from 9 to 19 carbon atoms. The products of the is used to identify the product of processes described in above process, excluding the "monohydrate,” are here this specification. Therefore, should it be found that . after referred to as "disulfated monoacylated glycerol.” any of the products, made by the invented processes, in It is thought that the sulfuric acid is needed to split reality is not glycerol trisulfuric acid, the term never the fat and so aid the metathetic reaction, but this ex theless includes it. It also includes such product when 70 planation of the reaction mechanism is advanced only glycerol trisulfuric acid is called for as a reactant in one as a theory. of the described processes. On reaction with water, the -SOH group linked a,979,521 3 4. through oxygen to the carbon of the disulfated mono or basic aqueous media). However, when the neutraliza acylated glycerol is believed to be hydrolyzed off presum tion process is conducted in a circulating body of already ably, due to its proximity to the acyl group. neutralized material, which acts as a buffer, there is less The resulting compound, monoacylated monosulfated need for rapid neutralization. glycerol (probably with the substituent groups joined to In laboratory experiments detergent composition inter the glycerol terminal carbon atoms) is hereafter referred mediates, especially those derived from coconut oil, have to as “detergent acid.' The mixture of disulfated mono been "hydrolyzed' and neutralized by first plunging said acylated glycerol and sulfuric acid monohydrate in the detergent composition intermediate, made from one mol proportions resulting from the processes of this invention, ecular proportion of glycerol, into from about 200 to 400 is called "detergent composition intermediate.' These O molecular proportions of water at a temperature between terms are used to promote simplicity of expression. Since 0° C. and 50° C., and then neutralizing rapidly with a the identity of the various intermediate compounds has solution of a base, usually sodium hydroxide at an opera not been irrefutably ascertained, and since this invention tive weight concentration, between 20 and 60 percent in is of processes for making detergents and intermediates, the case of sodium hydroxide. Since the heat of dilution the terms used describe the products obtained from the 5 of the detergent composition intermediate is very great, invented processes. It is believed that such products are steps must be taken to prevent an undue temperature rise of the formulas given but the designations used in this when it is diluted. While in actual production it is the specification are not limited thereto. practice to dilute and neutralize in a circulating medium The hydrolysis referred to in a preceding paragraph of already neutralized material, in the laboratory or under may take place when the detergent composition interme 20 certain production conditions such methods are imprac diate is added to water or a water-ice mixture or when it ticable. Hence it is found necessary either to provide is treated with a base in the presence of water. Treatment refrigerated jackets on the processing vessel or, as is with a base will also result in a substitution of the base preferable in the laboratory, to use a mixture of ice and cation for the hydrogen of the remaining -SO3H group, liquid water, usually 2 parts ice and one part liquid water and will render the detergent water soluble. The splitting 25 as the diluting medium, allowing the temperature thereof off of the B-SO3H group and neutralization may also be to rise from 0° C. to approximately room temperature as conducted by adding the detergent composition interme the detergent composition intermediate is added. diate and base to a circulating stream of already neu The preceding descriptions of processes for the manu tralized detergent composition, thereby reducing local con facture of detergent composition intermediates and deter centrations of reactants and permitting the "hydrolysis' 30 gent compositions include the use of glycerol trisulfuric and neutralization to be conducted at a higher temperature acid containing minor amounts of sulfur trioxide (not with a consequent lower viscosity and higher practicable more than 12 parts per 100 parts by weight glycerol tri detergent composition solids concentration limit, while sulfuric acid).
Recommended publications
  • Sodium Sulfate
    FT-08762A Sodium Sulfate Product Information Chemical name : Sodium Sulfate, ACS grade Syn.: Na2SO4 , sodium salt of sulfuric acid, Disodium sulfate; Bisodium sulfate; Dibasic sodium sulfate; Disodium monosulfate; (All.): disodium sulphate; Natriumsulfat; sodium sulphate CAS: 7757-82-6 EC number: 231-820-9 Cat. Number : 08762A, 500g 08762B, 1Kg 08762C, 2.5Kg 08762-B, Bulk Structure : Na2SO4 (anh.) Molecular Weight : 142.04 Properties: Form: white solid crystalline powder (hygroscopic) Density: 2.664 g/cm3 Melting point: 884°C Boiling point: 1429°C Refractive index (nD)/ 1.468 pKa: 10.329 and 6.351(carbonic acid) Solubility: readily soluble in water >4% w/v Storage: Room temperature (Z) Safety: Irritant. Non-flammable. Risk Statements: 36/37/38 Safety Statements: 36/37/39 Applications: Suitable for many biochemistry and biotechnology applications. P.1 FT-08762A Specifications Test Specifications Purity >99.0% Calcium (%) 0.01 Chloride (%) 0.001 Heavy Metals (as Pb) 0.0005 Iron (%) 0.001 Magnesium (%) 0.005% Nitrogen compounds (%) 0.0005% Phosphates (%) 0.001% Insolubles 0.001% Loss on Ignition (%) 0.5 pH (5%, water, 25°C) 0.01 + Technical information ●Chemistry Sodium sulfate is a neutral salt, which forms aqueous solutions with pH of 7. The Na+ ion weakly polarizes its water lig- ands provided there are metal ions in solution. Sodium sulfate reacts with sulfuric acid to give the acid salt sodium bisulfate, leading ot a temperatude-dependant equi- librium: Na2SO4 + H2SO4 ⇌ 2 NaHSO4 2− Sulfate ions (SO4 ) in solution can be indicated by the easy formation of insoluble sulfates when these solutions are treated with Ba2+ or Pb2+ salts: Na2SO4 + BaCl2 → 2 NaCl + BaSO4 Double salts with some other alkali metal sulfates are known, including Na2SO4·3K2SO4.
    [Show full text]
  • Root Touch-Up Ingredients/Ingrédients
    ROOT TOUCH-UP INGREDIENTS/INGRÉDIENTS: In every box you’ll find: Color Blend Formula (#1) and the Color Blend Activator (#2). Our Color Blend Formula is uniquely formulated to achieve your desired shade. Find yours below. COLORBLEND ACTIVATOR (2) COLORBLEND FORMULA (1) WATER, HYDROGEN PEROXIDE, CETEARYL ALCOHOL, 5A/MEDIUM ASH BROWN NOL, CARAMEL, p-PHENYLENEDIAMINE, SODIUM 7/DARK BLONDE CETEARETH-20, STEARETH-21, LAURETH-23, WATER, C12-15 PARETH-3, AMMONIUM HYDROX- SULFITE, 1-NAPHTHOL, IRON OXIDES, N,N-BIS(2-HY- WATER, C12-15 PARETH-3, AMMONIUM HYDROX- POLYQUATERNIUM-37, PROPYLENE GLYCOL IDE, OLETH-10, DILINOLEIC ACID, COCAMIDE MEA, DROXYETHYL)-p-PHENYLENEDIAMINE SULFATE, MICA, IDE, OLETH-10, DILINOLEIC ACID, COCAMIDE MEA, DICAPRYLATE/DICAPRATE, STYRENE/VP COPOLYMER, LINOLEAMIDOPROPYL DIMETHYLAMINE DIMER p-AMINOPHENOL, SODIUM METASILICATE, EDTA, LINOLEAMIDOPROPYL DIMETHYLAMINE DIMER PPG-1 TRIDECETH-6, ETIDRONIC ACID. DILINOLEATE, STEARETH-21, BEHENTRIMONIUM m-AMINOPHENOL, SARGASSUM FILIPENDULA EX- DILINOLEATE, STEARETH-21, BEHENTRIMONIUM CHLORIDE, POLYQUATERNIUM-22, SODIUM SULFATE, TRACT, HYPNEA MUSCIFORMIS EXTRACT, GELLIDIELA CHLORIDE, POLYQUATERNIUM-22, FRAGRANCE, FRAGRANCE, RESORCINOL, ERYTHORBIC ACID, ACEROSA EXTRACT, TITANIUM DIOXIDE. SODIUM SULFATE, ERYTHORBIC ACID, p-AMINOPHE- p-PHENYLENEDIAMINE, CARAMEL, p-AMINOPHENOL, NOL, RESORCINOL, p-PHENYLENEDIAMINE, MICA, m-AMINOPHENOL, IRON OXIDES, MICA, SODIUM SODIUM SULFITE, TITANIUM DIOXIDE, m-AMINOPHE- SULFITE, N,N-BIS(2-HYDROXYETHYL)-p-PHENYLENE- 5G/MEDIUM GOLDEN BROWN NOL, SODIUM METASILICATE, EDTA, SARGASSUM FILI- DIAMINE SULFATE, 1-NAPHTHOL, SODIUM METASILI- WATER, C12-15 PARETH-3, AMMONIUM HYDROX- PENDULA EXTRACT, HYPNEA MUSCIFORMIS EXTRACT, CATE, EDTA, SARGASSUM FILIPENDULA EXTRACT, HY- IDE, OLETH-10, DILINOLEIC ACID, COCAMIDE MEA, 1-NAPHTHOL, IRON OXIDES, N,N-BIS(2-HYDROXYETH- PNEA MUSCIFORMIS EXTRACT, GELLIDIELA ACEROSA LINOLEAMIDOPROPYL DIMETHYLAMINE DIMER YL)-p-PHENYLENEDIAMINE SULFATE, GELLIDIELA EXTRACT, TITANIUM DIOXIDE.
    [Show full text]
  • Sodium Sulfate CAS N°: 7757-82-6
    OECD SIDS SODIUM SULFATE FOREWORD INTRODUCTION Sodium sulfate CAS N°: 7757-82-6 UNEP PUBLICATIONS 1 OECD SIDS SODIUM SULFATE SIDS Initial Assessment Report For SIAM 20 Paris, France, 19 – 22 April 2005 1. Chemical Name: Sodium sulfate 2. CAS Number: 7757-82-6 3. Sponsor Country: Slovak Republic Contact Point: Centre for Chemical Substances and Preparations, Bratislava Contact Person: Peter Rusnak, Ph.D. Director Co-sponsor Country: Czech Republic Contact Point: Ministry of Environment Contact Person: Karel Bláha, Ph.D. Director Department of Environmental Risks Prague 4. Shared Partnership with: Sodium Sulfate Producers Association (SSPA)∗ and TOSOH 5. Roles/Responsibilities of the Partners: • Name of industry sponsor Sodium Sulfate Producers Association (SSPA) /consortium • Process used Documents were drafted by the consortium, then peer reviewed by sponsor countries experts 6. Sponsorship History • How was the chemical or Nominated by ICCA in the framework of the ICCA HPV category brought into the program OECD HPV Chemicals Programme? 7. Review Process Prior to Two drafts were reviewed by the Slovakian/Czech authorities; third the SIAM: draft subject to review by OECD membership 8. Quality check process: Data was reviewed against the OECD criteria as described in the SIDS manual. These criteria were used to select data for extraction into the SIDS dossier. Original data was sought wherever possible. Originally reported work was deemed reliable if sufficient information was reported (according to the manual) to judge it robust. Reviews were only judged reliable if reported 2 UNEP PUBLICATIONS OECD SIDS SODIUM SULFATE by reputable organisations/authorities or if partners had been directly involved in their production 9.
    [Show full text]
  • Sodium Sulfate (Natrii Sulfas)
    The International Pharmacopoeia - Sixth Edition, 2016 Sodium sulfate (Natrii sulfas) Sodium sulfate (Natrii sulfas) Molecular formula. Na SO ,10H O 2 4 2 Relative molecular mass. 322.2 Chemical name. Disodium sulfate decahydrate; sulfuric acid disodium salt, decahydrate; CAS Reg. No. 7727-73-3 (decahydrate). Other name. Glauber's salt. Description. Colourless crystals or a white powder; odourless. Solubility. Freely soluble in water; practically insoluble in ethanol (~750 g/l) TS. Category. Laxative. Storage. Sodium sulfate should be kept in a well-closed container. Additional information. Sodium sulfate partially dissolves in its own water of crystallization at about 33°C. Requirements Definition. Sodium sulfate contains not less than 99.0% and not more than 100.5% of Na2SO4, calculated with reference to the dried substance. Identity tests A. When tested for sodium as described under 2.1 General identification tests, yields the characteristic reactions. If reaction B is to be used, prepare a 0.05 g/mL solution. B. A 0.05 g/mL solution yields reaction A described under 2.1 General identification tests as characteristic of sulfates. Heavy metals. Use 1.0 g for the preparation of the test solution as described under 2.2.3 Limit test for heavy metals, Procedure 1; determine the heavy metals content according to Method A; not more than 20 μg/g. Ammonium salts. Transfer 1 g to a test-tube, add about 0.3 g of potassium hydroxide R and heat the mixture; a moistened red litmus paper R placed in the evolved vapours does not turn blue. Arsenic. Use a solution of 5 g in 35 mL of water and proceed as described under 2.2.5 Limit test for arsenic; the arsenic content is not more than 2 μg/g.
    [Show full text]
  • Crystallization Kinetics of Sodium Sulfate
    CRYSTALLIZATION KINETICS OF SODIUM SULFATE IN A SALTING OUT MSMPR CRYSTALLIZER SYSTEM Na2S0«t/H2S0^/H20/Me0H By GEORGE MINA-MANKARIOS B.Sc., The University of Manchester Institute of Science and Technology, England, 1982 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Chemical Engineering) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January 1988 r © George Mina-Mankarios, 1988 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of CHEMICAL ENGINEERING The University of British Columbia 1956 Main Mall Vancouver, Canada V6T 1Y3 Date SEPTEMBER 5, 1988 DE-6(3/81) - ii - ABSTRACT The growth and nucleation rates of sodium sulfate crystals salted out from their solution in a 38% w/w sulfuric acid solvent by the addition of an 80:20 w/w methanol'.water solution, were determined from measurements of the steady-state crystal size distribution (CSD) generated in a continuous mixed-suspension, mixed-product- removal (MSMPR) salting out crystallizer, and the effect of the supersaturation, the crystal suspension density and the temperature on these rates was investigated.
    [Show full text]
  • Sodium Sulfate, Anhydrous Safety Data Sheet According to Federal Register / Vol
    Sodium Sulfate, Anhydrous Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 11/21/2014 Revision date: 04/11/2018 Supersedes: 04/11/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Sodium Sulfate, Anhydrous CAS-No. : 7757-82-6 Product code : LC24880 Formula : Na2SO4 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Not classified 2.2. GHS Label elements, including precautionary statements Not classified as a hazardous chemical. Other hazards not contributing to the : None under normal conditions. classification 2.4. Unknown acute toxicity (GHS US) Not applicable SECTION 3: Composition/Information on ingredients 3.1. Substances Substance type : Mono-constituent Name Product identifier % GHS -US classificatio n Sodium Sulfate, Anhydrous (CAS-No.) 7757-82-6 100 Not classified (Main constituent) Full text of hazard classes and H-statements : see section 16 3.2. Mixtures Not applicable SECTION 4: First-aid measures 4.1. Description of first aid measures First-aid measures general : Never give anything by mouth to an unconscious person.
    [Show full text]
  • Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis
    membranes Article Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis Wenjie Gao 1, Qinxiang Fang 1, Haiyang Yan 2 , Xinlai Wei 1,2,* and Ke Wu 1,* 1 Collaborative Innovation Center for Environmental Pollution Precaution and Ecological Rehabilitation of Anhui, School of Biology, Food and Environment Engineering, Hefei University, Hefei 230601, China; [email protected] (W.G.); [email protected] (Q.F.) 2 CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; [email protected] * Correspondence: [email protected] (X.W.); [email protected] (K.W.) Abstract: Lithium carbonate is an important chemical raw material that is widely used in many contexts. The preparation of lithium carbonate by acid roasting is limited due to the large amounts of low-value sodium sulfate waste salts that result. In this research, bipolar membrane electrodialysis (BMED) technology was developed to treat waste sodium sulfate containing lithium carbonate for conversion of low-value sodium sulfate into high-value sulfuric acid and sodium hydroxide. Both can be used as raw materials in upstream processes. In order to verify the feasibility of the method, the effects of the feed salt concentration, current density, flow rate, and volume ratio on the desalination performance were determined. The conversion rate of sodium sulfate was close to 100%. The energy consumption obtained under the best experimental conditions was 1.4 kWh·kg−1. The purity of the obtained sulfuric acid and sodium hydroxide products reached 98.32% and 98.23%, respectively.
    [Show full text]
  • Sodium Dodecyl Sulphate
    SAFETY DATA SHEET Creation Date 24-Nov-2010 Revision Date 18-Jan-2018 Revision Number 5 1. Identification Product Name SDS Micropellets (sodium dodecyl sulfate) Cat No. : BP8200-100; BP8200-5; BP8200-500; BP8200-10 CAS-No 151-21-3 Synonyms Sodium lauryl sulfate; SDS; Dodecyl Sodium Sulfate Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute oral toxicity Category 4 Skin Corrosion/irritation Category 2 Serious Eye Damage/Eye Irritation Category 1 Combustible dust Yes Label Elements Signal Word Danger Hazard Statements May form combustible dust concentrations in air Harmful if swallowed Causes skin irritation Causes serious eye damage ______________________________________________________________________________________________ Page 1 / 7 SDS Micropellets (sodium dodecyl sulfate) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing/eye protection/face protection Skin IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse Eyes IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Food and Drug Administration, HHS § 186.1839
    Food and Drug Administration, HHS § 186.1839 slimicide in the manufacture of paper aging with no limitation other than and paperboard that contact food. current good manufacturing practice. (c) Prior sanctions for this ingredient [45 FR 16470, Mar. 14, 1980] different from the uses established in § 186.1756 Sodium formate. this section do not exist or have been waived. (a) Sodium formate (CHNaO2, CAS Reg. No. 141–53–7) is the sodium salt of [51 FR 39372, Oct. 28, 1986] formic acid. It is produced by the reac- tion of carbon monoxide with sodium § 186.1797 Sodium sulfate. hydroxide. (a) Sodium sulfate (Na2SO4, CAS Reg. (b) The ingredient is used as a con- No. 7757–82–6), also known as Glauber’s stituent of paper and paperboard used salt, occurs naturally and exists as for food packaging. colorless crystals or as a fine, white (c) The ingredient is used at levels crystalline powder. It is prepared by not to exceed good manufacturing the neutralization of sulfuric acid with practice in accordance with § 186.1(b)(1). sodium hydroxide. (d) Prior sanctions for sodium for- (b) The ingredient is used as a con- mate different from the uses estab- stituent of paper and paperboard used lished in this section do not exist or for food packaging, and cotton and cot- have been waived. ton fabric used for dry food packaging. [45 FR 22915, Apr. 4, 1980] (c) The ingredient is used at levels not to exceed good manufacturing § 186.1770 Sodium oleate. practice in accordance with § 186.1(b)(1). (d) Prior sanctions for this ingredient (a) Sodium oleate (C H O Na, CAS 18 33 2 different from the uses established in Reg.
    [Show full text]
  • Direct Synthesis of Functional Novolacs and Their Polymer Reactions
    Polymer Journal (2010) 42, 443–449 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/10 $32.00 www.nature.com/pj ORIGINAL ARTICLE Direct synthesis of functional novolacs and their polymer reactions Gen-ichi Konishi1, Takatsugu Tajima1,2, Tsuyoshi Kimura1,2, Yusuke Tojo1, Kazuhiko Mizuno3 and Yoshiaki Nakamoto2 We report the direct synthesis of new functional novolacs having allyl ether (4) or bromoalkyl groups (5 and 6) in the side chain by the addition-condensation of allyl phenyl ether (1), 1-bromo-2-phenoxyethane (2) or 1-bromo-4-phenoxybutane (3) with formaldehyde. The structure of these novolacs was confirmed by Fourier transform infrared, 1H NMR and 13C NMR spectra. The number-average molecular weights (Mn) of the obtained polymers were found to be B1000–3000. In the case of the polymerization of 1 with formaldehyde using hydrated sulfuric acid as a catalyst, Claisen condensation did not occur with the polymerization; therefore, pure allylated novolac (4) without a phenol moiety was obtained. Thus, in this process, phenol– formaldehyde condensation proceeded under such conditions that the functional group was not affected. These polymers (4–6) have considerable potential as reactive polymers in the field of materials science. Their applications are as follows: (i) a key reaction of a latent curing system: thermal stimuli-induced Claisen rearrangement of allylated novolac to generate phenolic hydroxyl groups; (ii) vinyl ether-modified novolac (7) prepared by 1-bromoethoxy-group-modified novolac; and (iii) an amphiphilic graft-shaped polymer prepared by bromoalkyl-group-modified novolac-initiated ring-opening polymerization of 2-methyl-2- oxazoline.
    [Show full text]
  • Composition Des Colorations Chimiques
    Composition des colorations chimiques Nom du produit Nuance Marque Composition A bannir Peu recommandable Acceptable Nutrisse Crème Châtain Garnier Crème colorante: Aqua, cetearyl Alcohol, Propylene glycol, Deceth-3, Laureth 12, Amomium Amomium hydroxyde Deceth-3, Propylene glycol Hydroxyde, Oleth 30, Lauric Acid, Hexadimethrine Chloride, Glycol distearate, Polyquaternium 22, toluène-2,5 diamine Laureth 12 Hexadimethrine Chloride Ethanolamine, Silica dimethyl silylate (nano), silica dimethyl silicate, toluène-2,5 diamine, CI77891, 2,4-Diaminophenoxyethanol HCI Oleth 30 glycol distearate titanium dioxide, 2,4-Diaminophenoxyethanol HCI, m-aminophenol, Ascorbic acid, Tocopherol, m-aminophenol Polyquaternium-22 Thioglycerin Sodium metabisulfite, Thioglycerin, Heliantus annus seed oil, Sunflower seed oil, Dimethicone, N,N- N,N-Bis (2-hydroxyethyl)-p-phenylenediamine sulfate ethanolamine Carbomer, Bis (2-hydroxyethyl)-p-phenylenediamine sulfate, Carbomer, resorcinol, rosmarinus officinalis resorcinol Sodium metabisulfite EDTA (rosemary) extract, EDTA, Vitis Vinifera seed oil, parfum (F.I.L C202759/1) BHT Dimethicone tetrasodium etidronate Lait révélateur: Aqua, hydrogen peroxide, cetearyl alcool, trideceth-2 carboxamide mea, ceteareth- butylphenyl methylpropional hydrogen peroxide tetrasodium phyrophosphate 25, glycerin, tetrasodium etidronate, tetrasodium phyrophosphate, sodium salicylate, phosphoric trideceth-2 carboxamide mea phosphoric acid acid, parfum (F.I.L C202759/1) ceteareth-25 linaool Soin nutritif: Aqua, cetearyl Alcohol, paraffinum
    [Show full text]
  • Salts Are Our Life Mg
    Zn Fe Salts are our Life Mg Ca K www.lohmann4minerals.com The whole is more than the sum of its Parts. Aristoteles 2 Dr. Paul Lohmann® management f.l.t.r.: Dr. Uwe Günther, Torsten Cuno, Jürgen Lohmann Achieving more together The famous chemist Justus von Liebig said: “Salt is the most precious of all jewels which the earth gives us.” Mineral salts are essential to all life on our planet. For us at the Dr. Paul Lohmann® company, these salts are also vitally important—salts are our life! Dr. Paul Lohmann GmbH KG manufactures a broad portfolio of mineral salts for use in a variety of applications. We’ve been producing these special salts for over 130 years and of course have a great deal of experience. Based on this long-standing tradition we have the expertise to reliably develop and produce high-quality mineral salts for the pharma- ceutical industry, for food and nutritional supplements, cosmetics and many other areas in chemistry and technology. Tradition meets innovation. Mineral salts are exciting chemical compounds. Our developers design new innovative products, combinations and applications in collaboration with our customers. Our research, development and application center is continuously generating new ideas, developing a great deal of potential in many markets. At the Dr. Paul Lohmann® company, we gladly take on the challenges—worldwide. We are here to serve people—salts are our life! In 1886, chemist Dr. Paul Lohmann began 1886 producing reduced iron (ferrum reductum) for the treatment of iron defi ciency in a vacant factory located at Feuergraben in Hamelin.
    [Show full text]