Verified Computing in Homological Algebra Arnaud Spiwack

Total Page:16

File Type:pdf, Size:1020Kb

Verified Computing in Homological Algebra Arnaud Spiwack Verified Computing in Homological Algebra Arnaud Spiwack To cite this version: Arnaud Spiwack. Verified Computing in Homological Algebra. Algebraic Topology [math.AT]. Ecole Polytechnique X, 2011. English. pastel-00605836 HAL Id: pastel-00605836 https://pastel.archives-ouvertes.fr/pastel-00605836 Submitted on 4 Jul 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de doctorat de l’ erified Computing in Homological Algebra V A Journey Exploring the Power and Limits of Dependent Type Theory Arnaud Spiwack Effectuée sous la direction de Benjamin Werner Thierry Coquand Défendue le 25-03-2011 devant un jury composé de Yves Bertot (président) André Hirschowitz Paul-André Melliès Julio Rubio (rapporteur) Claudio Sacerdoti Coen (rapporteur) Bas Spitters Benjamin Werner (directeur) erified Computing in Homological Algebra V A Journey Exploring the Power and Limits of Dependent Type Theory Arnaud Spiwack This thesis was defended the 25-03-2011 at École Polytechnique in Palaiseau, France. It had been carried out under the guidance of Thierry Coquand Benjamin Werner It was reviewed by Julio Rubio Claudio Sacerdoti Coen And was defended before a jury composed of Yves Bertot (president) André Hirschowitz Paul-André Melliès Julio Rubio Claudio Sacerdoti Coen Bas Spitters Benjamin Werner Jabberwocky ’Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe. ‘Beware the Jabberwock, my son! The jaws that bite, the claws that catch! Beware the Jubjub bird, and shun The frumious Bandersnatch!’ He took his vorpal sword in hand: Long time the manxome foe he sought— So rested he by the Tumtum tree, And stood awhile in thought. And as in uffish thought he stood, The Jabberwock, with eyes of flame, Came whiffling through the tulgey wood, And burbled as it came! One, two! One, two! And through and through The vorpal blade went snicker-snack! He left it dead, and with its head He went galumphing back. ‘And hast thou slain the Jabberwock? Come to my arms, my beamish boy! O frabjous day! Callooh! Callay!’ He chortled in his joy. ’Twas brillig, and the slithy toves Did gyre and gimble in the wabe; All mimsy were the borogoves, And the mome raths outgrabe. Lewis Caroll, Through the Looking-Glass and What Alice Found There The best book on programming for the layman is “Alice in Wonderland”; but that’s because it’s the best book on anything for the layman. Alan Perlis Acknowledgement It is no simple task to reflect on the last few years of one’s life. Especially when these pretty intense years have seen me, and my life, change in more way than one. There are many people who have been involved, one way or another, into the making of this thesis. More than I can gather on this page. These many people I would like to thank, though, as this episode of my life comes to an end. If you do not appear here but think you might have: please accept my dearest thanks. I cannot thank enough my advisers, Thierry Coquand and Benjamin Werner, who taught me a lot throughout these years. They helped me through this thesis with a lot of patience, and I must confess that I probably did not make that easy every day. Besides Thierry and Benjamin, when I had a question to ask – I often had – I would turn to Bruno Barras and Hugo Herbelin. They have all my gratitude and apologies for the time they spent helping me. I also need to mention that this manuscript has been proof-read, several times, by Assia Mahboubi. She does not think she deserves praise. She certainly does. Julio Rubio and Claudio Sacerdoti-Coen have accepted to referee this thesis. Tank you both. Yves Bertot, André Hirschowitz and Bas Spitters have also accepted to be member of my jury, I am grateful for it. I like to believe that the story of this thesis has started before the beginning. When I was being taught computing science, my approach was already being shaped. Three teacher in particular were, I believe, especially influencial: Hubert Comon-Lundh, Jean Goubault-Larrecq and Jean Vuillemin. Finally, I would like to thank those whose help was more indirect, but essential nonetheless. Florent Kirchner and Stéphane Lengrand have been friends more or less since I made my first steps in research. As more exeperience young researchers, they helped me understand this world were I was lost, at first. I had many collaborations with Matthieu Sozeau, not to mention friendship. Lisa Allali, Bruno Bernardo, Denis Cousineau and Elie Soubiran have been my compagnons de route: we started a thesis at the same time, in the same team, and shared office with one another for a while. Later came Vincent Siles and he who became my favorite trolling partner: Mathieu Boespflug. In Sweden I also shared office with Alexandre Buisse, Nils Anders Danielsson, Ulf Norell and Andrés Sicard. And had many fruitful discussion with Andreas Abel and Peter Dybjer. Dear reader, if you enjoy reading my thesis, you have all these people to thank for it. 1 Contents Contents 2 0 Introduction 5 0.1 Effective homology . 6 0.2 Coq................................... 9 0.3 Conventions & notations . 10 0.4 Premises . 11 I Mathematics to compute 13 1 A theory of sets 15 1.1 Bishopian toolkit . 16 1.2 Categories . 18 1.3 Choice! . 21 2 Homological algebra in type theory 25 2.1 Homology . 25 2.2 Abelian categories will not fit . 26 2.3 Preabelian categories . 29 2.4 Graded objects and chain complexes . 30 2.5 Kernels of matrices . 35 II Intermezzo: Down to Coq Implementation 39 3 Efficient computations 41 3.1 A brief history of N .......................... 42 3.2 Going native . 45 3.3 Performance . 50 3.4 Related works . 52 4 A new tactic engine 53 4.1 Refinement . 56 4.2 Combining tactics . 59 4.3 About the implementation . 62 4.4 Further work . 62 III Faster, Higher, Stronger 65 5 On the category of sets 67 5.1 Topoi . 68 5.2 Quasitopoi . 71 2 Content 5.3 Internal language . 74 6 Sharing more code 83 6.1 Categories & additive categories . 83 6.2 Sets as categories and beyond . 86 6.3 The category of graded objects is preabelian . 90 Appendices 95 A Coq development for Kernel computations 97 A.1 Kernels are finite dimensional . 97 A.2 Testing the program . 99 B Strong subsets are classified 103 Conclusion 107 Bibliography 109 Table of slogans 115 Index 117 3 Chapter Zero Introduction - Handbook for the recently diseased. - Deceased. Tim Burton & al., Beetle Juice umans’ incredible ability to make mistakes is cosubstantial to our ability to interact with and communicate in a very noisy environ- Hment. It is necessary for us to be able to ignore differences in voice, and even accents. It contrasts strongly with computers’ stubborn preciseness. Which is at the source of their ability to deal with extremely complex computations as if it was child play. In that sense, computers are really superhuman. But human are also supercomputer. Communication between humans and computers is made hard because of the friction between the impreciseness and robustness of humans and the exactness and fragility of computers. However we can supplement one another in the areas we fail to be efficient at. It has become a banality that computers can help us in this communication process. In particular, we can write type systems to prevent evidently bad programs from being written. We could also mention many programmer-aiding tools like abstract interpretation or model-checking. They all have one thing in common: they do not do what we expect them to do. And there is a good reason for this: we expect them to solve undecidable problems. Computers cannot do that – though they can try to some extent – but humans somewhat can, by providing what computers lack: insight. In other words, humans can help the computer help them communicate with it. Hence, to go further than fully automated tools, we need to lay out an interface between the human and the computer to allow humans to participate in the computing process. Mathematics is a good candidate to that purpose. Indeed, mathematics is designed to reflect humans’ insight, yet they are expressible as rules to be applied and checked mechanically – which can be understood by a computer. Therefore, if mathematics is not, properly speaking, a language, they are a communication construct which is common to humans and computers. From that point of view, problems computers are supposed to help solving are expressed as a mathematical statement, and the human then provides a proof of it. This proof can be very fine grain, making direct use of simple rules in the style of formal logic systems. Or it can be 5 very coarse grain where the computer does most of the work and the human only gives a few hints. Or anything in between. As mathematical statement to solve become more elaborate, proofs get typically more and more tedious. And “tedious” is the job of computers. So we might consider desirable that the computer would help us help it help us communicate with it.
Recommended publications
  • BIPRODUCTS WITHOUT POINTEDNESS 1. Introduction
    BIPRODUCTS WITHOUT POINTEDNESS MARTTI KARVONEN Abstract. We show how to define biproducts up to isomorphism in an ar- bitrary category without assuming any enrichment. The resulting notion co- incides with the usual definitions whenever all binary biproducts exist or the category is suitably enriched, resulting in a modest yet strict generalization otherwise. We also characterize when a category has all binary biproducts in terms of an ambidextrous adjunction. Finally, we give some new examples of biproducts that our definition recognizes. 1. Introduction Given two objects A and B living in some category C, their biproduct { according to a standard definition [4] { consists of an object A ⊕ B together with maps p i A A A ⊕ B B B iA pB such that pAiA = idA pBiB = idB pBiA = 0A;B pAiB = 0B;A and idA⊕B = iApA + iBpB. For us to be able to make sense of the equations, we must assume that C is enriched in commutative monoids. One can get a slightly more general definition that only requires zero morphisms but no addition { that is, enrichment in pointed sets { by replacing the last equation with the condition that (A ⊕ B; pA; pB) is a product of A and B and that (A ⊕ B; iA; iB) is their coproduct. We will call biproducts in the first sense additive biproducts and in the second sense pointed biproducts in order to contrast these definitions with our central object of study { a pointless generalization of biproducts that can be applied in any category C, with no assumptions concerning enrichment. This is achieved by replacing the equations referring to zero with the single equation (1.1) iApAiBpB = iBpBiApA, which states that the two canonical idempotents on A ⊕ B commute with one another.
    [Show full text]
  • The Factorization Problem and the Smash Biproduct of Algebras and Coalgebras
    Algebras and Representation Theory 3: 19–42, 2000. 19 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. The Factorization Problem and the Smash Biproduct of Algebras and Coalgebras S. CAENEPEEL1, BOGDAN ION2, G. MILITARU3;? and SHENGLIN ZHU4;?? 1University of Brussels, VUB, Faculty of Applied Sciences, Pleinlaan 2, B-1050 Brussels, Belgium 2Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ 08544-1000, U.S.A. 3University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-70109 Bucharest 1, Romania 4Institute of Mathematics, Fudan University, Shanghai 200433, China (Received: July 1998) Presented by A. Verschoren Abstract. We consider the factorization problem for bialgebras. Let L and H be algebras and coalgebras (but not necessarily bialgebras) and consider two maps R: H ⊗ L ! L ⊗ H and W: L ⊗ H ! H ⊗ L. We introduce a product K D L W FG R H and we give necessary and sufficient conditions for K to be a bialgebra. Our construction generalizes products introduced by Majid and Radford. Also, some of the pointed Hopf algebras that were recently constructed by Beattie, Dascˇ alescuˇ and Grünenfelder appear as special cases. Mathematics Subject Classification (2000): 16W30. Key words: Hopf algebra, smash product, factorization structure. Introduction The factorization problem for a ‘structure’ (group, algebra, coalgebra, bialgebra) can be roughly stated as follows: under which conditions can an object X be written as a product of two subobjects A and B which have minimal intersection (for example A \ B Df1Xg in the group case). A related problem is that of the construction of a new object (let us denote it by AB) out of the objects A and B.In the constructions of this type existing in the literature ([13, 20, 27]), the object AB factorizes into A and B.
    [Show full text]
  • Derived Functors and Homological Dimension (Pdf)
    DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Character formulas for 2-Lie algebras Permalink https://escholarship.org/uc/item/9362r8h5 Author Denomme, Robert Arthur Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Character Formulas for 2-Lie Algebras A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Robert Arthur Denomme 2015 c Copyright by Robert Arthur Denomme 2015 Abstract of the Dissertation Character Formulas for 2-Lie Algebras by Robert Arthur Denomme Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Rapha¨elRouquier, Chair Part I of this thesis lays the foundations of categorical Demazure operators following the work of Anthony Joseph. In Joseph's work, the Demazure character formula is given a categorification by idempotent functors that also satisfy the braid relations. This thesis defines 2-functors on a category of modules over a half 2-Lie algebra and shows that they indeed categorify Joseph's functors. These categorical Demazure operators are shown to also be idempotent and are conjectured to satisfy the braid relations as well as give a further categorification of the Demazure character formula. Part II of this thesis gives a presentation of localized affine and degenerate affine Hecke algebras of arbitrary type in terms of weights of the polynomial subalgebra and varied Demazure-BGG type operators. The definition of a graded algebra is given whose cate- gory of finite-dimensional ungraded nilpotent modules is equivalent to the category of finite- dimensional modules over an associated degenerate affine Hecke algebra.
    [Show full text]
  • Classifying Categories the Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories
    U.U.D.M. Project Report 2018:5 Classifying Categories The Jordan-Hölder and Krull-Schmidt-Remak Theorems for Abelian Categories Daniel Ahlsén Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Juni 2018 Department of Mathematics Uppsala University Classifying Categories The Jordan-Holder¨ and Krull-Schmidt-Remak theorems for abelian categories Daniel Ahlsen´ Uppsala University June 2018 Abstract The Jordan-Holder¨ and Krull-Schmidt-Remak theorems classify finite groups, either as direct sums of indecomposables or by composition series. This thesis defines abelian categories and extends the aforementioned theorems to this context. 1 Contents 1 Introduction3 2 Preliminaries5 2.1 Basic Category Theory . .5 2.2 Subobjects and Quotients . .9 3 Abelian Categories 13 3.1 Additive Categories . 13 3.2 Abelian Categories . 20 4 Structure Theory of Abelian Categories 32 4.1 Exact Sequences . 32 4.2 The Subobject Lattice . 41 5 Classification Theorems 54 5.1 The Jordan-Holder¨ Theorem . 54 5.2 The Krull-Schmidt-Remak Theorem . 60 2 1 Introduction Category theory was developed by Eilenberg and Mac Lane in the 1942-1945, as a part of their research into algebraic topology. One of their aims was to give an axiomatic account of relationships between collections of mathematical structures. This led to the definition of categories, functors and natural transformations, the concepts that unify all category theory, Categories soon found use in module theory, group theory and many other disciplines. Nowadays, categories are used in most of mathematics, and has even been proposed as an alternative to axiomatic set theory as a foundation of mathematics.[Law66] Due to their general nature, little can be said of an arbitrary category.
    [Show full text]
  • Arxiv:1908.01212V3 [Math.CT] 3 Nov 2020 Step, One Needs to Apply a For-Loop to Divide a Matrix Into Blocks
    Typing Tensor Calculus in 2-Categories Fatimah Ahmadi Department of Computer Science University of Oxford November 4, 2020 Abstract We introduce semiadditive 2-categories, 2-categories with binary 2- biproducts and a zero object, as a suitable framework for typing tensor calculus. Tensors are the generalization of matrices, whose components have more than two indices. 1 Introduction Linear algebra is the primary mathematical toolbox for quantum physicists. Categorical quantum mechanics re-evaluates this toolbox by expressing each tool in the categorical language and leveraging the power of graphical calculus accompanying monoidal categories to gain an alternative insight into quantum features. In the categorical description of quantum mechanics, everything is typed in FHilb; the category whose objects are finite dimensional Hilbert spaces and morphisms are linear maps/matrices. In this category, Hilbert spaces associated with physical systems are typed as objects, and processes between systems as morphisms. MacLane [7] proposed the idea of typing matrices as morphisms while intro- ducing semiadditive categories(categories with well-behaved additions between objects). This line of research, further, has been explored by Macedo and Oliveira in the pursuit of avoiding the cumbersome indexed-based operations of matrices [6]. They address the quest for shifting the traditional perspective of formal methods in software development[10]. To observe why index-level operations do not offer an optimal approach, take the divide-and-conquer algorithm to multiplicate two matrices. In each arXiv:1908.01212v3 [math.CT] 3 Nov 2020 step, one needs to apply a for-loop to divide a matrix into blocks. While the division happens automatically if one takes matrices whose sources or targets are biproducts of objects.
    [Show full text]
  • Homological Algebra
    Homological Algebra Department of Mathematics The University of Auckland Acknowledgements 2 Contents 1 Introduction 4 2 Rings and Modules 5 2.1 Rings . 5 2.2 Modules . 6 3 Homology and Cohomology 16 3.1 Exact Sequences . 16 3.2 Exact Functors . 19 3.3 Projective and Injective Modules . 21 3.4 Chain Complexes and Homologies . 21 3.5 Cochains and Cohomology . 24 3.6 Recap of Chain Complexes and Maps . 24 3.7 Homotopy of Chain Complexes . 25 3.8 Resolutions . 26 3.9 Double complexes, and the Ext and Tor functors . 27 3.10 The K¨unneth Formula . 34 3.11 Group cohomology . 38 3.12 Simplicial cohomology . 38 4 Abelian Categories and Derived Functors 39 4.1 Categories and functors . 39 4.2 Abelian categories . 39 4.3 Derived functors . 41 4.4 Sheaf cohomology . 41 4.5 Derived categories . 41 5 Spectral Sequences 42 5.1 Motivation . 42 5.2 Serre spectral sequence . 42 5.3 Grothendieck spectral sequence . 42 3 Chapter 1 Introduction Bo's take This is a short exact sequence (SES): 0 ! A ! B ! C ! 0 : To see why this plays a central role in algebra, suppose that A and C are subspaces of B, then, by going through the definitions of a SES in 3.1, one can notice that this line arrows encodes information about the decomposition of B into A its orthogonal compliment C. If B is a module and A and C are now submodules of B, we would like to be able to describe how A and C can \span" B in a similar way.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE the Grothendieck
    UNIVERSITY OF CALIFORNIA RIVERSIDE The Grothendieck Construction in Categorical Network Theory A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by Joseph Patrick Moeller December 2020 Dissertation Committee: Dr. John C. Baez, Chairperson Dr. Wee Liang Gan Dr. Carl Mautner Copyright by Joseph Patrick Moeller 2020 The Dissertation of Joseph Patrick Moeller is approved: Committee Chairperson University of California, Riverside Acknowledgments First of all, I owe all of my achievements to my wife, Paola. I couldn't have gotten here without my parents: Daniel, Andrea, Tonie, Maria, and Luis, or my siblings: Danielle, Anthony, Samantha, David, and Luis. I would like to thank my advisor, John Baez, for his support, dedication, and his unique and brilliant style of advising. I could not have become the researcher I am under another's instruction. I would also like to thank Christina Vasilakopoulou, whose kindness, energy, and expertise cultivated a deeper appreciation of category theory in me. My expe- rience was also greatly enriched by my academic siblings: Daniel Cicala, Kenny Courser, Brandon Coya, Jason Erbele, Jade Master, Franciscus Rebro, and Christian Williams, and by my cohort: Justin Davis, Ethan Kowalenko, Derek Lowenberg, Michel Manrique, and Michael Pierce. I would like to thank the UCR math department. Professors from whom I learned a ton of algebra, topology, and category theory include Julie Bergner, Vyjayanthi Chari, Wee-Liang Gan, Jos´eGonzalez, Jacob Greenstein, Carl Mautner, Reinhard Schultz, and Steffano Vidussi. Special thanks goes to the department chair Yat-Sun Poon, as well as Margarita Roman, Randy Morgan, and James Marberry, and many others who keep the whole thing together.
    [Show full text]
  • Homological Algebra
    HOMOLOGICAL ALGEBRA BRIAN TYRRELL Abstract. In this report we will assemble the pieces of homological algebra needed to explore derived functors from their base in exact se- quences of abelian categories to their realisation as a type of δ-functor, first introduced in 1957 by Grothendieck. We also speak briefly on the typical example of a derived functor, the Ext functor, and note some of its properties. Contents 1. Introduction2 2. Background & Opening Definitions3 2.1. Categories3 2.2. Functors5 2.3. Sequences6 3. Leading to Derived Functors7 4. Chain Homotopies 10 5. Derived Functors 14 5.1. Applications: the Ext functor 20 6. Closing remarks 21 References 22 Date: December 16, 2016. 2 BRIAN TYRRELL 1. Introduction We will begin by defining the notion of a category; Definition 1.1. A category is a triple C = (Ob C; Hom C; ◦) where • Ob C is the class of objects of C. • Hom C is the class of morphisms of C. Furthermore, 8X; Y 2 Ob C we associate a set HomC(X; Y ) - the set of morphisms from X to Y - such that (X; Y ) 6= (Z; U) ) HomC(X; Y ) \ HomC(Z; U) = ;. Finally, we require 8X; Y; Z 2 Ob C the operation ◦ : HomC(Y; Z) × HomC(X; Y ) ! HomC(X; Z)(g; f) 7! g ◦ f to be defined, associative and for all objects the identity morphism must ex- ist, that is, 8X 2 Ob C 91X 2 HomC(X; X) such that 8f 2 HomC(X; Y ); g 2 HomC(Z; X), f ◦ 1X = f and 1X ◦ g = g.
    [Show full text]
  • An Aop Approach to Typed Linear Algebra
    An AoP approach to typed linear algebra J.N. Oliveira (joint work with Hugo Macedo) Dept. Inform´atica, Universidade do Minho Braga, Portugal IFIP WG2.1 meeting #65 27th January 2010 Braga, Portugal Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References Context and Motivation • The advent of on-chip parallelism poses many challenges to current programming languages. • Traditional approaches (compiler + hand-coded optimization are giving place to trendy DSL-based generative techniques. • In areas such as scientific computing, image/video processing, the bulk of the work performed by so-called kernel functions. • Examples of kernels are matrix-matrix multiplication (MMM), the discrete Fourier transform (DFT), etc. • Kernel optimization is becoming very difficult due to the complexity of current computing platforms. Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References Teaching computers to write fast numerical code In the Spiral Group (CMU), a DSL has been defined (OL) (Franchetti et al., 2009) to specify kernels in a data-independent way. • Divide-and-conquer algorithms are described as OL breakdown rules. • By recursively applying these rules a space of algorithms for a desired kernel can be generated. Rationale behind Spiral: • Target imperative code is too late for numeric processing kernel optimization. • Such optimization can be elegantly and efficiently performed well above in the design chain once the maths themselves are expressed in an index-free style. Motivation Matrices = arrows Abelian category Abide laws Divide & conquer Vectorization References Starting point Synergy: • Parallel between the pointfree notation of OL and relational algebra (relations are Boolean matrices) • Rich calculus of algebraic rules.
    [Show full text]
  • Double Cross Biproduct and Bi-Cycle Bicrossproduct Lie Bialgebras
    Ashdin Publishing Journal of Generalized Lie Theory and Applications Vol. 4 (2010), Article ID S090602, 16 pages doi:10.4303/jglta/S090602 Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras Tao ZHANG College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, Henan Province, China Email: [email protected] Abstract We construct double cross biproduct and bi-cycle bicrossproduct Lie bialgebras from braided Lie bialgebras. The main results generalize Majid's matched pair of Lie algebras and Drinfeld's quantum double and Masuoka's cross product Lie bialgebras. 2000 MSC: 17B62, 18D35 1 Introduction As an infinitesimal or semiclassical structures underlying the theory of quantum groups, the notion of Lie bialgebras was introduced by Drinfeld in his remarkable report [3], where he also introduced the double Lie bialgebra D(g) as an important construction. Some years later, the theory of matched pairs of Lie algebras (g; m) was introduced by Majid in [4]. Its bicrossed product (or double cross sum) m ./g is more general than Drinfeld's classical double D(g) because g and m need not have the same dimension and the actions need not be strictly coadjoint ones. Since then it was found that many other structures in Hopf algebras can be constructed in the infinitesimal setting, see [5] and the references cited therein. Also in [6], Majid in- troduced the concept of braided Lie bialgebras and proved the bosonisation theorem (see Theorem 4.4) associating braided Lie bialgebras to ordinary Lie bialgebras. Examples of braided Lie bialgebras were also given there. On the other hand, there is a close relation between extension theory and cross product Lie bialgebras, see Masuoka [7].
    [Show full text]
  • WHEN IS ∏ ISOMORPHIC to ⊕ Introduction Let C Be a Category
    WHEN IS Q ISOMORPHIC TO L MIODRAG CRISTIAN IOVANOV Abstract. For a category C we investigate the problem of when the coproduct L and the product functor Q from CI to C are isomorphic for a fixed set I, or, equivalently, when the two functors are Frobenius functors. We show that for an Ab category C this happens if and only if the set I is finite (and even in a much general case, if there is a morphism in C that is invertible with respect to addition). However we show that L and Q are always isomorphic on a suitable subcategory of CI which is isomorphic to CI but is not a full subcategory. If C is only a preadditive category then we give an example to see that the two functors can be isomorphic for infinite sets I. For the module category case we provide a different proof to display an interesting connection to the notion of Frobenius corings. Introduction Let C be a category and denote by ∆ the diagonal functor from C to CI taking any object I X to the family (X)i∈I ∈ C . Recall that C is an Ab category if for any two objects X, Y of C the set Hom(X, Y ) is endowed with an abelian group structure that is compatible with the composition. We shall say that a category is an AMon category if the set Hom(X, Y ) is (only) an abelian monoid for every objects X, Y . Following [McL], in an Ab category if the product of any two objects exists then the coproduct of any two objects exists and they are isomorphic.
    [Show full text]