(Orthoptera: Tettigoniidae: Tettigonia) in the Western Palaearctic: Testing Concordance Between Molecular, Acoustic, and Morphological Data

Total Page:16

File Type:pdf, Size:1020Kb

(Orthoptera: Tettigoniidae: Tettigonia) in the Western Palaearctic: Testing Concordance Between Molecular, Acoustic, and Morphological Data Org Divers Evol (2017) 17:213–228 DOI 10.1007/s13127-016-0313-3 ORIGINAL ARTICLE Evolution and systematics of Green Bush-crickets (Orthoptera: Tettigoniidae: Tettigonia) in the Western Palaearctic: testing concordance between molecular, acoustic, and morphological data Beata Grzywacz1 & Klaus-Gerhard Heller2 & Elżbieta Warchałowska-Śliwa 1 & Tatyana V. Karamysheva 3 & Dragan P. Chobanov4 Received: 14 June 2016 /Accepted: 16 November 2016 /Published online: 8 December 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The genus Tettigonia includes 26 species distribut- of Tettigonia (currently classified mostly according to mor- ed in the Palaearctic region. Though the Green Bush-crickets phological characteristics), proposing seven new synonymies. are widespread in Europe and common in a variety of habitats throughout the Palaearctic ecozone, the genus is still in need Keywords Tettigonia . mtDNA . rDNA . Phylogeny . of scientific attention due to the presence of a multitude of Bioacoustics poorly explored taxa. In the present study, we sought to clarify the evolutionary relationships of Green Bush-crickets and the composition of taxa occurring in the Western Palaearctic. Introduction Based on populations from 24 disjunct localities, the phylog- eny of the group was estimated using sequences of the cyto- Genus Tettigonia Linnaeus, 1758 presently includes 26 recog- chrome oxidase subunit I (COI) and the internal transcribed nized species (Eades et al. 2016) distributed in the Palaearctic spacers 1 and 2 (ITS1 and ITS2). Morphological and acoustic ecozone and belongs to the long-horned orthopterans or the variation documented for the examined populations and taxa bush-crickets (Ensifera, Tettigonioidea). Tettigonia,popularly was interpreted in the context of phylogenetic relationships known as the Green Bush-crickets, are generally large green inferred from our genetic analyses. The trees generated in orthopterans with moderately slender body and legs and well- the present study supported the existence of three main line- developed wings that inhabit the plant cover searching for ages: BA^—composed of all sampled populations of their food (usually smaller insects or plant tissues). Tettigonia viridissima and the Tettigonia vaucheriana com- Tettigonia is one of the most notable Old World example with plex, BB^—comprising Tettigonia caudata, Tettigonia two centers of diversity: one in the Mediterranean–Pontic re- uvarovi, and the Tettigonia armeniaca complex, and BC^— gion (see, e.g., Ramme 1951;Pinedo1985;Chobanovetal. consisting of Tettigonia cantans. The present study provides 2014) and another in the Japanese archipelago (see Ichikawa the first phylogenetic foundation for reviewing the systematics et al. 2006; Kim et al. 2016). Both regions are characterized by a similar number of endemic taxa and insufficient knowledge regarding the taxonomy and systematics of Green Bush- crickets (Ichikawa et al. 2006; Chobanov et al. 2014; own * Beata Grzywacz unpublished data). [email protected] Despite the fact that several species of Green Bush-crickets are quite well known and have been the subject of detailed 1 Institute of Systematics and Evolution of Animals, Polish Academy neuro-ethological studies (e.g., Zhantiev and Korsunovskaya of Sciences, Sławkowska 17, 31-016 Krakow, Poland 1978; Schul 1998), others remain poorly known from single 2 Grillenstieg 18, 39120 Magdeburg, Germany specimens, and even nowadays, the discovery of new species 3 Institute of Cytology and Genetics of the Siberian Branch of the continues (Ogawa 2003;Ichikawaetal.2006;Chobanovetal. Russian Academy of Sciences, Novosibirsk, Russia 2014; Storozhenko et al. 2015). Data on the systematics of this 4 Institute of Biodiversity and Ecosystem Research, Bulgarian genus involve piecemeal morpho-acoustic studies conducted Academy of Sciences, 1 Tsar Osvoboditel Boul, 1000 Sofia, Bulgaria for geographically restricted areas or focused on 214 Grzywacz B. et al. morphological groups of species (e.g., Heller 1988;Rhee In bush-crickets, the songs of closely related species, 2013;Chobanovetal.2014). Our recent morphological and especially those that speciated in allopatry, usually have a acoustic studies on Tettigonia, concentrated on the Western lineage-specific amplitude–temporal pattern that enables Palaearctic, revealed a number of conflicts within the pub- recognition for systematic purposes and for drawing con- lished data when trying to identify certain populations and clusions about paths of speciation (e.g., Heller 1990, 2006; develop hypotheses about the systematics of the group (own Chobanov and Heller 2010). In Tettigonia, differences be- unpublished data). The latter further supports the need to use tween species have been observed in the time and frequen- new markers to test the systematic position of some taxa and cy domains, while particular song-recognizing mecha- unravel the evolutionary history of this genus. nisms may depend on the geographic and ecological pref- The evolution of acoustic communication systems in erences of the species (Schul 1994; Schul et al. 1998). orthopterans has led to high levels of acoustic specializa- Hence, we use the male calling song as an additional clue tion. As acoustic signals are important for intraspecific and for evolutionary assumptions as well as for testing the var- sex recognition as well as for interspecific isolation iation of song types according to genetic or morphological (Paterson 1985; Hochkirch and Lemke 2011), they are of units. Thus, the present study indirectly vindicates the sig- great significance for studying the processes underlying nificance of acoustic recognition systems and song special- evolutionary radiation. Acoustic diversity within bush- ization patterns in this genus. cricket genera varies from very low with a more or less uniform pattern of the male calling song (cf. Heller 2006; Çıplak et al. 2009)toveryhighwithagreatvarietyofsong types, especially in sympatric taxa, even within groups of Material and methods closely related species (cf. Heller 1988, 1990, 2006; Chobanov and Heller 2010,etc.). Taxon sampling and morphological identification In Tettigonia, song differences between species (especially well expressed in sympatric taxa) may express in different The species used in this study and their sampling locali- syllable arrangement and repetition rate, echeme length, and ties are presented in Table 1 and Fig. 1. This dataset con- duty cycle. Some differences are also found in the carrier tains 66 Tettigonia specimens from 33 disjunct localities/ frequency of the song. In some species (e.g., Tettigonia populations and five outgroup taxa representing two cantans), females are not very sensitive to the conspecific tettigoniid subfamilies (Tettigoniinae: Amphiestris Fieber, structure of the song and thus may respond to heterospecific 1853 (Tettigoniini), Onconotus Fischer von Waldheim, males (Schul et al. 1998), while in other species (i.e., 1839, Paratlanticus Ramme, 1939, Platycleis Fieber, Tettigonia caudata), females rely on the minimum duty cycle 1853; Saginae: Saga pedo (Pallas, 1771)). Due to the of the echemes, thus neglecting the fine song structure (Schul properties of the chosen DNA fragments (high amount 1998). In Tettigonia viridissima, song recognition based on of interspecific variation providing good phylogenetic sig- temporal clues has been shown to be more complicated. nal at a generic level but some risk of false results at a Here, females evaluate the pause within disyllabic echemes higher systematic level due to convergencies and phenom- and respond only to the species-specific echeme structure ena like long branch attraction), we choose taxa that, ac- (Schul 1998). cording to published data, are closely related and/or have In the present study, we aim to evaluate phylogenetic rela- close ancestral position to Tettigonia (in the case of tionships within Tettigonia. We based our study on a genetic Saginae) (e.g., Gorochov 1995;Songetal.2015). dataset that was used as a basis for mapping acoustic and Used samples of Tettigonia have preliminary been identi- morphological characters in an attempt to track the evolution- fied using original descriptions and published reviews (e.g., ary paths of the acoustic communication in this genus. For Bolívar 1914; Chopard 1943; Ramme 1951;Harz1969; these purposes, sequences of the mitochondrial cytochrome Massa 1998;Chobanovetal.2014 and references therein). c oxidase subunit I (COI) gene and the nuclear internal tran- All specimens listed in Table 1 were morphologically related scribed spacers 1 and 2 (ITS1 and ITS2) were used that have to existing taxa based on available literature and museum previously been widely employed in phylogenetic studies of specimens. Apart from own material, the following specimens grasshoppers (e.g., Cooper et al. 1995; Chapco and from public collections that refer to the studied taxa were Litzenberger 2002) and bush-crickets (Ullrich et al. 2010; studied: Allegrucci et al. 2011; Boztepe et al. 2013; Çiplak et al. Tettigonia acutipennis Ebner, 1946—male, holotype, 2015). The DNA sequences selected for the present study BKleinasien 1914 | Marasch, Tölg. | coll. R. Ebner^ have different modes of evolution and inheritance history, (Naturhistorisches Museum Wien (NHMW)); male, Hakkari and thus, they may reveal different aspects of the speciation (the Natural History Museum London (NHM)); two males, history of the examined lineages. BTurkey: |
Recommended publications
  • A Review of the Japanese Kateretidae Fauna (Coleoptera: Cucujoidea)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 9.xii.2011 Volume 51(2), pp. 551–585 ISSN 0374-1036 A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea) Sadatomo HISAMATSU Entomological Laboratory, Faculty of Agriculture, Ehime University, Tarumi 3–5–7, Matsuyama, 790–8566 Japan; e–mail: [email protected] Abstract. The family Kateretidae of Japan is revised. Nine species belonging to 6 genera are recognized, including: Kateretes japonicus Hisamatsu, 1985, K. takagii S-T. Hisamatsu, 2006, Platamartus jakowlewi Reitter, 1892, Heterhelus (Heterhelus) scutellaris (Heer, 1841), H. (Heterhelus) morio (Reitter, 1878), H. (Boreades) solani (Heer, 1841), Sibirhelus corpulentus (Reitter, 1900), Brachyp- terus urticae (Fabricius, 1792), and Brachypterolus pulicarius (Linnaeus, 1758). Heterhelus morio, which was synonymized under H. scutellaris by KIREJTSHUK (1989), is found to be a valid species, and is herein resurrected. Platamartus jakowlewi is newly recorded from Japan. Brachypterolus shimoyamai Hisamatsu, 1985, syn. nov., is synonymized under Brachypterolus pulicarius. Dorsal habitus images, illustrations of male and female genitalia, and other important diagnostic characters are provided for all species. A key for identifi cation of all Japanese taxa is also provided. Key words. Coleoptera, Kateretidae, taxonomy, new synonym, new record, key, Japan, Palaearctic Region Introduction The family Kateretidae, belonging to the superfamily Cucujoidea, is mainly distributed in the Holarctic Region, and comprises about 95 species within 14 genera worldwide (JELÍNEK & CLINE 2010). Both larval and adult Kateretidae are anthophagous: the larvae are monophagous or oligophagous, while adults are more generalized feeders, occurring on true host plants only during mating and ovipositing periods; otherwise, they feed on a broader assortment of fl owering plants (JELÍNEK & CLINE 2010).
    [Show full text]
  • New Pseudophyllinae from the Lesser Antilles (Orthoptera: Ensifera: Tettigoniidae)
    Zootaxa 3741 (2): 279–288 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3741.2.6 http://zoobank.org/urn:lsid:zoobank.org:pub:156FF18E-0C3F-468C-A5BE-853CAA63C00F New Pseudophyllinae from the Lesser Antilles (Orthoptera: Ensifera: Tettigoniidae) SYLVAIN HUGEL1 & LAURE DESUTTER-GRANDCOLAS2 1INCI, UPR 3212 CNRS, Université de Strasbourg; 21, rue René Descartes; F-67084 Strasbourg Cedex. E-mail: [email protected] 2Muséum national d'Histoire naturelle, Département systématique et évolution, UMR 7205 CNRS, Case postale 50 (Entomologie), 57 rue Cuvier, F-75231 Paris cedex 05, France. E-mail: [email protected] Abstract Two new Cocconitini Brunner von Wattenwyl, 1895 species belonging to Nesonotus Beier, 1960 are described from the Lesser Antilles: Nesonotus caeruloglobus Hugel, n. sp. from Dominica, and Nesonotus vulneratus Hugel, n. sp. from Martinique. The songs of both species are described and elements of biology are given. The taxonomic status of species close to Nesonotus tricornis (Thunberg, 1815) is discussed. Key words: Orthoptera, Pseudophyllinae, Caribbean, Leeward Islands, Windward islands, Dominica, Martinique Résumé Deux nouvelles sauterelles Cocconotini Brunner von Wattenwyl, 1895 appartenant au genre Nesonotus Beier, 1960 sont décrites des Petites Antilles : Nesonotus caeruloglobus Hugel, n. sp. de Dominique, et Nesonotus vulneratus Hugel, n. sp. de Martinique. Le chant des deux espèces est décrit et des éléments de biologie sont donnés. Le statut taxonomique des espèces proches de Nesonotus tricornis (Thunberg, 1815) est discuté. Introduction Cocconotini species occur in most of the Lesser Antilles islands, including small and dry ones such as Terre de Haut in Les Saintes micro archipelago (S.
    [Show full text]
  • Journal Vol 14 No 1, April 1998
    Journal of the British Dragonfly Society Volume 14 April Number 1 1998 Editor: B. H. Harley Assistant Editor: R. R. Askew The lournal 01 the British Dragonfly Society, published twice a year, contains articles on Odonata that have been recorded from the United Kingdom. The aims of the British Dragonfly Society (B.o.S.) are to promote and encourage the study and conservation of Odonata and their natural habitats, especially in the United Kingdom. TRUSTEES OF THE BRITISH DRAGONFLY SOCIETY Chairman: A. McGeenn Vice-Chairman: P.J. MiD Secretaty: W. H.Wain Treasurer: S.Jackman Editor: B. H. Harley Convenor of Dragonfly Conservation Group: N.W. Maore Ordinary Trustees: D. A. CI.rke J. D. Silsby D. J. Thompson T. G. Beynon ADDRESSES Editor: B. H. Harley, Martins, Great Horkesley, Colchester, Essex C06 4AH Secretary: W. H, Wain, The Haywain, Holiywater Road, Bordon, Hants GU35 OAD Librarian/Archivist: P. M. Alien, 'Little Thatch', North Gorley, Fordingbridge, Hants SP6 2PE Articles for publication (two copies please) should be sent to the Editor. Instructions for authors appear inside back cover. Back numbers of the Journal can be purchased from the librarian/Archivists al 1-4 copies £2.75 per copy, 5 copies or over £2.60 per copy (members) or £5.50 (non·members). Other enquiries (including membership applications) should be addressed to the Secretary. Annual subscription: £5.50; library subscription: £1 1. Overseas subscriptions: £7.50 and £13 respectively. All subscriptions are due on 1st April each year. Late payers will be charged £1 extra. life membership: £80. Front cover illustration of male Aeshna grandis by Roderick Dunn J.
    [Show full text]
  • Of Agrocenosis of Rice Fields in Kyzylorda Oblast, South Kazakhstan
    Acta Biologica Sibirica 6: 229–247 (2020) doi: 10.3897/abs.6.e54139 https://abs.pensoft.net RESEARCH ARTICLE Orthopteroid insects (Mantodea, Blattodea, Dermaptera, Phasmoptera, Orthoptera) of agrocenosis of rice fields in Kyzylorda oblast, South Kazakhstan Izbasar I. Temreshev1, Arman M. Makezhanov1 1 LLP «Educational Research Scientific and Production Center "Bayserke-Agro"», Almaty oblast, Pan- filov district, Arkabay village, Otegen Batyr street, 3, Kazakhstan Corresponding author: Izbasar I. Temreshev ([email protected]) Academic editor: R. Yakovlev | Received 10 March 2020 | Accepted 12 April 2020 | Published 16 September 2020 http://zoobank.org/EF2D6677-74E1-4297-9A18-81336E53FFD6 Citation: Temreshev II, Makezhanov AM (2020) Orthopteroid insects (Mantodea, Blattodea, Dermaptera, Phasmoptera, Orthoptera) of agrocenosis of rice fields in Kyzylorda oblast, South Kazakhstan. Acta Biologica Sibirica 6: 229–247. https://doi.org/10.3897/abs.6.e54139 Abstract An annotated list of Orthopteroidea of rise paddy fields in Kyzylorda oblast in South Kazakhstan is given. A total of 60 species of orthopteroid insects were identified, belonging to 58 genera from 17 families and 5 orders. Mantids are represented by 3 families, 6 genera and 6 species; cockroaches – by 2 families, 2 genera and 2 species; earwigs – by 3 families, 3 genera and 3 species; sticks insects – by 1 family, 1 genus and 1 species. Orthopterans are most numerous (8 families, 46 genera and 48 species). Of these, three species, Bolivaria brachyptera, Hierodula tenuidentata and Ceraeocercus fuscipennis, are listed in the Red Book of the Republic of Kazakhstan. Celes variabilis and Chrysochraon dispar indicated for the first time for a given location. The fauna of orthopteroid insects in the studied areas of Kyzylorda is compared with other regions of Kazakhstan.
    [Show full text]
  • Arthropod Grasping and Manipulation: a Literature Review
    Arthropod Grasping and Manipulation A Literature Review Aaron M. Dollar Harvard BioRobotics Laboratory Technical Report Department of Engineering and Applied Sciences Harvard University April 5, 2001 www.biorobotics.harvard.edu Introduction The purpose of this review is to report on the existing literature on the subject of arthropod grasping and manipulation. In order to gain a proper understanding of the state of the knowledge in this rather broad topic, it is necessary and appropriate to take a step backwards and become familiar with the basics of entomology and arthropod physiology. Once these principles have been understood it will then be possible to proceed towards the more specific literature that has been published in the field. The structure of the review follows this strategy. General background information will be presented first, followed by successively more specific topics, and ending with a review of the refereed journal articles related to arthropod grasping and manipulation. Background The phylum Arthropoda is the largest of the phyla, and includes all animals that have an exoskeleton, a segmented body in series, and six or more jointed legs. There are nine classes within the phylum, five of which the average human is relatively familiar with – insects, arachnids, crustaceans, centipedes, and millipedes. Of all known species of animals on the planet, 82% are arthropods (c. 980,000 species)! And this number just reflects the known species. Estimates put the number of arthropod species remaining to be discovered and named at around 9-30 million, or 10-30 times more than are currently known. And this is just the number of species; the population of each is another matter altogether.
    [Show full text]
  • Downloaded from Brill.Com09/24/2021 02:27:59AM Via Free Access T  E,  147, 2004
    1 2 FER WILLEMSE & SIGFRID INGRISCH 1 Eygelshoven, The Netherlands 2 Bad Karlshafen, Germany A NEW GENUS AND SPECIES OF ACRIDIDAE FROM SOUTH INDIA (ORTHOPTERA, ACRIDOIDEA) Willemse, F. & S. Ingrisch 2004. A new genus and species of Acrididae from South India (Or- thoptera, Acridoidea). – Tijdschrift voor Entomologie 147: 191-196, figs. 1-22. [ISSN 0040- 7496]. Published 1 December 2004. Nathanacris quadrimaculata gen. et sp. n. is described from Anaimalai Hills in South India. The systematic position of this acridid genus is not yet clear. For the time being we propose to arrange the genus under the unclassified group of Catantopinae sensu lato. Dr. Fer Willemse (corresponding author), Laurastraat 67, Eygelshoven 6471 JH, The Nether- lands. E-mail: [email protected] Dr. Sigfrid Ingrisch, Eichendorffweg 4, D-34385 Bad Karlshafen, Germany. E-mail: sigfrid.in- [email protected] Key words. – Orthoptera, Acrididae, Catantopinae (s.l.), South India. Major contributions to the Acrididae fauna of than wide, in female a little shorter than wide, in male South India were provided by Bolívar (1902), Hebard lateral margins almost parallel and converging towards (1929), Uvarov (1929), Henry (1940), Muralirangan widely rounded apex, in female lateral margins short et al. (1992) and Shrinivasan & Muralirangan (1992). and apical margin semicircular (figs. 2, 7); in lateral Nevertheless our knowledge of the grasshopper fauna view tip angularly merging with frons, foveolae obso- of south India is still insufficient, particularly of lete or scarcely recognisable as elongate triangular fur- species living in natural habitats and commonly dis- rows. Frontal ridge projecting slightly between anten- tributed over small areas.
    [Show full text]
  • Bat Avoidance in the Katydid Genus Neoconocephalus A
    BAT AVOIDANCE IN THE KATYDID GENUS NEOCONOCEPHALUS A Thesis presented to the Faculty of the Graduate School University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts by MARY K. KILMER Dr. Johannes Schul, Thesis Supervisor MAY 2010 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled BAT-AVOIDANCE IN THE KATYDID GENUS NEOCONOCEPHALUS Presented by Mary K. Kilmer, A candidate for the degree of Master of Arts And hereby certify that, in their opinion, it is worthy of acceptance ________________________________________________ Professor Johannes Schul _________________________________________________ Professor Sarah Bush _________________________________________________ Professor Rose-Marie Muzika …..dedicated to all those who have helped me along the way, including friends and family and especially Mom ACKNOWLEDGMENTS I would like to thank Dr. Johannes Schul who patiently saw me through this process. I would like to thank my remaining committee members, Dr. Sarah Bush and Dr. Rose-Marie Muzika for their insight and support as well as Dr. Carl Gerhardt. I would like to thank those faculty members who have always encouraged me in my work, including my undergraduate professors, Dr. Jeff Rettig and Dr. Stephen Miller. I would also like to thank the members of the Schul lab at the University of Missouri for their assistance and advice, including Oliver Beckers, Katy Frederick-Hudson and Jeffrey Triblehorn. Thanks to Bryan Barrus for the preliminary research that started this project. Finally, I’d like to thank those that encouraged me to explore new areas in biology and in life, especially Dr. Damon Gannon and his wife, Janet Gannon, who always managed to get me excited about research, no matter what the topic.
    [Show full text]
  • New Orthoptera Records for Prince Edward Island and New Brunswick John Klymko, Robert W
    J. Acad. Entomol. Soc. 17: 16-19 (2021) NOTE New Orthoptera records for Prince Edward Island and New Brunswick John Klymko, Robert W. Harding, Barry Cottam A checklist of the Orthoptera of the three Maritime provinces was published by Klymko et al. (2018). Even while it was in press, the Spring Field Cricket (Gryllus veletis) was added to the collective list (Lewis et al. 2019), and discoveries continue to be made. Here we present the first Prince Edward Island records of the Treetop Bush Katydid (Scudderia fasciata), the Roesel’s Shield-backed Katydid (Roeseliana roeselii), and the Sphagnum Ground Cricket (Neonemobius palustris) and the first New Brunswick records of the Drumming Katydid Meconema( thalassinum). Also presented are recent data for the occurrence of the Wingless Mountain Grasshopper (Booneacris glacialis) on Prince Edward Island, a species otherwise known only from historical records on the Island. Specimens reported here have been deposited in the collection of the New Brunswick Museum, and museum accession numbers are given for all specimens (e.g., NBM-070089). NEW PROVINCIAL RECORDS TRIGONIDIIDAE Nemobiinae Neonemobius palustris (Blatchley 1900), Sphagnum Ground Cricket — PRINCE EDWARD ISLAND: Kings County: Corraville, Buckskin Road Bog, 46.3056°N, 62.6328°W, collected with pitfall trap, 12 August 2017, C.F. Harding (NBM- 070089); Cardross, Sigsworth Road Bog, 46.2583°N, 62.6263°W, 16 August 2017, R.W. Harding (NBM-070092); Kingsboro, 2.8 km east-southeast of Route 304/Tarantum Road junction, open bog, 46.4107°N, 62.1210°W, 1 October 2020, J. Klymko (NBM-070098); Queens County: Mount Albion, Sphagnum bog along east side of Klondyke Road near Route 5 (48 Road), 46.2305°N, 62.9235°W, 20 August 2017 (NBM-070093); Johnston’s River Wildlife Management Area, east side of Route 21 at Murnaghan Road intersection, hand capture on bog mat, 21 August 2017 (NBM-070094), both R.W.
    [Show full text]
  • Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
    Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.
    [Show full text]
  • Barn Owl (Tyto Alba) Predation on Small Mammals and Its Role in the Control of Hantavirus Natural Reservoirs in a Periurban Area in Southeastern Brazil Magrini, L
    Barn owl (Tyto alba) predation on small mammals and its role in the control of hantavirus natural reservoirs in a periurban area in southeastern Brazil Magrini, L. and Facure, KG.* Laboratório de Taxonomia, Ecologia Comportamental e Sistemática de Anuros Neotropicais, Instituto de Biologia, Universidade Federal de Uberlândia – UFU, Rua Ceará, s/n, bloco 2d, sala 22b, CP 593, CEP 38400-902, Uberlândia, MG, Brazil *e-mail: [email protected] Received September 25, 2006 – Accepted April 27, 2007 – Distributed November 30, 2008 (With 1 figure) Abstract The aim of this study was to inventory the species of small mammals in Uberlândia, Minas Gerais, Brazil, based on regurgitated pellets of the barn owl and to compare the frequency of rodent species in the diet and in the environment. Since in the region there is a high incidence of hantavirus infection, we also evaluate the importance of the barn owl in the control of rodents that transmit the hantavirus. Data on richness and relative abundance of rodents in the mu- nicipality were provided by the Centro de Controle de Zoonoses, from three half-yearly samplings with live traps. In total, 736 food items were found from the analysis of 214 pellets and fragments. Mammals corresponded to 86.0% of food items and were represented by one species of marsupial (Gracilinanus agilis) and seven species of rodents, with Calomys tener (70.9%) and Necromys lasiurus (6.7%) being the most frequent. The proportion of rodent species in barn owl pellets differed from that observed in trap samplings, with Calomys expulsus, C. tener and Oligoryzomys nigripes being consumed more frequently than expected.
    [Show full text]
  • Insecta: Orthoptera) Fauna in Mashhad and Vicinity, NE Iran
    Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 36, Heft 18: 229-236 ISSN 0250-4413 Ansfelden, 2. Januar 2015 To the knowledge of the Ensifera (Insecta: Orthoptera) fauna in Mashhad and vicinity, NE Iran Nahid GHOLAMI, Lida FEKRAT, Mehdi MODARRES AWAL, Mojtaba HOSSEINI and Mustafa UNAL Abstract In 2013, several samplings were conducted in order to survey fauna of Ensifera (Insecta: Orthoptera) from Mashhad and vicinity. Totally 12 species belonging to 9 Genera and 3 families were collected and identified. Among them Ceraeocerus fuscipennis fuscipennis and Platycleis fatima fatima were newly recorded for the fauna of Iran. Key words: Ensifera, Orthoptera, Fauna, Iran. Zusammenfassung 2013 wurden Aufsammlungen von Ensifera (Insecta: Orthoptera) in Mashhad und Umgebung im Nordosten desIrans durchgeführt. Insfgesamt gelang der Nachweis von 12 Arten aus 9 Gattungen und 3 Familien. Ceraeocerus fuscipennis fuscipennis und Platycleis fatima fatima konnten erstmalig für den Iran nachgewiesen werden. 229 Introduction Thanks to the efforts of several Orthopterologists, the Orthoptera fauna of Iran is fairly well known. Studies of UVAROV (1921, 1922, 1929), BEY-BIENKO meanwhile 1958- 1960, BEY-BIENKO & MISTSHENKO (1951) as well as surveys of SHUMAKOV (1963) provided a great amount of data on Iranian Orthoptera. The great role of some orthopteran experts such as MIRZAYANS (1951, 1959, 1969, 1990, 1991, 1998), HASHEMI (1976), SOLTANI (1978), NEYESTANAK (2000a, b, c; 2002, 2003), ÜNAL (2005, 2006, 2012), GARAI (2010, 2011) and HODJAT (2012) in advancement of knowledge should not neglected. As the result of their scientific activities, some faunistic records and also description of newly discovered species were been published. Despite the relatively great knowledge of Iranian Orthopteroids, more studies, even in well-explored areas, still result in new records.
    [Show full text]
  • Chamber Music: an Unusual Helmholtz Resonator for Song Amplification in a Neotropical Bush-Cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 2900-2907 doi:10.1242/jeb.160234 RESEARCH ARTICLE Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D. Chivers1, Kate Robson Brown2, Fabio A. Sarria-S1, Matthew Walker1 and Fernando Montealegre-Z1,* ABSTRACT often a morphological challenge owing to the power and size of their Animals use sound for communication, with high-amplitude signals sound production mechanisms (Bennet-Clark, 1998; Prestwich, being selected for attracting mates or deterring rivals. High 1994). Many animals therefore produce sounds by coupling the amplitudes are attained by employing primary resonators in sound- initial sound-producing structures to mechanical resonators that producing structures to amplify the signal (e.g. avian syrinx). Some increase the amplitude of the generated sound at and around their species actively exploit acoustic properties of natural structures to resonant frequencies (Fletcher, 2007). This also serves to increase enhance signal transmission by using these as secondary resonators the sound radiating area, which increases impedance matching (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal between the structure and the surrounding medium (Bennet-Clark, stridulation and often use specialised wing areas as primary 2001). Common examples of these kinds of primary resonators are resonators. Interestingly, Acanthacara acuta, a Neotropical bush- the avian syrinx (Fletcher and Tarnopolsky, 1999) or the cicada cricket, exhibits an unusual pronotal inflation, forming a chamber tymbal (Bennet-Clark, 1999). In addition to primary resonators, covering the wings. It has been suggested that such pronotal some animals have developed morphological or behavioural chambers enhance amplitude and tuning of the signal by adaptations that act as secondary resonators, further amplifying constituting a (secondary) Helmholtz resonator.
    [Show full text]