Introduction to Invasive Alien Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two Colonisation Stages Generate Two Different Patterns of Genetic Diversity Within Native and Invasive Ranges of Ulex Europaeus
Heredity (2013) 111, 355–363 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus B Hornoy1,3, A Atlan1, V Roussel1,4, YM Buckley2 and M Tarayre1 Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. -
What Characteristics Do All Invasive Species Share That Make Them So
Invasive Plants Facts and Figures Definition Invasive Plant: Plants that have, or are likely to spread into native or minimally managed plant systems and cause economic or environmental harm by developing self-sustaining populations and becoming dominant or disruptive to those systems. Where do most invasive species come from? How do they get here and get started? Most originate long distances from the point of introduction Horticulture is responsible for the introduction of approximately 60% of invasive species. Conservation uses are responsible for the introduction of approximately 30% of invasive species. Accidental introductions account for about 10%. Of all non-native species introduced only about 15% ever escape cultivation, and of this 15% only about 1% ever become a problem in the wild. The process that leads to a plant becoming an invasive species, Cultivation – Escape – Naturalization – Invasion, may take over 100 years to complete. What characteristics make invasive species so successful in our environment? Lack predators, pathogens, and diseases to keep population numbers in check Produce copious amounts of seed with a high viability of that seed Use successful dispersal mechanisms – attractive to wildlife Thrive on disturbance, very opportunistic Fast-growing Habitat generalists. They do not have specific or narrow growth requirements. Some demonstrate alleleopathy – produce chemicals that inhibit the growth of other plants nearby. Have longer photosynthetic periods – first to leaf out in the spring and last to drop leaves in autumn Alter soil and habitat conditions where they grow to better suit their own survival and expansion. Why do we care? What is the big deal? Ecological Impacts Impacting/altering natural communities at a startling rate. -
Latitudinal Shifts of Introduced Species: Possible Causes and Implications
Biol Invasions (2012) 14:547–556 DOI 10.1007/s10530-011-0094-8 ORIGINAL PAPER Latitudinal shifts of introduced species: possible causes and implications Qinfeng Guo • Dov F. Sax • Hong Qian • Regan Early Received: 26 January 2011 / Accepted: 22 August 2011 / Published online: 4 September 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract This study aims to document shifts in the those in their native ranges. Only a small fraction of latitudinal distributions of non-native species relative species examined (i.e.\20% of animals and\10% of to their own native distributions and to discuss plants) have expanded their distributions in their possible causes and implications of these shifts. We exotic range beyond both high- and low-limits of used published and newly compiled data on inter- their native latitudes. Birds, mammals and plants continentally introduced birds, mammals and plants. tended to shift their exotic ranges in similar ways. In We found strong correlations between the latitudinal addition, most non-native species (65–85% in differ- distributions occupied by species in their native and ent groups) have not reached the distributional extent exotic ranges. However, relatively more non-native observed in their native ranges. The possible drivers species occur at latitudes higher than those in their of latitudinal shifts in the exotic range may include native ranges, and fewer occur at latitudes lower than climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species Electronic supplementary material The online version of this article (doi:10.1007/s10530-011-0094-8) contains distributions. -
A Survey of the Nation's Lakes
A Survey of the Nation’s Lakes – EPA’s National Lake Assessment and Survey of Vermont Lakes Vermont Agency of Natural Resources Department of Environmental Conservation - Water Quality Division 103 South Main 10N Waterbury VT 05671-0408 www.vtwaterquality.org Prepared by Julia Larouche, Environmental Technician II January 2009 Table of Contents List of Tables and Figures........................................................................................................................................................................... ii Introduction................................................................................................................................................................................................. 1 What We Measured..................................................................................................................................................................................... 4 Water Quality and Trophic Status Indicators.......................................................................................................................................... 4 Acidification Indicator............................................................................................................................................................................ 4 Ecological Integrity Indicators................................................................................................................................................................ 4 Nearshore Habitat Indicators -
Re-Thinking Impacts of Island Colonisation
Kerry-Anne Mairs (2007) Islands and human impact... University of Edinburgh, Unpublished PhD Thesis. 398 pp. Chapter 3: Island contexts Chapter 3 Island contexts Introduction Perhaps the thing that most distinguishes islands, at least oceanic islands… is their extreme vulnerability or susceptibility to disturbance (Fosberg 1963: 559). This chapter examines the wider context of island research as introduced in the framework in Figure 1.5 with regards to the notion that islands represent a model system, from which globally occurring processes can be understood. The chapter aims to provide a brief overview of islands and what characterises them, both as islands, and as locations from which to explore human-environment interactions. Recent examples of human-environment research in some Pacific islands, where wide ranging archaeological and comparative-led research has been carried out, are also reviewed. From this research, hypotheses regarding human impacts on environments can be developed with regards to the Faroe Islands. Island contexts as models for human impact and global change The smaller, more manageable spatial scale and insularity of island environments and societies, has made islands (particularly remote islands) popular field locations for research in a variety of disciplines, including biology, ecology, biogeography, ethnography and more recently, environmental archaeology. Islands have been referred to as outdoor laboratories (Kirch 1997a, Fitzhugh and Hunt 1997), where human-environment research can be approached from a comparative -
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland Davies, K. W., Boyd, C. S., Johnson, D. D., Nafus, A. M., & Madsen, M. D. (2015). Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland. Rangeland Ecology & Management, 68(3), 224-230. doi:10.1016/j.rama.2015.03.004 0.1016/j.rama.2015.03.004 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Rangeland Ecology & Management 68 (2015) 224–230 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland☆,☆☆ K.W. Davies a,⁎,C.S.Boyda,D.D.Johnsonb,A.M.Nafusc,M.D.Madsend a Rangeland Scientists, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 b Associate Professor, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA c Research Associate, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA d Ecologist, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 article info abstract Article history: Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle Received 16 October 2014 &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exot- Accepted 2 March 2015 ic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity. Reveg- etation of medusahead-invaded sagebrush plant communities is necessary to restore ecosystem services. -
Invasive Species and the Cultural Keystone Species Concept
Copyright © 2005 by the author(s). Published here under license by the Resilience Alliance. Nuñez, M. A., and D. Simberloff. 2005. Invasive species and the cultural keystone species concept. Ecology and Society 10(1): r4. [online] URL: http://www.ecologyandsociety.org/vol10/iss1/resp4/ Response to Garibaldi and Turner. 2004. “Cultural Keystone Species: Implications for Ecological Conservation and Restoration” Invasive Species and the Cultural Keystone Species Concept Martin A. Nuñez1 and Daniel Simberloff1 Key Words: biological invasions ; cultural keystone species; conservation; exotic species; invasive species; keystone species The concept of the keystone species (Paine 1966, (Mooney and Hobbs 2000, Simberloff 2000), 1969, Power et al. 1996) has been a transformative serving as cultural icons in different areas of the notion in ecology. Keystone species were originally world. Examples of this include Eucalyptus in narrowly defined to be those whose importance to California, tomatoes (Lycopersicon esculentum) in community and ecosystem structure, composition, Italy, bluegrass (Poa pratensis) in Kentucky, and function is disproportionate to their abundance. Cannabis sativa in Jamaica, bananas (Musa Even this narrow definition fostered great insight paradisiaca) in Ecuador, horses (Equus caballus) into the nature of particular ecosystems and of in the western United States, coffee (Coffea spp) in threats to them (Power et al. 1996). However, in Colombia, and kudzu (Pueraria montana) in the ecological circles the term came to be more casually southeastern United States. used to mean any species that has a very large impact on the ecosystem, no matter how abundant it is More than 100 species of Australian Eucalyptus (Simberloff 2003), and this casual usage has led to trees have been brought to California since the late attacks on the concept on the grounds that it is so 19th century. -
Herbivory in the Interior Columbia River Basin: Implications of Developmental History for Present and Future Management
Interior Columbia Basin Ecosystem Management Project Science Integration Team Terrestrial Staff Range Task Group REVIEW DRAFT Herbivory in the Interior Columbia River Basin: Implications of Developmental History for Present and Future Management STEPHEN G. LEONARD Rangeland Scientist USDI-Bureau of Land Management Nevada State Office Reno, NV 89520 MICHAEL G. "SHERM" KARL Rangeland Management Specialist-Ecologist USDA-Forest Service Walla Walla, WA 99362 1st Draft: September 11, 1995 HERBIVORY IN THE INTERIOR COLUMBIA RIVER BASIN: IMPLICATIONS OF DEVELOPMENTAL HISTORY FOR PRESENT AND FUTURE MANAGEMENT This report is developed to address divergent views relative to the joint adaptation of plant communities and herbivores in the Columbia River Basin and the implications for livestock grazing both historically and present. Presentation of divergent views is based on a contract report Herbivory in the Intermountain West: An Overview of Evolutionary History, Historic Cultural Impacts, and Lessons from the Past by J. Wayne Burkhardt1 and review comments and responses by Elizabeth L. Painter2. Discussion and conclusions are based on additional review of major range management and grazing management texts and literature cited therein. Miller, Svejcar, and West (1994) also provide an overview of developmental history and implications of livestock grazing on plant composition in the Intermountain sagebrush region. This overview is pertinent to the Columbia River Basin sagebrush steppe communities and associated salt desert shrub and juniper communities. Viewpoints based on the evolutionary history: 1Burkhardt, J. Wayne. 1994. Herbivory in the Intermountain west-an overview of the evolutionary history, historic cultural impacts and lessons from the past. 49 p. Contract report. On file with: Interior Columbia Basin Ecosystem Management Project, 112 E. -
The Great White Egret in Europe: Population Increase and Range Expansion Since 1980 Łukasz Ławicki
The Great White Egret in Europe: population increase and range expansion since 1980 Łukasz Ławicki Abstract The European breeding and non-breeding populations of the Great White Egret Ardea alba have increased dramatically since 1980. During this period the breeding range has expanded to the north and west, and the species has nested for the first time in 13 countries, including Sweden and England. Since 2000 there has also been a substantial increase in the wintering populations in western and central Europe, where it formerly wintered in small numbers or only occasionally, with flocks of several hundred individuals reported from some countries. Changes in the availability of foraging habitat and food, the cessation of persecution and related human-induced mortality, improved legal protection, and climate change have probably all played a part in the patterns described here. The feathers of the male are much sought after as decorations, which in the East are a sign of great dignity and highly prized; formerly they were used in Europe as ornamentation by knights and the fair sex. (Taczanowski 1882) he Great White Egret Ardea alba is a Historical status and distribution cosmopolitan species, found on all It seems likely that Great White Egrets were Tcontinents except Antarctica in a common in central Europe in the past. In variety of wetland habitats where food (espe - Poland, for example, they were commonly cially fish) is available: marshes, river flood - hunted using Saker Falcons Falco cherrug plains, the margins of lakes, ponds and (Stajszczyk 2011). Historically, a core area of reservoirs, coasts, estuaries and mangrove the population was probably present-day thickets (Voisin 1991; Kushlan & Hancock Ukraine and Hungary. -
Guide to Native Plants
- AA GUIDEGUIDE TOTO THETHE NATIVENATIVE PLANTS,PLANTS, NATURALNATURAL PLANTPLANT COMMUNITIESCOMMUNITIES ANDAND THETHE EXOTICEXOTIC ANDAND INVASIVEINVASIVE SPECIESSPECIES OFOF EASTEAST HAMPTONHAMPTON TOWNTOWN EAST HAMPTON TOWN Natural Resources Department TableTable ofof Contents:Contents: Spotted Beebalm (Monarda punctata) Narrative: Pages 1-17 Quick Reference Max Clearing Table: Page 18 Map: East Hampton Native Plant Habitats Map TABS: East Hampton Plant Habitats (1-12); Wetlands flora (13-15): 1. Outer Dunes Plant Spacing 2. Bay Bluffs 3. Amagansett Inner Dunes (AID) 4. Tidal Marsh (TM) Table: A 5. Montauk Mesic Forest (MMF) 6. Montauk Moorland (MM) guideline for the 7. North of Moraine Coastal Deciduous (NMCD) 8. Morainal Deciduous (MD) 9. Pine Barrens or Pitch Pine Oak Forest (PB) (PPO) number of 10. Montauk Grasslands (MG) 11. Northwest Woods (NWW) plants needed 12. Old Fields 13. Freshwater Wetlands 14. Brackish Wetlands and Buffer for an area: 15. East Hampton Wetland Flora by Type Page 19 Native Plants-Resistance to Deer Damage: Pages 20-21 Local Native Plant Landscapers, Arborists, Native Plant Growers and Suppliers: Pages 22-23 Exotic and Invasive Species: Pages 24-33 Native Wildflower Pictures: Pages 34-45 Samdplain Gerardia (Agalinas acuta) Introduction to our native landscape What is a native plant? Native plants are plants that are indigenous to a particular area or region. In North America we are referring to the flora that existed in an area or region before European settlement. Native plants occur within specific plant communities that vary in species composition depending on the habitat in which they are found. A few examples of habitats are tidal wetlands, woodlands, meadows and dunelands. -
Food Web Invaders
TEACHER LESSON PLAN Food Web Invaders Grade Length Subjects/strands Topics 4th–8th grade 20–30 minutes Discover how a food Observation, applica- web works by making tion, comparing similari- a live model of biotic ties and differences, gen- components, using the eralization, kinesthetic people in your class. concept development, Then explore how an psycho-motor develop- invasive species disrupts ment that balance. BACKGROUND INTRODUCTION Students will have been introduced to the idea of an ecosystem, and the basic relationships in an ecosys- In this fun, active-learning, game about food webs, tem such as producers and consumers, herbivores and each student is assigned to be a plant or animal that carnivores, predator/prey pairs, and some of the inter- can be found in aquatic ecosystems. Then, they learn relationships of their behavior and adaptations. Middle about the relationships between organisms as they pass school students will have been introduced to the idea of a ball of yarn between students (organisms) that have a limiting factors, and later the idea of carrying capac- predator/prey relationship. As the ball of yarn unravels ity. Students will also be familiar with the concept of a and the string is stretched between the many predator/ food chain with a variety of trophic levels. At the inter- prey relationships in the room, the large and complex mediate level, this could include videos, field activities food web network is reveals visually and symbolically and artwork, as well as reading and writing activities in the room. In the final step, an invasive species is from student magazines and textbooks. -
Evaluating and Mitigating Introduction of Marine Non-Native Species Via Vessel Biofouling
ICES AD HOC REPORT 2019 ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel biofouling Editors Bella S. Galil ● Cynthia McKenzie Authors Bella S. Galil ● Cynthia McKenzie ● Sarah Bailey Marnie Campbell ● Ian Davidson ● Lisa Drake ● Chad Hewitt Anna Occhipinti-Ambrogi ● Richard Piola International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Galil, B.S., McKenzie, C., Bailey, S., Campbell M., Davidson, I., Drake, L., Hewitt, C., Occhipinti-Ambrogi, A., and Piola, R. 2019. ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel bio- fouling. ICES Ad Hoc Report 2019. 17 pp. http://doi.org/10.17895/ices.pub.4680 For permission to reproduce material from this publication, please apply to the mate- rial in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council.