Penagonzalez-Dissertation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Botulism: Guidance for Health Care Providers Key Medical and Public Health Interventions After Identification of a Suspected Case
Virginia Department of Health Botulism: Guidance for Health Care Providers Key Medical and Public Health Interventions after Identification of a Suspected Case Table of Contents 1. Epidemiology ........................................................................................................................................ 1 2. Clinical Manifestations .......................................................................................................................... 2 3. Laboratory Testing and Diagnosis ......................................................................................................... 3 4. Treatment ............................................................................................................................................. 6 5. Post-exposure Prophylaxis .................................................................................................................... 6 6. Vaccination ........................................................................................................................................... 6 7. Infection Control ................................................................................................................................... 6 8. Decontamination .................................................................................................................................. 7 9. Postmortem Practices ........................................................................................................................... 7 10. Public Health -
Bringing a Trait‐Based Approach to Plant‐Associated Fungi
Biol. Rev. (2020), 95, pp. 409–433. 409 doi: 10.1111/brv.12570 Fungal functional ecology: bringing a trait-based approach to plant-associated fungi Amy E. Zanne1,∗ , Kessy Abarenkov2, Michelle E. Afkhami3, Carlos A. Aguilar-Trigueros4, Scott Bates5, Jennifer M. Bhatnagar6, Posy E. Busby7, Natalie Christian8,9, William K. Cornwell10, Thomas W. Crowther11, Habacuc Flores-Moreno12, Dimitrios Floudas13, Romina Gazis14, David Hibbett15, Peter Kennedy16, Daniel L. Lindner17, Daniel S. Maynard11, Amy M. Milo1, Rolf Henrik Nilsson18, Jeff Powell19, Mark Schildhauer20, Jonathan Schilling16 and Kathleen K. Treseder21 1Department of Biological Sciences, George Washington University, Washington, DC 20052, U.S.A. 2Natural History Museum, University of Tartu, Vanemuise 46, Tartu 51014, Estonia 3Department of Biology, University of Miami, Coral Gables, FL 33146, U.S.A. 4Freie Universit¨at-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany 5Department of Biological Sciences, Purdue University Northwest, Westville, IN 46391, U.S.A. 6Department of Biology, Boston University, Boston, MA 02215, U.S.A. 7Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A. 8Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, U.S.A. 9Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A. 10Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 11Department of Environmental Systems Science, Institute of Integrative Biology, ETH Z¨urich, 8092, Z¨urich, Switzerland 12Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, U.S.A. -
Clostridium Amazonitimonense, Clostridium Me
ORIGINAL ARTICLE Taxonogenomic description of four new Clostridium species isolated from human gut: ‘Clostridium amazonitimonense’, ‘Clostridium merdae’, ‘Clostridium massilidielmoense’ and ‘Clostridium nigeriense’ M. T. Alou1, S. Ndongo1, L. Frégère1, N. Labas1, C. Andrieu1, M. Richez1, C. Couderc1, J.-P. Baudoin1, J. Abrahão2, S. Brah3, A. Diallo1,4, C. Sokhna1,4, N. Cassir1, B. La Scola1, F. Cadoret1 and D. Raoult1,5 1) Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France, 2) Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 3) Hopital National de Niamey, BP 247, Niamey, Niger, 4) Campus Commun UCAD-IRD of Hann, Route des pères Maristes, Hann Maristes, BP 1386, CP 18524, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Culturomics investigates microbial diversity of the human microbiome by combining diversified culture conditions, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene identification. The present study allowed identification of four putative new Clostridium sensu stricto species: ‘Clostridium amazonitimonense’ strain LF2T, ‘Clostridium massilidielmoense’ strain MT26T, ‘Clostridium nigeriense’ strain Marseille-P2414T and ‘Clostridium merdae’ strain Marseille-P2953T, which we describe using the concept of taxonogenomics. We describe the main characteristics of each bacterium and present their complete genome sequence and annotation. © 2017 Published by Elsevier Ltd. Keywords: ‘Clostridium amazonitimonense’, ‘Clostridium massilidielmoense’, ‘Clostridium merdae’, ‘Clostridium nigeriense’, culturomics, emerging bacteria, human microbiota, taxonogenomics Original Submission: 18 August 2017; Revised Submission: 9 November 2017; Accepted: 16 November 2017 Article published online: 22 November 2017 intestine [1,4–6]. -
A Report of 22 Unrecorded Bacterial Species in Korea, Isolated from Namhangang
Journal114 of Species Research 7(2):114-122, 2018JOURNAL OF SPECIES RESEARCH Vol. 7, No. 2 A report of 22 unrecorded bacterial species in Korea, isolated from Namhangang Chaeyun Baek1 and Hana Yi1,2,* 1Department of Public Health Sciences, Graduate School, Korea University, Seoul 02841, Republic of Korea 2School of Biosystem and Biomedical Science, Korea University, Seoul 02841, Republic of Korea *Correspondent: [email protected] As part of a larger study of indigenous prokaryotic species diversity in South Korea, various samples from Namhangang were subjected to analyses. Fresh water, underwater sediment, and moss-inhabiting aerobic and anaerobic bacteria were isolated. 22 of the isolates were identified as unrecorded bacterial species in Korea that had ≥98.7% 16S rRNA gene sequence similarity with published species. The aerobic strains isolated were Kurthia gibsonii and Massilia plicata. Also identified were four facultative anaerobic strains: Bacillus hisashii, Enterococcus rotai, Paenibacillus vini, and Pediococcus pentosaceus. 16 strictly anaerobic strains were identified as Bacteroides xylanolyticus, Carnobacterium maltaromaticum, Clostridium argentinense, Clostridium beijerinckii, Clostridium butyricum, Clostridium cavendishii, Clostridium diolis, Clostridium frigidicarnis, Clostridium perfringens, Clostridium saccharoperbutylacetonicum, Clostridium sphenoides, Clostridium subterminale, Cutibacterium acnes, Paraclostridium bifermentans, Prevotella paludivivens, and Romboutsia lituseburensis. Based on the examination of morphological, cultural, physiological, and biochemical properties of the isolates, descriptive information of these previously unrecorded species is provided here. Keywords: anaerobes, Namhangang, unrecorded species Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.2.114 INTRODUCTION and Jungnyeongcheon, are freshwater rivers with 10.19 km2, 69.11 km2, 150.5 km2, and 130.19 km2 areas, respec- While molecular methods have supplanted traditional tively. -
Virulence Plasmids of the Pathogenic Clostridia SARAH A
Virulence Plasmids of the Pathogenic Clostridia SARAH A. REVITT-MILLS, CALLUM J. VIDOR, THOMAS D. WATTS, DENA LYRAS, JULIAN I. ROOD, and VICKI ADAMS Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia ABSTRACT The clostridia cause a spectrum of diseases in extrachromosomally. These toxins have diverse mecha- humans and animals ranging from life-threatening tetanus and nisms of action and include pore-forming cytotoxins, botulism, uterine infections, histotoxic infections and enteric phospholipases, metalloproteases, ADP-ribosyltransferases diseases, including antibiotic-associated diarrhea, and food and large glycosyltransferases. This review focuses on poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins these toxins and the elements that carry the toxin struc- are diverse, ranging from a multitude of pore-forming toxins tural genes. For ease of discussion it has been structured to phospholipases, metalloproteases, ADP-ribosyltransferases on a bacterial species-specific basis. and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage PAENICLOSTRIDIUM (CLOSTRIDIUM) that replicate using a plasmid-like intermediate. Some of these SORDELLII plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to Virulence Properties of P. sordellii be conjugative. The mobile nature of these toxin genes gives Paeniclostridium (formerly Clostridium) sordellii causes a ready explanation of how clostridial toxin genes have been several severe diseases in both humans and animals. -
Purified Bioactive Compounds from Mentha Spp. Oils As a Source of Candidosis Treatment
Incentivo governamental para Arranjos Produtivos Locais de Plantas Medicinais e Fitoterápicos no âmbito do SUS REVISÃO FARMACOLOGIA Purified bioactive compounds from Mentha spp. oils as a source of Candidosis treatment. A brief review Compostos bioativos purificados de óleos de Mentha spp. como fonte de tratamento de candidose. Uma breve revisão DOI 10.5935/2446-4775.20170009 1BONI, Giovana C.*; 1FEIRIA, Simone N. B. de; 1HÖFLING, José F. 1University of Campinas - UNICAMP, Piracicaba Dental School, Piracicaba, SP, Brazil. *Correspondência: [email protected] Abstract Medicinal plants have been the subject of many studies in an attempt to discovery alternative drugs, since they are sources of potentially bioactive compounds that may act in the maintenance of human health. The discovery of new antimicrobial substances or biocomponents derived from natural products has been important in the control of microorganisms, especially due to the increase of cases of resistance to conventional antimicrobials. In parallel, yeasts of the genus Candida are becoming a public health problem in the last decades due to the increase of infections denominated candidosis. Candida spp. has mechanisms of virulence, such as polymorphism and biofilm formation, that facilitate the development of the infection and difficult the treatment. In this sense, studies found in the literature with bioactive compounds from Mentha spp. essential oil, describe their antifungal action, especially from the isolated compounds as carvone, mentone, menthofuran and pulegone. In this sense, this review describes studies about antimicrobial activity of these compounds especially against yeasts of Candida species and some particularities of this genus such as virulence mechanisms once these themes are crucial for the development of new alternative drugs and/or antifungal agents that may act as adjuncts to conventional treatments against these microorganisms. -
I've Gut a Feeling: Microbiota Impacting the Conceptual And
International Journal of Molecular Sciences Review I’ve Gut A Feeling: Microbiota Impacting the Conceptual and Experimental Perspectives of Personalized Medicine Amedeo Amedei 1,2,* and Federico Boem 1 1 Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 03 50134, Firenze, Italy; [email protected] 2 Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Largo Brambilla, 03 50134, Firenze, Italy * Correspondence: amedeo.amedei@unifi.it Received: 21 September 2018; Accepted: 16 November 2018; Published: 27 November 2018 Abstract: In recent years, the human microbiota has gained increasing relevance both in research and clinical fields. Increasing studies seem to suggest the centrality of the microbiota and its composition both in the development and maintenance of what we call “health” and in generating and/or favoring (those cases in which the microbiota’s complex relational architecture is dysregulated) the onset of pathological conditions. The complex relationships between the microbiota and human beings, which invest core notions of biomedicine such as “health” and “individual,” do concern not only problems of an empirical nature but seem to require the need to adopt new concepts and new perspectives in order to be properly analysed and utilized, especially for their therapeutic implementation. In this contribution we report and discuss some of the theoretical proposals and innovations (from the ecological component to the notion of polygenomic organism) aimed at producing this change of perspective. In conclusion, we summarily analyze what impact and what new challenges these new approaches might have on personalized/person centred/precision medicine. Keywords: microbiome; health; precision medicine; genomics 1. -
Regulation of Toxin Synthesis in Clostridium Botulinum and Clostridium Tetani Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff
Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff To cite this version: Chloé Connan, Cécile Denève, Christelle Mazuet, Michel Popoff. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon, Elsevier, 2013, 75 (3), pp.90 - 100. 10.1016/j.toxicon.2013.06.001. pasteur-01792396 HAL Id: pasteur-01792396 https://hal-pasteur.archives-ouvertes.fr/pasteur-01792396 Submitted on 1 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License 1 REGULATION OF TOXIN SYNTHESIS IN CLOSTRIDIUM BOTULINUM AND CLOSTRIDIUM TETANI Chloé CONNAN, Cécile DENÈVE, Christelle MAZUET, Michel R. POPOFF* Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, Paris, France Key words: Clostridium botulinum, Clsotridfium tetani, botulinum neurotoxin, tetanus toxin, regulation Corresponding author Institut Pasteur, Unité des Bactéries Anaérobies et Toxines, 25 rue du Dr Roux, 75724 Paris cedex15, France [email protected] 2 ABSTRACT Botulinum and tetanus neurotoxins are structurally and functionally related proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin (BoNT) associates with non-toxic proteins (ANTPs) to form complexes of various sizes, whereas tetanus toxin (TeNT) does not form any complex. -
Biosafety in Microbiological and Biomedical Laboratories—6Th Edition
Section VIII—Agent Summary Statements The agent summary statements contained in Section VIII of the sixth edition of Biosafety in Microbiological and Biomedical Laboratories (BMBL) are designed to assist the reader with the risk assessment for their work, as directed in Section II. The statements are assembled by subject matter experts and represent a summary of key information regarding pathogens with significance to the biomedical community. Although the statements provide recommendations regarding containment for specific activities, they should serve only as the starting point for a laboratory’s risk assessment and should not serve as a substitute for an assessment. The statements cannot fully factor in the change in risk due to the size of a sample, concentration of agent present, change in virulence or pathogenicity, nor any change in ability to provide medical countermeasures due to antibiotic or antiviral resistance. The following list of agents is also not comprehensive, and the reader is directed to other information to assist in the risk assessment, including the Public Health Agency of Canada’s Pathogen Safety Data Sheets (PSDS),1 the American Public Health Association’s Control of Communicable Diseases Manual,2 American Society for Microbiology Manual of Clinical Microbiology,3 and the ABSA Interna- tional Risk Group Database.4 References 1. Government of Canada [Internet]. Canada: Public Health Agency of Canada; c2018 [cited 2018 Dec 20]. Pathogen Safety Data Sheets. Available from: https://www.canada.ca/en/public-health/services/laboratory- biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment.html 2. Heymann DL, editor. Control of Communicable Diseases Manual. 20th ed. -
Science Citation Indexed Journal List
SCIENCE CITATION INDEXED JOURNAL LIST Sr.No. Journal Title ISSN E-ISSN Publisher 1 2D MATERIALS 2053-1583 2053-1583 IOP PUBLISHING LTD 2 3 BIOTECH 2190-572X 2190-5738 SPRINGER HEIDELBERG 3 3D PRINTING AND ADDITIVE MANUFACTURING 2329-7662 2329-7670 MARY ANN LIEBERT, INC 4 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH 1619-4500 1614-2411 SPRINGER HEIDELBERG 5 AAPG BULLETIN 0149-1423 1558-9153 AMER ASSOC PETROLEUM GEOLOGIST 6 AAPS JOURNAL 1550-7416 1550-7416 SPRINGER 7 AAPS PHARMSCITECH 1530-9932 1530-9932 SPRINGER 8 AATCC JOURNAL OF RESEARCH 2330-5517 2330-5517 AMER ASSOC TEXTILE CHEMISTS COLORISTS-AATCC 9 AATCC REVIEW 1532-8813 1532-8813 AMER ASSOC TEXTILE CHEMISTS COLORISTS-AATCC 10 ABDOMINAL RADIOLOGY 2366-004X 2366-0058 SPRINGER ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER 11 0025-5858 1865-8784 SPRINGER HEIDELBERG UNIVERSITAT HAMBURG 12 ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 0065-7727 AMER CHEMICAL SOC 13 ACADEMIC EMERGENCY MEDICINE 1069-6563 1553-2712 WILEY 14 ACADEMIC MEDICINE 1040-2446 1938-808X LIPPINCOTT WILLIAMS & WILKINS 15 ACADEMIC PEDIATRICS 1876-2859 1876-2867 ELSEVIER SCIENCE INC 16 ACADEMIC RADIOLOGY 1076-6332 1878-4046 ELSEVIER SCIENCE INC 17 ACAROLOGIA 0044-586X 2107-7207 ACAROLOGIA-UNIVERSITE PAUL VALERY 18 ACCOUNTABILITY IN RESEARCH-POLICIES AND QUALITY ASSURANCE 0898-9621 1545-5815 TAYLOR & FRANCIS INC 19 ACCOUNTS OF CHEMICAL RESEARCH 0001-4842 1520-4898 AMER CHEMICAL SOC 20 ACCREDITATION AND QUALITY ASSURANCE 0949-1775 1432-0517 SPRINGER 21 ACI MATERIALS JOURNAL 0889-325X 1944-737X AMER CONCRETE -
Starr Thesis
Disentangling the rhizosphere community through stable isotope informed genome-resolved metagenomics and assembled metatranscriptomes By Evan P. Starr A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian F. Banfield, Co-Chair Professor Mary K. Firestone, Co-Chair Professor Britt Koskella Summer 2019 Abstract Disentangling the holistic rhizosphere community through stable isotope informed genome- resolved metagenomics and assembled metatranscriptomes By Evan P Starr Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian Banfield, Co-Chair Professor Mary Firestone, Co-Chair The functioning, health, and productivity of soil is intimately tied to the complex network of interactions in the rhizosphere. Because of this, the rhizosphere has been rigorously studied for over a century, but due to technical limitations many aspects of soil biology have been overlooked. In order to better understand rhizosphere functioning, my work has focused on the less explored organisms and interactions in microbial communities, this includes unculturable bacteria along with viruses and eukaryotes. Only by considering soil biology more holistically can we better understand the functioning of this enigmatic yet critical ecosystem. Knowledge about these interactions could direct how we think about plant-microbe relationships, soil carbon stabilization and the roles of understudied organisms in biogeochemical cycling. The transformation of plant photosynthate into soil organic carbon and its recycling to CO2 by soil microorganisms is one of the central components of the terrestrial carbon cycle. There are currently large knowledge gaps related to which soil-associated microorganisms take up plant carbon in the rhizosphere and the fate of that carbon. -
The Physiology of Mycobacterium Tuberculosis in The
DOI: 10.5772/intechopen.69594 Provisional chapter Chapter 7 The Physiology of Mycobacterium tuberculosis in Thethe ContextPhysiology of Drug of Mycobacterium Resistance: A Systemtuberculosis Biology in the ContextPerspective of Drug Resistance: A System Biology Perspective Luisa Maria Nieto, Carolina Mehaffy and LuisaKaren Maria M. Dobos Nieto, Carolina Mehaffy and KarenAdditional M. information Dobos is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.69594 Abstract Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), is the main cause of death due to an infectious disease. After more than 100 years of the discovery of Mtb, clinicians still face difficulties finding an effective treatment for the increasing number of drug-resistant cases. The difficulties in the clinical setting can be related to the slow pace at which the understanding of the physiology of this bacterium has occurred. Mtb is distinct from other microorganisms not only due to its slow growth and difficulties to study in the laboratory, but also due to its inherent physiology such as its complex cell envelope and its metabolic pathways. Understanding the physiology of drug susceptible and resistant Mtb strains is crucial for the design of an effective chemotherapy against TB. This chapter will review the mycobacterial cell envelope and major physiological pathways together with recent discoveries in Mtb drug resistance through different “omics” disciplines. Keywords: drug resistance, physiology, systems biology, proteomics, genomics, lipidomics 1. Introduction The history of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), has a remarkable involvement in human history; particularly in the evolution of human society and in the development of many scientific disciplines.