The Biogeography and Ecology of the Secondary Marine Arthropods of Southern Africa \

Total Page:16

File Type:pdf, Size:1020Kb

The Biogeography and Ecology of the Secondary Marine Arthropods of Southern Africa \ The biogeography and ecology of the secondary marine arthropods of southern Africa \ . by ~erban Proche~ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree in the School of Life and Environmental Sciences Faculty of Science and Engineering University of Durban-Westville Promoter: Dr. David J. Marshall November 2001 DECLARATION The Registrar (Academic) UNIVERSITY OF DURBAN-WESTVILLE Dear Sir I, Mihai ~erban Proche§ REG. NO.: 9904878 hereby declare that the thesis entitled The biogeography and ecology of the secondary marine arthropods of southern Africa is the result of my own investigation and research and that it has not been submitted in part or full for any other degree or to any other University. S.tl"h"iA. ~('oc~ c· ----- ~ ------------------------ ~ 15 November 2001 Signature Date 11 The biogeography and ecology of the secondary marine arthropods of southern Africa ~erban Proche§ Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy degree in the School of Life and Environmental Sciences, Faculty of Science and Engineering, University of Durban-Westville, November 200l. Promoter: Dr. David J. Marshall. Abstract Because of their recent terrestrial ancestry, secondary marine organisms usually differ from primary marine organisms in life history and physiological traits. Intuitively, the traits of secondary marine organisms constrain distribution, thus making these organisms interesting subjects for comparative investigation on ecological and biogeographical theory. A primary objective of the studies presented here was to improve our current knowledge and understanding of the generally poorly known secondary marine arthropods (e.g. mites and insects). An additional objective was to outline relationships between ancestry, ecology, and biogeography of small-bodied, benthic marine arthropods. In establishing a context for the global biogeographical study, the distribution patterns of secondary marine plants and animals were determined by means of a literature survey. These organisms, including mangrove trees and marine tetrapods, form three distinct groupings which relate to northern, tropical and southern latitudinal bands, and, exhibit bimodal species richness in each hemisphere. The exact same patterns were resolved for non­ halacarid marine mites and are thought to have arisen from the effects of elevated tropical speciation and high latitude glaciation. Whereas the typically marine Halacaridae show a high degree of radiation in sub-tidal habitats, global distribution patterns and species to genus ratios indicate that the intertidally-restricted Ameronothroidea (Oribatida) and Hyadesiidae (Astigmata), have had long marine associations relative to other non-ha1carid mites (Mestostigmata and Prostigmata). The mari~e mite fauna of southern Africa clusters into three geographical provinces, and the species richness of rocky shore mites peaks in the southern, warm temperate province. In being consistent with the trend for the region'S marine fauna in III general, the mite biogeography highlights the generality of this faunistic trend, with respect to taxonomic resolution and taxonomic diversity. Ecological studies focussing on mangrove pneumatophores show that they support a characteristic suite of arthropods (mites, copepods, tanaids, insect larvae), which differs from that of the benthic sediment. Pneumatophore assemblages comprise similar numbers of primary and secondary marine species, although the former group is more abundant by one order of magnitude. Pneumatophore assemblage composition varies between mangrove forests, predominantly in relation to salinity variation. Within mangrove forests differences arise through differential wetting frequency and variable sunlight intensity. Desiccation­ limited algal growth and sediment deposition determine the vertical zonation of arthropods along the pneumatophore length, with secondary marine species typically occurring at lower elevations, and primary marine species at higher elevations. The levels of similarity in the composition of arthropod assemblages decreases with spatial scale, the largest differences occurring between estuarine systems. Despite their recent terrestrial ongms, secondary marine arthropods show a high degree of integration into marine ecosystems, and should be consistently considered in marine ecological and biogeographical studies. Key Terms: Acari, ecological transitions, intertidal, mangroves, mites, southern Africa IV Acknowledgements Lots of thanks to my promoter, David 'Mick' Marshall, who took the chance of offering a bursary to an unknown student, coming from faraway Romania. If I'll ever be anywhere in the scientific world, I will owe it to him. Thanks to the NRF and UDW for funding me, and to the MCM for granting me collection permits. My gratitude to Profs. Carolyn Baker and Ahmed Thandar for their easy-going approach to administrative matters, and to the technical staff for taking me around on collecting trips. Thanks to Angelo Lambiris and Renzo Perissinotto for amazing exchanges of scientific, and not only scientific, ideas. Thanks in their respective languages to all my excellent friends here in Durbs. They made these two years and a half, more than a PhD, a real social experience. I specifically want to name here Santosh Bachoo, Dennis Ball, Amar Bholonath, Ketelo Hlehlisi, Israel Kibirige, Deshi Moodley, June Munnisunker, Mags Natasen-Moodley, Phindi Nonyane, Christian Nozais, Ashvena and Ashvita Ramcharan, Syd Ramdhani, Vanessa Singh, and Kaajial U grasen. I thought it appropriate to list here (in chronological order) the five people whose contribution was essential in my choice of natural science as a career. Mr. ~tefan Proche~ - my father, that is. He fashioned my first insect tray when I was four. He had reasons to get seriously worried later on, when another seven were required to accommodate my growing collections. Mr. Mihai Filip - my best friend from the gymnasium years, and my opponent in a fierce competition for 'who gathers more bugs' . Mr. Alexandru Iftime - my twin-brother-in-fate, who introduced me to the mysterious world of scientific names and encyclopedic knowledge. Mrs. Rodica Serafim - 'mom' of all Romanian beetles. She taught me the patience to go through endless pages of scientific literature, and grew me up as a real coleopterist. If I turned out otherwise, it's all my fault. Prof. Irina Teodorescu - my Honours and MSc supervisor. A lady of an almost extinct kind, she went through great pains explaining me that in science, to exist, one must publish. This thesis is dedicated to my parents, Ileana and ~tefan Proche~. Thanking them here for bringing me up would be beside the point. I just want to say I appreciate them for who they are. v Publications (Papers published, in press, or submitted, arising from the study presented in this thesis) Proche§ ~, Marshall DJ. 2001. Global distribution patterns of non-halacarid manne intertidal mites: implications for their origins in marine habitats. Journal of Biogeography 28: 47-58. Proche§ ~, Marshall DJ, Ugrasen K, Ramcharan A. 2001. Mangrove pneumatophore arthropod assemblages and seasonality patterns. Journal of the Marine Biological Association of the United Kingdom 81 : 545-552. Proche§ ~. 2001. Back to the sea: secondary marine organisms from a biogeographical perspective. Biological Journal of the Linnean Society 74: 197-203. Proche§ ~. 2001. Halacaropsis praecognita n. sp. (Acari: Halacaridae) from southern Africa. Transactions of the Royal Society ofSouth Africa, in press. Proche§ ~. 2001. New species of Copidognathinae (Acari: Halacaridae) from southern Africa. Journal ofNatural History, in press. Proche§ ~, Marshall DJ. 2001. Ecological patterns of two cohabiting evolutionary distinct animal groups: mangrove pneumatophore arthropods as a case study. Ecography, submitted. Proche§ ~, Marshall DJ. 2001. Algal growth and sediment deposition as determinants of arthropod distribution and abundance on mangrove pneumatophores. Estuarine, Coastal and Shelf Science, submitted. Proche§ ~, Marshall DJ. 2001. Diversity and biogeography of southern African marine Acari. Journal ofBiogeography , submitted. VI Contents Abstract ........ .... ...... ....... .. ... ... .. ... ...... .... ..... ....... ... ... .... ......... ................. 111 Acknowledgements .. .. .. ....... .... ... ..... ........ .. ... .............. .... ... .. .. .... ......... .... .. .v Publications .. ..... ...... .. ... ..... .... .................... ..... ...... ... ....... .... .. ........... .. .... VI Table of contents ... ..... .. ...... ... .... ... ...... ... ........ ... ... .. ····.· ... ... .. ···. ···· ····· ···· .V11 Chapter I. Introduction ....... .... ... ................ .. ............ ....... ................ ............ .1 Section I. Biogeography Chapter II. Back to the sea: secondary marine organisms from a biogeographical perspective .. .... .... ..... ..... .................. ........... ...... ....... ......... ...... ... .. .. 10 Chapter III. Global distribution patterns of non-halacarid marine intertidal mites: implications for their origins in marine habitats .......... ... ..... .. .. ........ ... .. .. ... 25 Chapter IV. Diversity and biogeography of southern African intertidal Acari ............. .... 50 Section II. Ecology Chapter V. Mangrove pneumatophore arthropod assemblages and temporal patterns .. .... .. ..79 Chapter VI. Assemblage structure of two phylogenetically distinct arthropod
Recommended publications
  • Mesostigmata No
    13 (1) · 2013 Christian, A. & K. Franke Mesostigmata No. 24 ............................................................................................................................................................................. 1 – 32 Acarological literature Publications 2013 ........................................................................................................................................................................................... 1 Publications 2012 ........................................................................................................................................................................................... 6 Publications, additions 2011 ....................................................................................................................................................................... 14 Publications, additions 2010 ....................................................................................................................................................................... 15 Publications, additions 2009 ....................................................................................................................................................................... 16 Publications, additions 2008 ....................................................................................................................................................................... 16 Nomina nova New species ................................................................................................................................................................................................
    [Show full text]
  • (Acari: Halacaridae), a New Record of the Copidognathus Gibbus Group from Korea
    Anim. Syst. Evol. Divers. Vol. 36, No. 2: 167-174, April 2020 https://doi.org/10.5635/ASED.2020.36.2.011 Short communication Copidognathus daguilarensis (Acari: Halacaridae), a New Record of the Copidognathus gibbus Group from Korea Jimin Lee1, Jong Hak Shin2, Cheon Young Chang2,* 1Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Korea 2Department of Biological Science, Daegu University, Gyeongsan 38453, Korea ABSTRACT A halacarid species of the genus Copidognathus is newly reported from Korea: C. daguilarensis Bartsch, 1997, which was described from Hong Kong. It is redescribed herein with detailed illustrations. Korean specimens coincide well with the original description, however, they showed two minor morphological discrepancies from it: quite shorter second palpal segment than the fourth and a modified dorsal seta on the second palpal segment. Korean specimens were rather smaller than the type specimens from Hong Kong, however, they did not show significant differences in the length to width ratios of important body parts. The number of perigenital setae was more variable in the Korean males, ranged 24-29 setae, versus 25-26 in Hong Kong’s. Copidognathus daguilarensis is reported for the first time outside the type locality, and joins as the second member of the gibbus group in the northwest Pacific. Keywords: gibbus group, marine, meiofauna, mite, northwest Pacific, taxonomy INTRODUCTION 2004 and C. polyporus Bartsch, 1991 (see Chatterjee and Chang, 2004); C. fistulosus Chatterjee and Chang, 2005 (see Genus Copidognathus is a representative and the most spe- Chatterjee and Chang, 2005); C. quadriporosus Chatterjee ciose halacarid genus, comprising 377 valid species, about and Chang, 2006 and C.
    [Show full text]
  • Two New Species of Gaeolaelaps (Acari: Mesostigmata: Laelapidae)
    Zootaxa 3861 (6): 501–530 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3861.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:60747583-DF72-45C4-AE53-662C1CE2429C Two new species of Gaeolaelaps (Acari: Mesostigmata: Laelapidae) from Iran, with a revised generic concept and notes on significant morphological characters in the genus SHAHROOZ KAZEMI1, ASMA RAJAEI2 & FRÉDÉRIC BEAULIEU3 1Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected] 2Department of Plant Protection, College of Agriculture, University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: [email protected] 3Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling avenue, Ottawa, ON K1A 0C6, Canada. E-mail: [email protected] Abstract Two new species of laelapid mites of the genus Gaeolaelaps Evans & Till are described based on adult females collected from soil and litter in Kerman Province, southeastern Iran, and Mazandaran Province, northern Iran. Gaeolaelaps jondis- hapouri Nemati & Kavianpour is redescribed based on the holotype and additional specimens collected in southeastern Iran. The concept of the genus is revised to incorporate some atypical characters of recently described species. Finally, some morphological attributes with
    [Show full text]
  • Mesostigmata No
    16 (1) · 2016 Christian, A. & K. Franke Mesostigmata No. 27 ............................................................................................................................................................................. 1 – 41 Acarological literature .................................................................................................................................................... 1 Publications 2016 ........................................................................................................................................................................................... 1 Publications 2015 ........................................................................................................................................................................................... 9 Publications, additions 2014 ....................................................................................................................................................................... 17 Publications, additions 2013 ....................................................................................................................................................................... 18 Publications, additions 2012 ....................................................................................................................................................................... 20 Publications, additions 2011 ......................................................................................................................................................................
    [Show full text]
  • (Acari: Halacaridae and Pontarachnidae) Associated with Mangroves
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.ecol-mne.com A checklist of halacarid and pontarachnid mites (Acari: Halacaridae and Pontarachnidae) associated with mangroves TAPAS CHATTERJEE Department of Biology, Indian School of Learning, I.S.M. Annexe, P.O. – I.S.M., Dhanbad – 826004, Jharkhand, India. E–mail: [email protected] Received 14 June 2015 │ Accepted 23 June 2015 │ Published online 25 June 2015. Abstract This paper is a compilation of the records for halacarid and pontarachnid mite species associated with mangroves. A total of 23 halacarid species (Acari: Halacaridae) belonging to the five genera Acarothrix, Agauopsis, Copidognathus, Isobactrus and Rhombognathus and six pontarachnid species (Acari: Pontarachnidae) belonging to the genus Litarachna are associated with various microhabitats of mangroves. Mites are found mainly in the algae and sediment covering pneumatophores and aerial roots. Key words: Checklist, Mangrove, Halacaridae, Pontarachnidae. Introduction Tidal mangrove forests cover a vast area of world’s coastlines and are precious resources for multiple economic and ecological reasons. As much as 39.3 million acres of mangrove forests are present along the warm-water coastlines of tropical oceans all over the world. However, mangroves are diminishing worldwide at a faster rate than other terrestrial forests, making them one of the most threatened ecosystems in the world. Mangroves are habitats for a diverse aerial, terrestrial and marine fauna (Nagelkerken et al. 2008). Vast amounts of intertidal small fauna and meiofauna are associated with mangroves, mainly on turf growing on mangrove aerial roots and pneumatophores (e.g.
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Avicennia Officinalis Pneumatophores India Abundance Is More on Roots Than Larsen Et Al
    Acarologia 56(1): 73–89 (2016) DOI: 10.1051/acarologia/20162189 A new species of Eutrachytes (Acari: Uropodina: Eutrachytidae) associated with the Indian mangrove (Avicennia officinalis) María L. MORAZA1*, Jeno KONTSCHÁN2, Gobardhan SAHOO3 and Zakir A. ANSARI3 (Received 15 September 2015; accepted 13 November 2015; published online 04 March 2016) 1 Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, Pamplona E-31080, Spain. [email protected] (* Corresponding author) 2 Plan Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Bix 102, Hungary. [email protected] 3 CSIR-National Institute of Oceanography, Dona Paula, Goa-403004, India. [email protected] and [email protected] ABSTRACT — A new species of Eutrachytes (Eutrachytes flagellatus) is described based on a complete ontogenetic series, starting from larva and including the adult female and male. This Uropodina mite was isolated from the pneumatophore surface of Avicennia officinalis having algal (Bostryschia sp.) growth in Goa, India. Notable morphological attributes pecu- liar to immature instars of this species include a flagellate tubular dorsolateral respiratory structure extending from the peritreme, nude pygidial shields in the adult male and female and a deep concave formation at the posterolateral margins of the dorsal shield. A taxonomic discussion with salient diagnostic features of the genus is given and a key to genera of the family is pre- sented. We present two nomenclature modifications: Deraiophoridae syn. nov. as the junior synonym of Eutrachytidae and Den- tibaiulus Hirschmann, 1979 syn. nov. as a junior synonym of Eutrachytes Berlese, 1914. A compiled list of all new species discovered to date from mangrove roots in different parts of the world is given.
    [Show full text]
  • Soil Mite Communities (Acari: Mesostigmata) As Indicators of Urban Ecosystems in Bucharest, Romania M
    www.nature.com/scientificreports OPEN Soil mite communities (Acari: Mesostigmata) as indicators of urban ecosystems in Bucharest, Romania M. Manu1,5*, R. I. Băncilă2,3,5, C. C. Bîrsan1, O. Mountford4 & M. Onete1 The aim of the present study was to establish the efect of management type and of environmental variables on the structure, abundance and species richness of soil mites (Acari: Mesostigmata) in twelve urban green areas in Bucharest-Romania. Three categories of ecosystem based upon management type were investigated: protected area, managed (metropolitan, municipal and district parks) and unmanaged urban areas. The environmental variables which were analysed were: soil and air temperature, soil moisture and atmospheric humidity, soil pH and soil penetration resistance. In June 2017, 480 soil samples were taken, using MacFadyen soil core. The same number of measures was made for quantifcation of environmental variables. Considering these, we observed that soil temperature, air temperature, air humidity and soil penetration resistance difered signifcantly between all three types of managed urban green area. All investigated environmental variables, especially soil pH, were signifcantly related to community assemblage. Analysing the entire Mesostigmata community, 68 species were identifed, with 790 individuals and 49 immatures. In order to highlight the response of the soil mite communities to the urban conditions, Shannon, dominance, equitability and soil maturity indices were quantifed. With one exception (numerical abundance), these indices recorded higher values in unmanaged green areas compared to managed ecosystems. The same trend was observed between diferent types of managed green areas, with metropolitan parks having a richer acarological fauna than the municipal or district parks.
    [Show full text]
  • Changing Microarthropod Communities in Front of a Receding Glacier in the High Arctic
    insects Article Changing Microarthropod Communities in Front of a Receding Glacier in the High Arctic Dariusz J. Gwiazdowicz 1,*, Bogna Zawieja 2, Izabella Olejniczak 3 , Piotr Skubała 4, Anna K. Gdula 1 and Stephen J. Coulson 5,6 1 Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Pozna´n,Poland; [email protected] 2 Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Pozna´n,Poland; [email protected] 3 Institute of Biological Sciences, University Cardinal Stefan Wyszynski, Wóycickiego 1/3, 01-938 Warsaw, Poland; [email protected] 4 Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland; [email protected] 5 Swedish Species Information Centre, Swedish University of Agricultural Sciences, ArtDatabanken, Box 7007, 75007 Uppsala, Sweden; [email protected] 6 Department of Arctic Biology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway * Correspondence: [email protected] Received: 5 March 2020; Accepted: 1 April 2020; Published: 5 April 2020 Abstract: This study was carried out at Ny-Ålesund on Spitsbergen in Svalbard (High Arctic). Eight study sites were established along a transect from the fjord to the snout of the glacier. The sites differed from each other by the type of vegetation cover and soil characteristics. Soil samples were collected and placed in Tullgren funnels. Extracted arthropods were represented by two groups of mites (Mesostigmata and Oribatida) and springtails (Collembola). The pioneer species that occurred first after retreat of the glacier were representatives of the Collembola (Agrenia bidenticulata and Hypogastrura concolor).
    [Show full text]
  • Marine Insects
    UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats.
    [Show full text]
  • Lobohalacarus Weberi (Acari, Halacaridae) from Shallow Ground Waters in South Korea
    Anim. Syst. Evol. Divers. Vol. 37, No. 3: 242-248, July 2021 https://doi.org/10.5635/ASED.2021.37.3.016 Short communication Lobohalacarus weberi (Acari, Halacaridae) from Shallow Ground Waters in South Korea Jong Hak Shin1, Jimin Lee2, Cheon Young Chang1,* 1Department of Biological Science, Daegu University, Gyeongsan 38453, Korea 2Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Korea ABSTRACT Lobohalacarus weberi (Romijn and Viets, 1924) is added to the halacarid fauna of Korea as the third member of freshwater halacarid species. Both the genus and species are newly recorded from Korea. Halacarid mites were collected from two hillside wells and a streamside hyporheic zone in the southeastern region of South Korea. Lobohalacarus weberi is characterized by a well­developed frontal spine­like process, seven dorsal setae, the fourth segment of palp with a short distal and three long proximal setae, and tibiae of legs II to IV with two, one, two pectinate setae, respectively. A few minor individual variabilities were observed in the number of perigenital seta and genital acetabula, the setal armature on genua of legs, and the shape of spinule row on lateral claws. Keywords: ‌description, freshwater, halacarid mite, hyporheic zone, new record, wells INTRODUCTION Voucher specimens are kept in the specimen room of the Department of Biological Science, Daegu University (DB), As shown in the taxon name of “Halacarida” (meaning ‘aca­ Gyeongsan, Korea. rids from salt waters’), halacarids are basically marine. Terminology and abbreviations in the text and figure cap­ Only 67 species or subspecies of 17 genera (about 6% of tions follow Bartsch (2006): AD, anterior dorsal plate; AE, the total number of species currently recorded in the family anterior epimeral plate; ds, dorsal setae on idiosoma (ds­ Halacaridae Murray, 1877) are freshwater or brackish­water 2, second dorsal setae on idiosoma); GA, genitoanal plate; (Bartsch, 2018; FADA, 2021).
    [Show full text]