On Τ-Tilting Finite Simply Connected Algebras

Total Page:16

File Type:pdf, Size:1020Kb

On Τ-Tilting Finite Simply Connected Algebras On τ-tilting finite simply connected algebras Qi Wang On the occasion of Professor Susumu Ariki’s 60th birthday. Abstract We show that τ-tilting finite simply connected algebras are representation- finite. Then, some related algebras are considered, including iterated tilted algebras, tubular algebras and so on. We also prove that the τ-tilting finiteness of non-sincere algebras can be reduced to that of sincere algebras. This motivates us to give a complete list of τ-tilting finite sincere simply connected algebras. Keywords: Support τ-tilting modules, τ-tilting finite, simply connected algebras. 1 Introduction In this paper, we always assume that A is an associative finite-dimensional basic algebra with an identity over an algebraically closed field K. Moreover, the representation type of A is divided into representation-finite, (infinite-)tame and wild. In recent years, τ-tilting theory introduced by Adachi, Iyama and Reiten [AIR] has become increasingly important, in which the core concept is the notion of support τ- tilting modules: a right A-module M is called support τ-tilting if HomAM (M,τM)=0 taking over AM := A/A(1 − e)A, where e is an idempotent of A such that the simple summands of eA/(erad A) are exactly the simple composition factors of M. Moreover, a support τ-tilting A-module M is called τ-tilting if AM = A, and any indecomposable direct summand of τ-tilting modules is called a τ-rigid module. The class of support τ-tilting modules is in bijection with the class of two-term silting complexes, left finite semibricks and so on. We refer to [AIR] and [Asa] for details. We are interested in τ-tilting finite algebras studied in [DIJ], that is, algebras with finitely many pairwise non-isomorphic basic τ-tilting modules (or equivalently, indecom- posable τ-rigid modules). It is easy to see that a representation-finite algebra is τ-tilting arXiv:1910.01937v3 [math.RT] 3 Apr 2021 finite. Also, it is not difficult to find a tame or a wild algebra which is τ-tilting finite. The τ-tilting finiteness for several classes of algebras has been determined, such as algebras with radical square zero [Ada], preprojective algebras of Dynkin type [Mi] and so on. In particular, it has been proven in some cases that τ-tilting finiteness coincides with representation-finiteness, including gentle algebras [P], cycle-finite algebras [MS], tilted and cluster-tilted algebras [Z] and so on. 1.1 Motivations. If one wants to classify the τ-tilting finite cases for a given family of algebras, the general strategy should be to exclude most of the τ-tilting infinite ones and then check τ-tilting finiteness for the remaining ones. Using the representation theory of quivers, we apply this strategy to A ≃ KQ/I in three different approaches as follows. 1 (1) Q has multiple arrows; (2) Q does not have multiple arrows, but has loops or oriented cycles; (3) Q does not have multiple arrows, loops and oriented cycles, but has many vertices. Note that the answer to case (1) is obvious. It is well-known that the Kronecker algebra / K( ◦ / ◦ ) is τ-tilting infinite, so A ≃ KQ/I is τ-tilting infinite for any admissible ideal I if Q has multiple arrows. For case (2), we have considered the two-point idempotent truncations of A as the first step in [Wa]. In particular, the τ-tilting finiteness of A ≃ KQ/I is completely determined if Q is one of / o ◦ / ◦ e and ◦o ◦ e . Now, we consider the triangle and rectangle quivers as the first step of case (3). ◦ ◦ / ◦ / ◦ / ... / ◦ / ◦ ④= ❈❈ ④④ ❈❈ ④④ ❈! ◦ ◦ ◦ / ◦ / ◦ / ... / ◦ / ◦ ④= ❈❈ ④= ❈❈ ④④ ❈❈ ④④ ❈❈ ④④ ❈! ④④ ❈! ◦ ! ◦ ! ◦ . ④= ❈❈ ④= ❈❈ ④= ❈❈ . ④④ ❈❈ ④④ ❈❈ ④④ ❈❈ ④④ ❈! ④④ ❈! ④④ ❈! ◦ ! ◦ ! ◦ ! ◦ ◦ / ◦ / ◦ / ... / ◦ / ◦ . ◦ / ◦ / ◦ / ... / ◦ / ◦ Triangle quiver Rectangle quiver In this case, the algebra A ≃ KQ/I is presented by a triangle or a rectangle quiver Q and an ideal I generated by all possible commutativity relations. Here, a commutativity relation stands for the equality w1 = w2 of two different paths w1 and w2 having the same source and target. This motivates the study of simply connected algebras, which is a rather large class of algebras and contains triangle and rectangle quivers as special cases. 1.2 Main results. Simply connected algebras are first introduced by Bongartz and Gabriel [BG1] in representation-finite cases. The importance of these algebras is that we can reduce the representation theory of an arbitrary representation-finite algebra A to that of a representation-finite simply connected algebra B. More precisely, for any representation-finite algebra A, the indecomposable A-modules can be lifted to indecom- posable B-modules over a simply connected algebra B, which is contained inside a certain Galois covering of the standard form A of A, see [BG2] for details. Soon after, Assem and Skowro´nski [AS] introduced the definition for an arbitrary algebra to be simply connected. In thee case of representation-finite algebras, this new definition coincides with the definition in [BG1]. So we take this new definition in this paper (see Definition 2.1). Then, the class of simply connected algebras becomes rather 2 large. For example, it includes tree algebras, tubular algebras, iterated tilted algebras of Euclidean type Dn(n > 4), E6, E7, E8 and so on. The first main result of this paper is the following. e e e e Theorem 1.1 (Theorem 3.4). Let A be a simply connected algebra. Then, A is τ-tilting finite if and only if it is representation-finite. We recall that an algebra A is called sincere if there exists an indecomposable A- module M such that all simple A-modules appear in M as composition factors. Otherwise, A is called non-sincere. Then, the second main result of this paper is given as follows. Theorem 1.2 (Theorem 3.8). Let {e1, e2,...,en} be a complete set of pairwise orthogonal primitive idempotents of A. If A is non-sincere, A is τ-tilting finite if and only if A/AeiA is τ-tilting finite for any 1 6 i 6 n. Theorem 1.1 enables us to understand all τ-tilting finite sincere simply connected algebras by quiver and relations, see Remark 3.10. Moreover, we point out that there are some inclusions as follows. {Sincere simply connected algebras} ⊇{Staircase algebras}∪{Shifted-staircase algebras} Algebras presented by a triangle or a rectangle ⊇ (quiver with all possible commutativity relations) Then, the third main result of this paper indicates the τ-tilting finiteness of the above subclasses, see Section 4 for details. Lastly, as an example, we compute the number #sτ-tilt A of pairwise non-isomorphic basic support τ-tilting A-modules for a specific τ-tilting finite sincere simply connected algebra A. The motivation is explained in Section 5. This paper is organized as follows. In Section 2, we review the basic constructions of simply connected algebras as well as the definition of critical algebras and Tits forms. In Section 3, we shall prove the first and second main results. This allows us to determine the τ-tilting finiteness for several classes of algebras, such as iterated tilted algebras, tubular algebras and so on. In Section 4, we completely determine the τ-tilting finiteness for algebras presented by a triangle or a rectangle quiver with all possible commutativity relations. In Section 5, we present an example to look at the number #sτ-tilt A for a specific τ-tilting finite sincere simply connected algebra A. Acknowledgements. I am very grateful to my supervisor, Prof. Susumu Ariki, for giving me a lot of advice in writing this paper. Especially, many thanks to him for pointing out my logical gaps in the preparation of proofs. Also, I would like to thank Prof. Takuma Aihara, Dr. Kengo Miyamoto, Dr. Aaron Chan and Dr. Yingying Zhang for their many useful discussions on τ-tilting theory. I am also very grateful to the anonymous referee for giving me so many useful suggestions and helping me improve this paper. 3 2 Preliminaries Let A ≃ KQ/I be an algebra with Q = QA := (Q0, Q1) over an algebraically closed field K. We may regard KQ/I as a K-category (see [BG1]) which the class of objects is the set Q0, and the class of morphisms from i to j is the K-vector space KQ(i, j) of linear combinations of paths in Q with source i and target j, modulo the subspace I(i, j) := I ∩ KQ(i, j). We recall some well-known definitions without further reference. • A is called triangular if Q does not have oriented cycles and loops. • A subcategory B of A is said to be full if for any i, j ∈ QB, every morphism f : i → j in A is also in B; a full subcategory B of A is called convex if any path in QA with source and sink in QB lies entirely in QB. • n A relation ρ = i=1 λiωi ∈ I with λi =6 0 is called minimal if n > 2 and for each non-empty proper subset J ⊂{1, 2,...,n}, we have λ ω ∈/ I. P j∈J j j We introduce the definition of simply connected algebrasP as follows. Here, we follow the constructions in [AS]. Let A = KQ/I be a triangular algebra with a connected quiver − Q =(Q0, Q1,s,t) and an admissible ideal I. For each arrow α ∈ Q1, let α be its formal − − − − inverse with s(α )= t(α) and t(α )= s(α). Then, we set Q1 := {α | α ∈ Q1}. − A walk is a formal composition w = w1w2 ...wn with wi ∈ Q1 ∪ Q1 for all 1 6 i 6 n. We set s(w) = s(w1), t(w) = t(wn) and denote by 1x the trivial path at vertex x.
Recommended publications
  • COVERING THEORY for LINEAR CATEGORIES with APPLICATION to DERIVED CATEGORIES Introduction the Covering Technique Has Been Playin
    COVERING THEORY FOR LINEAR CATEGORIES WITH APPLICATION TO DERIVED CATEGORIES RAYMUNDO BAUTISTA AND SHIPING LIU Abstract. We extend the Galois covering theory introduced by Bongartz- Gabriel for skeletal linear categories to general linear categories. We show that a Galois covering between Krull-Schmidt categories preserves irreducible morphisms and almost splits sequences. Specializing to derived categories, we study when a Galois covering between locally bounded linear categories induces a Galois covering between the bounded derived categories of finite dimensional modules. As an application, we show that each locally bounded linear category with radical squared zero admits a gradable Galois covering, which induces a Galois covering between the bounded derived categories of finite dimensional modules, and a Galois covering between the Auslander-Reiten quivers of these bounded derived categories. In a future paper, this will enable us to obtain a complete description of the bounded derived category of finite dimensional modules over a finite dimensional algebra with radical squared zero. Introduction The covering technique has been playing an important role in the representation theory of finite dimensional algebras; see, for example, [6, 8, 9, 16]. In this connec- tion, algebras are regarded as locally bounded linear categories; see [6]. To each Galois covering between such categories, Bongartz-Gabriel associated a push-down functor between their module categories, which induces a Galois covering between the Auslander-Reiten quivers in the locally representation-finite case; see [6, 8]. This technique was extended later by Asashiba by studying the induced push-down functor between the bounded homotopy categories of finitely generated projective modules; see [1].
    [Show full text]
  • Infinity-Tilting Theory
    ∞-TILTING THEORY LEONID POSITSELSKI AND JAN SˇTOVˇ ´ICEKˇ Abstract. We define the notion of an infinitely generated tilting object of infi- nite homological dimension in an abelian category. A one-to-one correspondence between ∞-tilting objects in complete, cocomplete abelian categories with an injec- tive cogenerator and ∞-cotilting objects in complete, cocomplete abelian categories with a projective generator is constructed. We also introduce ∞-tilting pairs, con- sisting of an ∞-tilting object and its ∞-tilting class, and obtain a bijective corre- spondence between ∞-tilting and ∞-cotilting pairs. Finally, we discuss the related derived equivalences and t-structures. Contents Introduction 1 1. The Tilted and Cotilted Abelian Categories 4 2. ∞-Tilting-Cotilting Correspondence 7 3. ∞-Tilting and ∞-Cotilting Pairs 13 4. ∞-Tilting-Cotilting Derived Equivalences 17 5. ∞-Tilting and ∞-Cotilting t-Structures 20 6. Examples 25 References 32 Introduction The phrase ‘tilting theory’ is often used to refer to a well-developed general ma- chinery for producing equivalences between triangulated categories (see [3] for an introduction, history and applications). Such equivalences are often represented by a arXiv:1711.06169v3 [math.CT] 13 Aug 2019 distinguished object, a so-called tilting object, and it is crucial to most of the theory that such a tilting object is homologically small. If A is an abelian category with exact coproducts (e.g. a category of modules over a ring or sheaves on a topological space) and T is a tilting object, the smallness typically translates at least to the assumptions that T is finitely generated and of finite projective dimension. In this paper we introduce and systematically develop ∞-tilting theory, where all homological smallness assumptions are dropped.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • TILTING up ITERATED TILTED ALGEBRAS 1. Introduction Throughout This Paper, We Let K Denote a Fixed Algebraically Closed Field. B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 8, Pages 2223{2232 S 0002-9939(99)05230-2 Article electronically published on November 29, 1999 TILTING UP ITERATED TILTED ALGEBRAS IBRAHIM ASSEM, DIETER HAPPEL, AND SONIA TREPODE (Communicated by Ken Goodearl) Abstract. We show that, if A is a representation-finite iterated tilted algebra of euclidean type Q, then there exist a sequence of algebras A = A0;A1;A2;:::; (i) (i) Am, and a sequence of modules T ,where0≤ i<m,suchthateachT is Ai Ai (i) an APR-tilting Ai-module, or an APR-cotilting Ai-module, End T = Ai+1 Ai and Am is tilted representation-finite. 1. Introduction Throughout this paper, we let k denote a fixed algebraically closed field. By algebra is always meant a finite dimensional associative k-algebra with an identity, which we assume moreover to be basic and connected, and by module is meant a finitely generated right A-module. Tilting theory is by now an established tool in the representation theory of algebras. In particular, the classes of tilted and iterated tilted algebras, introduced by means of the tilting process, were very useful, for instance, in the classification of the self-injective algebras of polynomial growth (see [1], [7], [11]). We recall their definition. Let Q be a finite, connected quiver without oriented cycles and let kQ denote the path algebra of Q.AnalgebraA is said to be iterated tilted of type Q if there exists a going-up tilting series from A to kQ, that is, a sequence of algebras A = A0;A1;:::;Am = kQ and a sequence of tilting modules T (i),where0≤ i<m, such that End T (i) = A and each T (i) Ai Ai i+1 Ai is separating, that is, such that each indecomposable Ai-module M satisfies either (i) 1 (i) HomAi (T ;M)=0orExtAi (T ;M) = 0 (see [2]).
    [Show full text]
  • Generalized Tilting Theory in Functor Categories
    Table of content Motivation and Introduction Main results Applications Generalized tilting theory in functor categories Xi Tang April 25, 2019 logo Table of content Motivation and Introduction Main results Applications Table of content 1 Motivation and Introduction 2 Main results Equivalences induced by T A cotorsion pair 3 Applications An isomorphism of Grothendieck groups An abelian model structure A t-structure induced by T logo Table of content Motivation and Introduction Main results Applications References S. Bazzoni, The t-structure induced by an n- tilting module, Trans. Amer. Math. Soc. (to ap- pear). R. Mart´ınez-Villa and M. Ortiz-Morales, Tilting theory and functor categories I. Classical tilt- ing, Appl. Categ. Struct. 22 (2014), 595–646. R. Mart´ınez-Villa and M. Ortiz-Morales, Tilting theory and functor categories II. Generalized tilting, Appl. Categ. Struct. 21 (2013), 311– logo 348. Table of content Motivation and Introduction Main results Applications Motivation K algebraically closed field Λ finite dimensional K-algebra TΛ tilting module Γ := End(T)op Brenner-Butler Tilting Theorem The following statements hold. (1) (T (T); F(T)) is a torsion theory, where 1 T (T) := fM 2 mod Λ j ExtΛ(T; M) = 0g; logo F(T) := fM 2 mod Λ j HomΛ(T; M) = 0g: Table of content Motivation and Introduction Main results Applications Motivation (2) (X (T); Y(T)) is a torsion theory, where X (T) := fN 2 mod Γ j N ⊗Γ T = 0g; Γ Y(T) := fN 2 mod Γ j Tor1 (N; T) = 0g. (3) There are two category equivalences: T (T) F(T) g 7 s s w ' X (T) Y(T): logo Table of content Motivation and Introduction Main results Applications R associative ring TR n-tilting module S := End(T)op Miyashita Theorem There are category equivalences: e ExtR(T;−) n / n KE (TR) KT (ST); where e o s e S Tore (−;T) n i KEe (TR) := fM j ExtR(T; M) = 0; 0 6 i 6= e 6 ng; n S logo KTe (ST) := fN j Tori (N; T) = 0; 0 6 i 6= e 6 ng.
    [Show full text]
  • ALL TILTING MODULES ARE of FINITE TYPE 1. Introduction in The
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 135, Number 12, December 2007, Pages 3771–3781 S 0002-9939(07)08911-3 Article electronically published on August 30, 2007 ALL TILTING MODULES ARE OF FINITE TYPE SILVANA BAZZONI AND JAN SˇTOVˇ ´ICEKˇ (Communicated by Martin Lorenz) Abstract. We prove that any infinitely generated tilting module is of finite type, namely that its associated tilting class is the Ext-orthogonal of a set of modules possessing a projective resolution consisting of finitely generated projective modules. 1. Introduction In the early eighties Brenner and Butler in [9] and Happel and Ringel in [18] gen- eralized the classical Morita equivalence induced by a progenerator by introducing the notion of a tilting module over a finite-dimensional Artin algebra. In order to obtain equivalences between subcategories of the module category, tilting modules were assumed to be finitely generated and moreover of projective dimension at most one. Later, Miyashita [20] considered tilting modules of finite projective dimension and studied the equivalences induced by them. Colby and Fuller in [10] extended the setting to arbitrary rings, but in all the above-mentioned papers the tilting modules were always assumed to be finitely generated. The notion of infinitely generated tilting modules over arbitrary rings was introduced by Colpi and Trlifaj in [11] for the one-dimensional case and by Angeleri-H¨ugel and Coelho in [1] in the general case of finite projective dimension. One of the advantages in dealing with infinitely generated tilting modules is evident in connection with the good approximation theory that they induce and which we are going to illustrate (cf.
    [Show full text]
  • Τ-Tilting Theory – an Introduction
    τ-TILTING THEORY – AN INTRODUCTION HIPOLITO TREFFINGER 1. Introduction The term τ-tilting theory was coined by Adachi, Iyama and Reiten in [3] a paper having this title that first appeared in the arXiv in 2012 and that was published in 2014. In this paper, the authors combined with a fresh approach to the the study of two classical branches of representation theory of finite dimensional algebras, namely tilting theory and Auslander-Reiten theory. The combination of these two subjects is clearly reflected in the name of this novel theory, where the greek letter τ represents the Auslander-Reiten translation in the module category of an algebra while the reference to tilting theory is obvious. In these notes we give a small introduction to τ-tilting theory from the representation the- oretic perspective, making special emphasis in the close relation between τ-tilting theory and torsion theories. Clearly, this notes do not represent a complete survey on the topic since several important aspects of the theory are not covered in detail or even mentioned. For instance, in this notes we do not cover the explicit between τ-tilting theory with cluster theory, stability conditions, or exceptional sequences, just to name a few. These notes are organised as follows. In Section 2 we give a short historical account of the developments in representation theory that lead to the introduction of τ-tilting theory, hoping that this will help placing τ-tilting theory in the more general framework of representation theory. Then, in Section 3 we start giving the material that is covered in the lectures by giving the definition of our main objects of study: τ-rigid and τ-tilting modules and pairs.
    [Show full text]
  • K-Theory and Derived Equivalences
    K-THEORY AND DERIVED EQUIVALENCES DANIEL DUGGER AND BROOKE SHIPLEY Abstract. We show that if two rings have equivalent derived categories then they have the same algebraic K-theory. Similar results are given for G-theory, and for a large class of abelian categories. Contents 1. Introduction 1 2. Model category preliminaries 4 3. K-theory and model categories 7 4. Tilting Theory 10 5. Proofs of the main results 12 6. Derived equivalence implies Quillen equivalence 14 7. Many-generators version of proofs 17 Appendix A. Proof of Proposition 3.7 20 References 22 1. Introduction Algebraic K-theory began as a collection of elaborate invariants for a ring R. Quillen was able to construct these in [Q2] by feeding the category of finitely- generated projective R-modules into the so-called Q-construction; this showed in particular that K-theory was a Morita invariant of the ring. The Q-construction could take as input any category with a sensible notion of exact sequence, and Waldhausen later generalized things even further. He realized that the same kind of invariants can be defined for a very broad class of homotopical situations (cf. [Wa], which used ‘categories with cofibrations and weak equivalences’). To define the algebraic K-theory of a ring using the Waldhausen approach, one takes as input the category of bounded chain complexes of finitely-generated projective modules. As soon as one understands this perspective it becomes natural to ask whether the Waldhausen K-theory really depends on the whole input category or just on the associated homotopy category, where the weak equivalences have been inverted.
    [Show full text]
  • Τ-Tilting Theory, Which ‘Completes’ (Classical) Tilting Theory from the Viewpoint of Mutation
    COMPOSITIO MATHEMATICA τ -tilting theory Takahide Adachi, Osamu Iyama and Idun Reiten Compositio Math. 150 (2014), 415{452 doi:10.1112/S0010437X13007422 FOUNDATION COMPOSITIO MATHEMATICA Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.229, on 25 Sep 2021 at 16:00:33, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X13007422 Compositio Math. 150 (2014) 415{452 doi:10.1112/S0010437X13007422 τ -tilting theory Takahide Adachi, Osamu Iyama and Idun Reiten Dedicated to the memory of Dieter Happel Abstract The aim of this paper is to introduce τ-tilting theory, which `completes' (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field k is a direct summand of exactly one or two tilting modules. An important property in cluster- tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras kQ, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support) τ-tilting modules, and show that an almost complete support τ-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional k-algebra Λ, we establish bijections between functorially finite torsion classes in mod Λ, support τ-tilting modules and two-term silting complexes in Kb(proj Λ).
    [Show full text]
  • Tilting Theory
    Introduction to τ-tilting theory Osamu Iyamaa and Idun Reitenb,1 aGraduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan; and bDepartment of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway Edited by Bernard Leclerc, University of Caen, Caen, France, and accepted by the Editorial Board January 22, 2014 (received for review September 17, 2013) From the viewpoint of mutation, we will give a brief survey of when dealing with categorification of cluster algebras. For cluster tilting theory and cluster-tilting theory together with a motivation categories (10), and more generally, for 2-Calabi–Yau trian- from cluster algebras. Then we will give an introduction to τ-tilting gulated categories (11), a class of objects called cluster-tilting theory which was recently developed. objects have the desired property (Theorem 9). For path algebras kQ, this result for cluster categories was translated to the fact 1. Introduction that the same holds for support tilting pairs (which generalize Let Λ be a finite dimensional algebra over an algebraically closed tilting modules) (12, 13) (Theorem 7). More generally, for field k, for example k is the field of complex numbers. We always 2-Calabi–Yau triangulated categories we can translate to the assume that Λ is associative and has an identity. An important property that for the associated 2-Calabi–Yau tilted algebras class of algebras is the path algebras kQ for a finite quiver Q, that the support τ-tilting pairs have the desired property for is, a finite-directed graph. The k-basis for kQ is the paths in Q.
    [Show full text]
  • Title INTRODUCTION to CLUSTER TILTING in 2-CALABI- YAU
    INTRODUCTION TO CLUSTER TILTING IN 2-CALABI- Title YAU CATEGORIES (Expansion of Combinatorial Representation Theory) Author(s) IYAMA, OSAMU Citation 数理解析研究所講究録 (2009), 1647: 49-59 Issue Date 2009-05 URL http://hdl.handle.net/2433/140703 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University 数理解析研究所講究録 第 1647 巻 2009 年 49-59 49 INTRODUCTION TO CLUSTER TILTING IN 2-CALABI-YAU CATEGORIES OSAMU IYAMA ABSTRACT. Cluster tilting theory reveals combinatorial structure of 2-Calabi-Yau triangulated cate- gories and is applied to categorIfy Fomln-Zelevinsky cluster algebras by many authors (Buan, Marsh, Reineke, Reiten Todorov, Caldero, Chapoton, Schiffler, Keller,...). In the flrst section, we will introduce cluster tilting theory in 2-Calabi-Yau triangulated category. In particular, a combinatorial description of change of endomorphism algebras of cluster tilting objects via mutation process is given in terms of Fomin-Zelevinsky quiver mutation rule. In the second section, a class of examples of 2-Calabi-Yau triangulated categories containing cluster tilting objects will be constructed from preprojective algebras and elements in the corresponding Coxeter groups. In recent years, cluster tilting theory becomes amajor subject in representation theory of associative algebras. It has the following three aspects: (1) Categorification of combinatorics of Fomin-Zelevinsky cluster algebras [FZ2], (2) Calabi-Yau analogue of claesical tilting theory, (3) Three dimensIonal Auslander-Reiten theory. The sspect (2) with its application to (1) turns out to be so fruitful that there are alot of applications outside of representation theory. Among others, Zamolodchikov’s periodicity conjecture on $Y$-systems and $T$-systems associated to pairs of Dynkin diagrams is solved by Keller [Ke3] and $Inouearrow I.$-Kuniba- Nakanishi-Suzuki $[$ IIKNS].
    [Show full text]
  • Results from Mathscinet: Mathematical Reviews on the Web Cg Copyright American Mathematical Society 2018 Tilted and Hochschild E
    Results from MathSciNet: Mathematical Reviews on the Web c Copyright American Mathematical Society 2018 MR3585514 16-01 13E10 15A69 16Dxx 16E30 16Gxx 16K20 16T05 Skowro´nski,Andrzej (PL-TORNM); Yamagata, Kunio (J-TAGT2) FFrobenius algebras. II. Tilted and Hochschild extension algebras. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Z¨urich, 2017. x+619 pp. ISBN 978-3-03719-174-3 The book under review is the second of three volumes devoted to the modern repre- sentation theory of finite-dimensional associative algebras, and, in particular, to the representation theory of Frobenius algebras. It is a natural continuation of the first vol- ume [A. Skowro´nskiand K. Yamagata, Frobenius algebras. I, EMS Textbk. Math., Eur. Math. Soc., Z¨urich, 2011; MR2894798]. The aim of the second volume is to provide a comprehensive introduction to the representation theory of hereditary algebras, tilted algebras, Hochschild extension algebras, and especially to the shape of their Auslander- Reiten quivers. The third volume will be more advanced and will discuss Frobenius algebras as orbit algebras of repetitive categories of finite-dimensional associative alge- bras with respect to actions of certain admissible automorphism groups. In particular, in the third volume covering techniques will be explained which can be used to reduce the representation theory of Frobenius algebras to the representation theory of alge- bras of small global dimension and then to apply tilting theory. Similarly to the first volume, the second volume is primarily addressed to graduate students as well as to non-specialists. It is again self-contained|the only prerequisites are a basic knowledge of linear algebra and some results of the first volume.
    [Show full text]