Relativistic Particles and Fields in External Electromagnetic Potential

Total Page:16

File Type:pdf, Size:1020Kb

Relativistic Particles and Fields in External Electromagnetic Potential The most tragic word in the English language is ‘potential’. Arthur Lotti 6 Relativistic Particles and Fields in External Electromagnetic Potential Given the classical field theory of relativistic particles, we may ask which quantum phenomena arise in a relativistic generalization of the Schr¨odinger theory of atoms. In a first step we shall therefore study the behavior of the Klein-Gordon and Dirac equations in an external electromagnetic field. Let Aµ(x) be the four-vector potential that accounts for electric and magnetic field strengths via the equations (4.230) and (4.231). For classical relativistic point particles, an interaction with these external fields is introduced via the so-called minimal substitution rule, whose gauge origin and experimental consequences will now be discussed. An important property of the electromagnetic field is its description in terms of a vector potential Aµ(x) and the gauge invariance of this description. In Eqs. (4.233) and (4.234) we have expressed electric and magnetic field strength as components of a four-curl Fµν = ∂µAν ∂νAµ of a vector potential Aµ(x). This four-curl is invariant under gauge transformations− A (x) A (x)+ ∂ Λ(x). (6.1) µ → µ µ The gauge invariance restricts strongly the possibilities of introducing electromag- netic interactions into particle dynamics and the Lagrange densities (6.92) and (6.94) of charged scalar and Dirac fields. We shall see that the origin of the minimal substi- tution rule lies precisely in the gauge-invariance of the vector-potential description of electromagnetism. 6.1 Charged Point Particles A free relativistic particle moving along an arbitrarily parametrized path xµ(τ) in four-space is described by an action = Mc dτ q˙µ(τ)q ˙ (τ). (6.2) A − µ Z q The physical time along the path is given by q0(τ) = ct, and the physical velocity by v(t) dq(t)/dt. In terms of these, the action reads: ≡ 2 1/2 2 v (t) = dt L(t) Mc dt 1 2 . (6.3) A Z ≡ − Z " − c # 436 6.1 Charged Point Particles 437 6.1.1 Coupling to Electromagnetism If the particle has a charge e and lies at rest at some position x, its electric potential energy is V (x, t)= eφ(x, t) (6.4) where φ(x, t)= A0(x, t). (6.5) In our convention, the charge of the electron e has a negative value to be in agreement with the sign in the historic form of the Maxwell equations: ∇ E(x) = ∇2φ(x)= ρ(x), · − ∇ B(x) E˙ (x) = ∇ ∇ A(x) E˙ (x) × − × × − 1 = ∇2A(x) ∇ ∇A(x) E˙ (x)= j(x). (6.6) − − · − c h i If the electron moves along a trajectory q(t), its potential energy is V (t)= eφ (q(t), t) . (6.7) In the Lagrangian L = T V , this contributes with the opposite sign − Lint(t)= eA0 (q(t), t) , (6.8) − giving a potential part of the interaction int 0 pot = e dt A (q(t), t) . (6.9) A − Z Since the time t coincides with q0(τ)/c of the trajectory, this can be expressed as int e 0 0 pot = dq A . (6.10) A −c Z In this form it is now quite simple to write down the complete electromagnetic inter- action purely on the basis of relativistic invariance. The direct invariant extension of (6.11) is obviously int e µ = dq Aµ(q). (6.11) A −c Z Thus, the full action of a point particle can be written in covariant form as e = Mc dτ q˙µ(τ)q ˙ (τ) dqµA (q), (6.12) A − µ − c µ Z q Z or more explicitly as v2 1/2 1 2 0 v A = dt L(t)= Mc dt 1 2 e dt A . (6.13) A Z − Z " − c # − Z − c · 438 6 Relativistic Particles and Fields in External Electromagnetic Potential The canonical formalism supplies us with the canonically conjugate momenta ∂L v e e P = = M + A p + A. (6.14) ∂v 1 v2/c2 c ≡ c − q The Euler-Lagrange equation obtained by extremizing this equation is d ∂L ∂L = , (6.15) dt ∂v(t) ∂q(t) or d e d e p(t)= A(q(t), t) e∇A0(q(t), t)+ vi∇Ai(q(t), t). (6.16) dt −c dt − c We now split d ∂ A(q(t), t)=(v(t) ∇)A(q(t), t)+ A(q(t), t), (6.17) dt · ∂t and obtain d e e ∂ e p(t)= (v(t) ∇)A(q(t), t) A(q(t), t) e∇A0(q(t), t)+ vi∇Ai(q(t), t). dt −c · − c ∂t − c (6.18) The right-hand side contains the electric and magnetic fields (4.235) and (4.236), in terms of which it takes the well-known form d v p = e E + B . (6.19) dt c × This can be rewritten in terms of the proper time τ t/γ as ≡ d e p = E p0 + p B , (6.20) dτ Mc × Recalling Eqs. (4.233) and (4.234), this is recognized as the spatial part of the covariant equation d e pµ = F µ pν. (6.21) dτ Mc ν The temporal component of this equation d e p0 = E p (6.22) dτ Mc · gives the energy increase of a particle running through an electromagnetic field. In real time this is d v p0 = e E . (6.23) dt · c Combining this with (6.19), we find the acceleration d d p e v v v v E B E (t)= c 0 = + . (6.24) dt dt p γM c × − c c · 6.1 Charged Point Particles 439 The velocity is related to the canonical momenta and external field via e v P A = − c . (6.25) c e 2 P A + m2c2 s − c This can be used to calculate the Hamiltonian via the Legendre transform ∂L H = v L = P v L, (6.26) ∂v − · − giving e 2 H = c P A + m2c2 + eA0. (6.27) s − c In the non-relativistic limit this has the expansion 1 e 2 H = mc2 + P A + eA0 + .... (6.28) 2m − c Thus, the free theory goes over into the interacting theory by the minimal substitu- tion rule e e p p A, H H A0, (6.29) → − c → − c or, in relativistic notation: e pµ pµ Aµ. (6.30) → − c 6.1.2 Spin Precession in an Atom In 1926, Uhlenbeck and Goudsmit noticed that the observed Zeeman splitting of 1 atomic levels could be explained by an electron of spin 2 . Its magnetic moment is usually expressed in terms of the combination of fundamental constants which have the dimension of a magnetic moment, the Bohr magneton µB = eh/Mc¯ . It reads S eh¯ = gµ , µ , (6.31) B h¯ B ≡ 2Mc where S = /2 is the spin matrix which has the commutation rules [Si,Sj]= ihǫ¯ ijkSk, (6.32) and g is a dimensionless number called the gyromagnetic ratio or Land´efactor. If an electron moves in an orbit under the influence of a torque-free central force, as an electron does in the Coulomb field of an atomic nucleus, the total angular momentum is conserved. The spin, however, shows a precession just like a spinning 440 6 Relativistic Particles and Fields in External Electromagnetic Potential top. This precession has two main contributions: one is due to the magnetic coupling of the magnetic moment of the spin to the magnetic field of the electron orbit, called spin-orbit coupling. The other part is purely kinematic, it is the Thomas precession discussed in Section (4.15), caused by the slightly relativistic nature of the electron orbit. The spin-orbit splitting of the atomic energy levels (to be pictured and discussed further in Fig. 6.1) is caused by a magnetic interaction energy g 1 dV (r) HLS(r)= S L , (6.33) 2M 2c2 · r dr where V (r) is the atomic potential depending only on r = x . To derive this HLS(r), | | we note that the spin precession of the electron at rest in a given magnetic field B is given by the Heisenberg equation dS = B, (6.34) dt × where is the magnetic moment of the electron. In an atom, the magnetic field in the rest frame of the electron is entirely due to the electric field in the rest frame of the atom. A Lorentz transformation (4.286) that boosts an electron at rest to a velocity v produces a magnetic field in the electron’s rest frame: v 1 B = Bel = γ E, γ = . (6.35) − c × 1 v2/c2 − q Since an atomic electron has a small velocity ratio v/c which is of the order of the fine-structure constant α 1/137, the field has the approximate size ≈ v B E. (6.36) el ≈ − c × The electric field gives the electron an acceleration e v˙ = E, (6.37) M so that we may also write Mc 1 B v v˙ , (6.38) el ≈ − e c2 × and Heisenberg’s precession equation (6.34) as dS g (v v˙ ) S. (6.39) dt ≈ 2c2 × × This can be expressed in the form dS = ª S, (6.40) dt LS × 6.1 Charged Point Particles 441 where ªLS is the angular velocity of the spin precession caused by the orbital mag- netic field in the rest frame of the electron: g ª v v˙ . (6.41) LS ≡ 2c2 × In the rest frame of the atom where the electron is accelerated towards the center along its orbit, this result receives a relativistic correction.
Recommended publications
  • Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
    All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available.
    [Show full text]
  • Thomas Precession and Thomas-Wigner Rotation: Correct Solutions and Their Implications
    epl draft Header will be provided by the publisher This is a pre-print of an article published in Europhysics Letters 129 (2020) 3006 The final authenticated version is available online at: https://iopscience.iop.org/article/10.1209/0295-5075/129/30006 Thomas precession and Thomas-Wigner rotation: correct solutions and their implications 1(a) 2 3 4 ALEXANDER KHOLMETSKII , OLEG MISSEVITCH , TOLGA YARMAN , METIN ARIK 1 Department of Physics, Belarusian State University – Nezavisimosti Avenue 4, 220030, Minsk, Belarus 2 Research Institute for Nuclear Problems, Belarusian State University –Bobrujskaya str., 11, 220030, Minsk, Belarus 3 Okan University, Akfirat, Istanbul, Turkey 4 Bogazici University, Istanbul, Turkey received and accepted dates provided by the publisher other relevant dates provided by the publisher PACS 03.30.+p – Special relativity Abstract – We address to the Thomas precession for the hydrogenlike atom and point out that in the derivation of this effect in the semi-classical approach, two different successions of rotation-free Lorentz transformations between the laboratory frame K and the proper electron’s frames, Ke(t) and Ke(t+dt), separated by the time interval dt, were used by different authors. We further show that the succession of Lorentz transformations KKe(t)Ke(t+dt) leads to relativistically non-adequate results in the frame Ke(t) with respect to the rotational frequency of the electron spin, and thus an alternative succession of transformations KKe(t), KKe(t+dt) must be applied. From the physical viewpoint this means the validity of the introduced “tracking rule”, when the rotation-free Lorentz transformation, being realized between the frame of observation K and the frame K(t) co-moving with a tracking object at the time moment t, remains in force at any future time moments, too.
    [Show full text]
  • Introductory Lectures on Quantum Field Theory
    Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties.
    [Show full text]
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • Ions, Protons, and Photons As Signatures of Monopoles
    universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3].
    [Show full text]
  • Electromagnetic Field Theory
    Electromagnetic Field Theory BO THIDÉ Υ UPSILON BOOKS ELECTROMAGNETIC FIELD THEORY Electromagnetic Field Theory BO THIDÉ Swedish Institute of Space Physics and Department of Astronomy and Space Physics Uppsala University, Sweden and School of Mathematics and Systems Engineering Växjö University, Sweden Υ UPSILON BOOKS COMMUNA AB UPPSALA SWEDEN · · · Also available ELECTROMAGNETIC FIELD THEORY EXERCISES by Tobia Carozzi, Anders Eriksson, Bengt Lundborg, Bo Thidé and Mattias Waldenvik Freely downloadable from www.plasma.uu.se/CED This book was typeset in LATEX 2" (based on TEX 3.14159 and Web2C 7.4.2) on an HP Visualize 9000⁄360 workstation running HP-UX 11.11. Copyright c 1997, 1998, 1999, 2000, 2001, 2002, 2003 and 2004 by Bo Thidé Uppsala, Sweden All rights reserved. Electromagnetic Field Theory ISBN X-XXX-XXXXX-X Downloaded from http://www.plasma.uu.se/CED/Book Version released 19th June 2004 at 21:47. Preface The current book is an outgrowth of the lecture notes that I prepared for the four-credit course Electrodynamics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit course Classical Electrodynamics in 1997. To some extent, parts of these notes were based on lecture notes prepared, in Swedish, by BENGT LUNDBORG who created, developed and taught the earlier, two-credit course Electromagnetic Radiation at our faculty. Intended primarily as a textbook for physics students at the advanced undergradu- ate or beginning graduate level, it is hoped that the present book may be useful for research workers
    [Show full text]
  • Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment
    PHYSICAL REVIEW D 67, 062003 ͑2003͒ Covariant calculation of general relativistic effects in an orbiting gyroscope experiment Clifford M. Will* McDonnell Center for the Space Sciences, Department of Physics, Washington University, St. Louis, Missouri 63130 ͑Received 17 December 2002; published 26 March 2003͒ We carry out a covariant calculation of the measurable relativistic effects in an orbiting gyroscope experi- ment. The experiment, currently known as Gravity Probe B, compares the spin directions of an array of spinning gyroscopes with the optical axis of a telescope, all housed in a spacecraft that rolls about the optical axis. The spacecraft is steered so that the telescope always points toward a known guide star. We calculate the variation in the spin directions relative to readout loops rigidly fixed in the spacecraft, and express the variations in terms of quantities that can be measured, to sufficient accuracy, using an Earth-centered coordi- nate system. The measurable effects include the aberration of starlight, the geodetic precession caused by space curvature, the frame-dragging effect caused by the rotation of the Earth and the deflection of light by the Sun. DOI: 10.1103/PhysRevD.67.062003 PACS number͑s͒: 04.80.Cc I. INTRODUCTION by the on-board telescope, which is to be trained on a star IM Pegasus ͑HR 8703͒ in our galaxy. One important feature of Gravity Probe B—the ‘‘gyroscope experiment’’—is a this star is that it is also a strong radio source, so that its NASA space experiment designed to measure the general direction and proper motion relative to the larger system of relativistic effect known as the dragging of inertial frames.
    [Show full text]
  • STRANGE MESON SPECTROSCOPY in Km and K$ at 11 Gev/C and CHERENKOV RING IMAGING at SLD *
    SLAC-409 UC-414 (E/I) STRANGE MESON SPECTROSCOPY IN Km AND K$ AT 11 GeV/c AND CHERENKOV RING IMAGING AT SLD * Youngjoon Kwon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 January 1993 Prepared for the Department of Energy uncer contract number DE-AC03-76SF005 15 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. * Ph.D. thesis ii Abstract This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (GRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part I: The CIUD system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at ,/Z = mzo. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, r/K/p separation will be achieved up to N 30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a N 1% spatial resolution in the charge- division, low-noise CRID preamplifier prototypes were developed and tested re- sulting in < 1000 electrons noise for an average photoelectron signal with 2 x lo5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. This system contin- uously monitors and/or controls various operating quantities such as temperatures, pressures, and flows, mixing and purity of the various fluids.
    [Show full text]
  • (Aka Second Quantization) 1 Quantum Field Theory
    221B Lecture Notes Quantum Field Theory (a.k.a. Second Quantization) 1 Quantum Field Theory Why quantum field theory? We know quantum mechanics works perfectly well for many systems we had looked at already. Then why go to a new formalism? The following few sections describe motivation for the quantum field theory, which I introduce as a re-formulation of multi-body quantum mechanics with identical physics content. 1.1 Limitations of Multi-body Schr¨odinger Wave Func- tion We used totally anti-symmetrized Slater determinants for the study of atoms, molecules, nuclei. Already with the number of particles in these systems, say, about 100, the use of multi-body wave function is quite cumbersome. Mention a wave function of an Avogardro number of particles! Not only it is completely impractical to talk about a wave function with 6 × 1023 coordinates for each particle, we even do not know if it is supposed to have 6 × 1023 or 6 × 1023 + 1 coordinates, and the property of the system of our interest shouldn’t be concerned with such a tiny (?) difference. Another limitation of the multi-body wave functions is that it is incapable of describing processes where the number of particles changes. For instance, think about the emission of a photon from the excited state of an atom. The wave function would contain coordinates for the electrons in the atom and the nucleus in the initial state. The final state contains yet another particle, photon in this case. But the Schr¨odinger equation is a differential equation acting on the arguments of the Schr¨odingerwave function, and can never change the number of arguments.
    [Show full text]
  • Harmonic Oscillator: Motion in a Magnetic Field
    Harmonic Oscillator: Motion in a Magnetic Field * The Schrödinger equation in a magnetic field The vector potential * Quantized electron motion in a magnetic field Landau levels * The Shubnikov-de Haas effect Landau-level degeneracy & depopulation The Schrödinger Equation in a Magnetic Field An important example of harmonic motion is provided by electrons that move under the influence of the LORENTZ FORCE generated by an applied MAGNETIC FIELD F ev B (16.1) * From CLASSICAL physics we know that this force causes the electron to undergo CIRCULAR motion in the plane PERPENDICULAR to the direction of the magnetic field * To develop a QUANTUM-MECHANICAL description of this problem we need to know how to include the magnetic field into the Schrödinger equation In this regard we recall that according to FARADAY’S LAW a time- varying magnetic field gives rise to an associated ELECTRIC FIELD B E (16.2) t The Schrödinger Equation in a Magnetic Field To simplify Equation 16.2 we define a VECTOR POTENTIAL A associated with the magnetic field B A (16.3) * With this definition Equation 16.2 reduces to B A E A E (16.4) t t t * Now the EQUATION OF MOTION for the electron can be written as p k A eE e 1k(B) 2k o eA (16.5) t t t 1. MOMENTUM IN THE PRESENCE OF THE MAGNETIC FIELD 2. MOMENTUM PRIOR TO THE APPLICATION OF THE MAGNETIC FIELD The Schrödinger Equation in a Magnetic Field Inspection of Equation 16.5 suggests that in the presence of a magnetic field we REPLACE the momentum operator in the Schrödinger equation
    [Show full text]
  • Lecture 2 - Energy and Momentum
    Lecture 2 - Energy and Momentum E. Daw February 16, 2012 1 Energy In discussing energy in a relativistic course, we start by consid- ering the behaviour of energy in the three regimes we worked with last time. In the first regime, the particle velocity v is much less than c, or more precisely β < 0:3. In this regime, the rest energy ER that the particle has by virtue of its non{zero rest mass is much greater than the kinetic energy T which it has by virtue of its kinetic energy. The rest energy is given by Einstein's famous equation, 2 ER = m0c (1) So, here is an example. An electron has a rest mass of 0:511 MeV=c2. What is it's rest energy?. The important thing here is to realise that there is no need to insert a factor of (3×108)2 to convert from rest mass in MeV=c2 to rest energy in MeV. The units are such that 0.511 is already an energy in MeV, and to get to a mass you would need to divide by c2, so the rest mass is (0:511 MeV)=c2, and all that is left to do is remove the brackets. If you divide by 9 × 1016 the answer is indeed a mass, but the units are eV m−2s2, and I'm sure you will appreciate why these units are horrible. Enough said about that. Now, what about kinetic energy? In the non{relativistic regime β < 0:3, the kinetic energy is significantly smaller than the rest 1 energy.
    [Show full text]
  • Thomas Precession Is the Basis for the Structure of Matter and Space Preston Guynn
    Thomas Precession is the Basis for the Structure of Matter and Space Preston Guynn To cite this version: Preston Guynn. Thomas Precession is the Basis for the Structure of Matter and Space. 2018. hal- 02628032 HAL Id: hal-02628032 https://hal.archives-ouvertes.fr/hal-02628032 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thomas Precession is the Basis for the Structure of Matter and Space Einstein's theory of special relativity was incomplete as originally formulated since it did not include the rotational effect described twenty years later by Thomas, now referred to as Thomas precession. Though Thomas precession has been accepted for decades, its relationship to particle structure is a recent discovery, first described in an article titled "Electromagnetic effects and structure of particles due to special relativity". Thomas precession acts as a velocity dependent counter-rotation, so that at a rotation velocity of 3 / 2 c , precession is equal to rotation, resulting in an inertial frame of reference. During the last year and a half significant progress was made in determining further details of the role of Thomas precession in particle structure, fundamental constants, and the galactic rotation velocity.
    [Show full text]