A Practical Comparison of the Java and C++ Resource Management Facilities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ISO/IEC JTC 1/SC 22/WG4 N 0163 Information Technology
ISO/IEC JTC 1/SC 22/WG4 N 0163 Date: 2002-05-21 Reference number of document: WDTR 19755 Version 1.1 Committee identification: ISO/IEC JTC 1/SC 22 /WG 4 Secretariat: ANSI Information Technology — Programming languages, their environments and system software interfaces — Object finalization for programming language COBOL Warning This document is an ISO/IEC proposed draft Technical Report. It is not an ISO/IEC International Technical Report. It is distributed for review and comment. It is subject to change without notice and shall not be referred to as an International Technical Report or International Standard. Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document type: Technical report Document subtype: n/a Document stage: (20) Preparation Document language: E ISO/WDTR 19755 Copyright notice This ISO/IEC document is a working draft and is copyright-protected by ISO/IEC. Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO’s member body in the country of the requester: Copyright manager ISO Central Secretariat 1 rue de Varembé 1211 Geneva 20 Switzerland tel: +41 22 749 0111 fax: +41 22 734 0179 email: [email protected] Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be prosecuted. ii © ISO/IEC 2002 – All rights reserved ISO/IEC WDTR 19755 Acknowledgement notice COBOL originated in 1959 as a common business oriented language developed by the Conference on Data Systems Languages (CODASYL). -
Stable/Build) • --Port PORT - Set the PORT Number (Default: 8000)
Pyodide Release 0.18.1 unknown Sep 16, 2021 CONTENTS 1 Using Pyodide 3 1.1 Getting started..............................................3 1.2 Downloading and deploying Pyodide..................................6 1.3 Using Pyodide..............................................7 1.4 Loading packages............................................ 12 1.5 Type translations............................................. 14 1.6 Pyodide Python compatibility...................................... 25 1.7 API Reference.............................................. 26 1.8 Frequently Asked Questions....................................... 50 2 Development 55 2.1 Building from sources.......................................... 55 2.2 Creating a Pyodide package....................................... 57 2.3 How to Contribute............................................ 64 2.4 Testing and benchmarking........................................ 74 2.5 Interactive Debugging.......................................... 76 3 Project 79 3.1 About Pyodide.............................................. 79 3.2 Roadmap................................................. 80 3.3 Code of Conduct............................................. 82 3.4 Governance and Decision-making.................................... 83 3.5 Change Log............................................... 85 3.6 Related Projects............................................. 95 4 Indices and tables 97 Python Module Index 99 Index 101 i ii Pyodide, Release 0.18.1 Python with the scientific stack, compiled to WebAssembly. -
Visual Smalltalk Enterprise ™ ™
Visual Smalltalk Enterprise ™ ™ Language Reference P46-0201-00 Copyright © 1999–2000 Cincom Systems, Inc. All rights reserved. Copyright © 1999–2000 Seagull Systems, Inc. All rights reserved. This product contains copyrighted third-party software. Part Number: P46-0201-00 Software Release 3.2 This document is subject to change without notice. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Trademark acknowledgments: CINCOM, CINCOM SYSTEMS, and the Cincom logo are registered trademarks of Cincom Systems, Inc. Visual Smalltalk is a trademark of Cincom Systems, Inc., its subsidiaries, or successors and are registered in the United States and other countries. Microsoft Windows is a registered trademark of Microsoft, Inc. Win32 is a trademark of Microsoft, Inc. OS/2 is a registered trademark of IBM Corporation. Other product names mentioned herein are used for identification purposes only, and may be trademarks of their respective companies. The following copyright notices apply to software that accompanies this documentation: Visual Smalltalk is furnished under a license and may not be used, copied, disclosed, and/or distributed except in accordance with the terms of said license. No class names, hierarchies, or protocols may be copied for implementation in other systems. This manual set and online system documentation copyright © 1999–2000 by Cincom Systems, Inc. All rights reserved. No part of it may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Cincom. -
Smart Pointers Raw Pointers (1 of 3)
Data Abstraction & Problem Solving with C++: Walls and Mirrors Seventh Edition C++ Interlude 4 Safe Memory Management Using Smart Pointers Raw Pointers (1 of 3) • Allocate memory in free store by using new operator – Returns reference to newly created object in memory • Store reference to object in a pointer variable – Use pointer variable to access object • Copy reference to another pointer variable – Creates alias to same object Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved Raw Pointers (2 of 3) • Use delete operator to deallocate object’s memory – Must also set to null p t r any pointer variables that referenced the object • Need to keep track number of aliases that reference an object … else results in – Dangling pointers – Memory leaks – Other errors (program crash, wasted memory, …) Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved Raw Pointers (3 of 3) • Languages such as Java and Python disallow direct reference to objects – Use reference counting to track number of aliases that reference an object – Known as the “reference count” • Language can detect when object no longer has references – Can deallocate … known as “garbage collection” Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved Smart Pointers (1 of 2) • C++ now supports “smart” pointers (or managed pointers) – Act like raw pointers – Also provide automatic memory management features • When you declare a smart pointer – Placed on application stack – Smart pointer references an object object is “managed” Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved Smart Pointers (2 of 2) • Smart-pointer templates – shared_p t r – provides shared ownership of object – unique_p t r – no other pointer can reference same object – weak_p t r – reference to an object already managed by a shared pointer … does not have ownership of the object Copyright © 2017, 2013, 2007 Pearson Education, Inc. -
Gnu Smalltalk Library Reference Version 3.2.5 24 November 2017
gnu Smalltalk Library Reference Version 3.2.5 24 November 2017 by Paolo Bonzini Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". 1 3 1 Base classes 1.1 Tree Classes documented in this manual are boldfaced. Autoload Object Behavior ClassDescription Class Metaclass BlockClosure Boolean False True CObject CAggregate CArray CPtr CString CCallable CCallbackDescriptor CFunctionDescriptor CCompound CStruct CUnion CScalar CChar CDouble CFloat CInt CLong CLongDouble CLongLong CShort CSmalltalk CUChar CByte CBoolean CUInt CULong CULongLong CUShort ContextPart 4 GNU Smalltalk Library Reference BlockContext MethodContext Continuation CType CPtrCType CArrayCType CScalarCType CStringCType Delay Directory DLD DumperProxy AlternativeObjectProxy NullProxy VersionableObjectProxy PluggableProxy SingletonProxy DynamicVariable Exception Error ArithmeticError ZeroDivide MessageNotUnderstood SystemExceptions.InvalidValue SystemExceptions.EmptyCollection SystemExceptions.InvalidArgument SystemExceptions.AlreadyDefined SystemExceptions.ArgumentOutOfRange SystemExceptions.IndexOutOfRange SystemExceptions.InvalidSize SystemExceptions.NotFound SystemExceptions.PackageNotAvailable SystemExceptions.InvalidProcessState SystemExceptions.InvalidState -
Metaclasses: Generative C++
Metaclasses: Generative C++ Document Number: P0707 R3 Date: 2018-02-11 Reply-to: Herb Sutter ([email protected]) Audience: SG7, EWG Contents 1 Overview .............................................................................................................................................................2 2 Language: Metaclasses .......................................................................................................................................7 3 Library: Example metaclasses .......................................................................................................................... 18 4 Applying metaclasses: Qt moc and C++/WinRT .............................................................................................. 35 5 Alternatives for sourcedefinition transform syntax .................................................................................... 41 6 Alternatives for applying the transform .......................................................................................................... 43 7 FAQs ................................................................................................................................................................. 46 8 Revision history ............................................................................................................................................... 51 Major changes in R3: Switched to function-style declaration syntax per SG7 direction in Albuquerque (old: $class M new: constexpr void M(meta::type target, -
A Tour of the Squeak Object Engine
A Tour of the Squeak Object Engine A Tour of the Squeak Object Engine Tim Rowledge, [email protected] Introduction This chapter is intended to explain some basics of how a Virtual Machine (VM) works, why a VM is useful, what it does for the Squeak programmer and user, and how the Squeak VM might develop in the future. What is a Virtual Machine and why do we need one? A Virtual Machine provides us with a pretense of being a machine other than the actual hardware in use. Using one allows systems that behave differently than the host hardware to run as if on hardware designed for them. The term Object Engine is less commonly used but is a useful concept that includes the lowest system areas of the langauge environment running on the VM. Since there is often some flux in the definition of which components are within the actual VM and which are part of the supported environment, Object Engine is useful as a more inclusive term. The term Virtual Machine is used in several ways. When IBM refer to VM/CMS they are referring to a way of making a mainframe behave as if it is many machines, so that programs can assume they have total control even though they do not. Intel provide a somewhat similar facility in the x86 architecture(?), referred to as Virtual Mode. This sort of VM is a complete hardware simulation, often supported at the lowest level by the hardware. Another sort of VM is the emulator - SoftWindows for the Mac, Acorn's !PC, Linux's WINE are good examples - where another machine and/or OS is simulated to allow a Mac user to run Windows programs, an Acorn RiscPC or a Linux machine to run Windows98 programs and so on. -
Exposing C++ Functions and Classes with Rcpp Modules
Exposing C++ functions and classes with Rcpp modules Dirk Eddelbuettela and Romain Françoisb ahttp://dirk.eddelbuettel.com; bhttps://romain.rbind.io/ This version was compiled on July 3, 2021 This note discusses Rcpp modules. Rcpp modules allow programmers to Here we use the (templated) Rcpp converter as() which can expose C++ functions and classes to R with relative ease. Rcpp modules transform from a SEXP to a number of different C++ and Rcpp are inspired from the Boost.Python C++ library (Abrahams and Grosse- types. The Rcpp function wrap() offers the opposite functionality Kunstleve, 2003) which provides similar features for Python. and converts many known types to a SEXP. This process is simple enough, and is used by a number of Rcpp | modules | R | C++ CRAN packages. However, it requires direct involvement from the programmer, which quickly becomes tiresome when many functions 1. Motivation are involved. Rcpp modules provides a much more elegant and Exposing C++ functionality to R is greatly facilitated by the Rcpp unintrusive way to expose C++ functions such as the norm function package and its underlying C++ library (Eddelbuettel et al., 2021; shown above to R. Eddelbuettel and François, 2011). Rcpp smoothes many of the We should note that Rcpp now has Rcpp attributes which ex- rough edges in R and C++ integration by replacing the traditional tends certain aspect of Rcpp modules and makes binding to simple R Application Programming Interface (API) described in ‘Writing functions such as this one even easier. With Rcpp attributes we can R Extensions’(R Core Team, 2018) with a consistent set of C++ just write classes. -
Transparent Garbage Collection for C++
Document Number: WG21/N1833=05-0093 Date: 2005-06-24 Reply to: Hans-J. Boehm [email protected] 1501 Page Mill Rd., MS 1138 Palo Alto CA 94304 USA Transparent Garbage Collection for C++ Hans Boehm Michael Spertus Abstract A number of possible approaches to automatic memory management in C++ have been considered over the years. Here we propose the re- consideration of an approach that relies on partially conservative garbage collection. Its principal advantage is that objects referenced by ordinary pointers may be garbage-collected. Unlike other approaches, this makes it possible to garbage-collect ob- jects allocated and manipulated by most legacy libraries. This makes it much easier to convert existing code to a garbage-collected environment. It also means that it can be used, for example, to “repair” legacy code with deficient memory management. The approach taken here is similar to that taken by Bjarne Strous- trup’s much earlier proposal (N0932=96-0114). Based on prior discussion on the core reflector, this version does insist that implementations make an attempt at garbage collection if so requested by the application. How- ever, since there is no real notion of space usage in the standard, there is no way to make this a substantive requirement. An implementation that “garbage collects” by deallocating all collectable memory at process exit will remain conforming, though it is likely to be unsatisfactory for some uses. 1 Introduction A number of different mechanisms for adding automatic memory reclamation (garbage collection) to C++ have been considered: 1. Smart-pointer-based approaches which recycle objects no longer ref- erenced via special library-defined replacement pointer types. -
FFI: Racket Foreign Interface
FFI: Racket Foreign Interface Version 5.0 Eli Barzilay June 6, 2010 (require ffi/unsafe) The ffi/unsafe library enables the direct use of C-based APIs within Racket programs— without writing any new C code. From the Racket perspective, functions and data with a C-based API are foreign, hence the term foreign interface. Furthermore, since most APIs consist mostly of functions, the foreign interface is sometimes called a foreign function in- terface, abbreviated FFI. 1 Contents 1 Overview 4 2 Loading Foreign Libraries 5 3 C Types 8 3.1 Type Constructors . 8 3.2 Numeric Types . 9 3.3 Other Atomic Types . 10 3.4 String Types . 11 3.4.1 Primitive String Types . 11 3.4.2 Fixed Auto-Converting String Types . 11 3.4.3 Variable Auto-Converting String Type . 12 3.4.4 Other String Types . 12 3.5 Pointer Types . 13 3.6 Function Types . 14 3.6.1 Custom Function Types . 18 3.7 C Struct Types . 21 3.8 Enumerations and Masks . 24 4 Pointer Functions 26 4.1 Pointer Dereferencing . 27 4.2 Memory Management . 30 5 Derived Utilities 34 5.1 Safe Homogenous Vectors . 34 5.2 Safe C Vectors . 40 2 5.3 Tagged C Pointer Types . 42 5.4 Defining Bindings . 44 5.5 Allocation and Finalization . 46 5.6 Atomic Execution . 47 5.7 Objective-C FFI . 48 5.7.1 FFI Types and Constants . 48 5.7.2 Syntactic Forms and Procedures . 49 5.7.3 Raw Runtime Functions . 53 5.7.4 Legacy Library . -
Smart Pointer Demo Goals Time
Outline Smart Pointer Demo Goals Time CPSC 427: Object-Oriented Programming Michael J. Fischer Lecture 13 March 3, 2016 CPSC 427, Lecture 13 1/17 Outline Smart Pointer Demo Goals Time Smart Pointer Demo More on Course Goals Clocks and Time Measurement CPSC 427, Lecture 13 2/17 Outline Smart Pointer Demo Goals Time Smart Pointer Demo CPSC 427, Lecture 13 3/17 Outline Smart Pointer Demo Goals Time Dangling pointers Pointers can be used to permit object sharing from different contexts. One can have a single object of some type T with many pointers in different contexts that all point to that object. CPSC 427, Lecture 13 4/17 Outline Smart Pointer Demo Goals Time Problems with shared objects If the different contexts have different lifetimes, the problem is to know when it is safe to delete the object. It can be difficult to know when an object should be deleted. Failure to delete an object will cause memory leaks. If the object is deleted while there are still points pointing to it, then those pointers become invalid. We call these dangling pointers. Failure to delete or premature deletion of objects are common sources of errors in C++. CPSC 427, Lecture 13 5/17 Outline Smart Pointer Demo Goals Time Avoiding dangling pointers There are several ways to avoid dangling pointers. 1. Have a top-level manager whose lifetime exceeds that of all of the pointers take responsibility for deleting the objects. 2. Use a garbage collection. (This is java's approach.) 3. Use reference counts. That is, keep track somehow of the number of outstanding pointers to an object. -
C++/CLI Tutorial
CC++++//CCLLII TTuuttoorriiaall Author: Adam Sawicki, [email protected], www.asawicki.info Version 1.0, December 2011 Table of Contents Table of Contents .............................................................................................................................................................. 1 Introduction ...................................................................................................................................................................... 2 What is C++/CLI? ............................................................................................................................................................... 2 Why Use C++/CLI? ......................................................................................................................................................... 2 What C++/CLI is Not? .................................................................................................................................................... 2 Hello World Example ........................................................................................................................................................ 3 Project Properties ............................................................................................................................................................. 3 Namespaces .....................................................................................................................................................................