Branch-And-Cut and Branch-And-Cut-And-Price Algorithms for Solving Vehicle Routing Problems

Total Page:16

File Type:pdf, Size:1020Kb

Branch-And-Cut and Branch-And-Cut-And-Price Algorithms for Solving Vehicle Routing Problems Downloaded from orbit.dtu.dk on: Oct 05, 2021 Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Jepsen, Mads Kehlet Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Jepsen, M. K. (2011). Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. PHD Thesis Branch-and-cut and Branch-and-Cut-and-Price Algorithms for Solving Vehicle Routing Problems Author: Mads Kehlet Jepsen Supervisor: Professor David Pisinger min cexe e E X2 s:t: x = 2 i V e 8 2 c e δ(i) 2X x = 2 K e j j e δ(0) 2X x 2r(S) S V ; S 2 e ≥ 8 ⊆ c j j ≥ e δ(S) 2X x 0; 1; 2 e δ(0) e 2 f g 8 2 x 0; 1 e E δ(0) e 2 f g 8 2 n min cpλp p P X2 s.t α λ = 1 i V ijp p 8 2 c p P (i;j) δ+(i) X2 X2 λ 0; 1 p P p 2 f g 8 2 min c x p y e e − i i e E i N X2 X2 x = 2y i V e i 8 2 e δ(i) 2X y0 = 1 x 2y i S; S V ; S 2 e ≥ i 8 2 8 ⊆ c j j ≥ e δ(S) 2X d y Q i i ≤ i N X2 x 0; 1 e E e 2 f g 8 2 y 0; 1 i V: i 2 f g 8 2 8. Juli 2011 Preface This Ph.D thesis was started at the Department of Computer Science, Uni- versity of Copenhagen (DIKU) in collaboration with Microsoft Development Center Copenhagen (MDCC). It was continued and finished at the Depart- ment of Management Engineering, Danish Technical University (DTU Man) at the OR-section. I would like to thank the University of Copenhagen, Microsoft Development Center Copenhagen and the Danish Technical Uni- versity for granting me the opportunity to study a Ph.D. I would like to thank my old colleagues at DIKU and MDCC and my colleagues at DTU Man for creating an excellent working environment dur- ing the past three year. I would like to thank Berit Løfsted, Christian E. M. Plum, Line Blander Reinhardt, Stefan Røpke and Mikkel M. Sigurd for the interesting discussion during the creation of the articles I have written with you. I would especially like to thank Bjørn Petersen, Simon Spoorendonk and my supervisor David Pisinger for the many discussions, we have had during the construction of our papers. Finally I like to thank my wife Line for a lot of proof reading throughout the entire thesis. Thanks i ii Contents 1 Introduction 1 I Academic Papers 31 2 Subset-Row Inequalities Applied to the Vehicle Routing Prob- lem with Time Windows 33 3 A Branch-and-Cut Algorithm for the Symmetric Two-echelon Capacitated Vehicle Routing Problem 68 4 A Branch-and-Cut Algorithm for the Capacitated Profitable Tour Problem 99 5 Partial Path Column Generation for the Vehicle Routing Problem 138 6 Partial Path Column Generation for the Elementary Short- est Path Problem with a Capacity Constraints 163 7 Conclusion 173 II Appendix 177 A The vehicle routing problem with edge set costs 179 B A Path Based Model for a Green Liner Shipping Network Design Problem 197 C Partial Path Column Generation for the Vehicle Routing Problem with Time Windows 215 D Danish Summary 224 iii Chapter 1 Introduction The Vehicle Routing Problem was introduced by Dantzig and Ramser [19] under the name the truck dispatching problem. The problem consists of finding m routes covering n customers with a common point called the depot. The goal of the optimization is to find the set of routes with the minimal overall distance. As time has passed, many variants of the problem have been proposed. Today there probably exist more than 250 different variants and at every major conference several new variants are proposed. The main reason for this rapid growth in the number of problems are, in my opinion be attributed to the importance of the problems in the real world and the excellent solution methods that have been developed. For exact solution methods the two problems that have been the center of the attention is the Capacitated Vehicle Routing Problem (cvrp) where each costumer has a demand and the vehicle has a fixed capacity, and the Vehicle Routing Problem with Time Windows (vrptw) which is a cvrp problem where each customer can only be serviced within a predefined time window. Before 1980 very few exact algorithms for cvrp and vrptw had been proposed, but in the early 1980s two new exact methods where proposed. From this point the history of exact methods for cvrp and vrptw can be divided into three phases. The first phase was the introduction of the Set Partition and the development of Branch-and-Cut-and-Price (bp) algo- rithms using a relaxed pricing problem. The second was the development of Branch-and-Cut (bac) algorithms. In the current phase the pricing problem is no longer relaxed and cuts in the master problem of the Branch-and-Cut- and-Price algorithms is used. The first two phases where started at the same point in time and there is still development on the algorithms in the context of cvrp and vrptw. The algorithms from these two phases are also used on several other variants of the Vehicle Routing Problem. The third phase was started in the middle of the 2000s and the algorithms from this phase are currently the best overall performing algorithms. The main idea of this chapter is to review some of the known concepts 1 Chapter 1 and methods from the literature. Whenever a method or concept is cen- tral for the thesis it will be explained in more detail, while other concepts or methods are only briefly mentioned. Section 1.1 is dedicated the cvrp and vrptw, while section 1.2 is dedicated the Capacitated Location Rout- ing Problem. For the cvrp and vrptw section 1.1.1 will review the basic Branch-and-Cut algorithms and state two of the cutting planes which has been of great importance for this thesis. Section 1.1.3 will review the Branch- and-Cut-and-Price algorithms for the cvrp and vrptw. The section will contain information about how cuts are handled and it will review the so- lution methods for the Resource Constraint Shortest Path Problem and Elementary Resource Constraint Shortest Path Problem, which are some of the possible pricing problems. Either the bac and bcp principles for the cvrp and vrptw or both serves as inspiration in all of the academic papers in Part I and Part II. Section 1.2 will introduce some mathematical models for the Capacitated Location Routing Problem and some of the fundamental cutting for this problem. Both the models and cutting planes have served as inspiration for the solution approach for the article in Chapter 3. Finally section 1.3 will give a short summary of the academic papers in the thesis. 1.1 cvrp and vrptw The symmetric capacitated vehicle routing problem can be formulated as follows. Let V be a vertex set that consists of a set of customers Vc and the depot set V = 0 and K be a set of vehicles. With each node i V there 0 f g 2 c is associated a positive integer di, which we refer to as the demand. Let E be the set of edges connecting the vertices and let c ; e E be the cost of e 2 traversing the edge. A feasible solution to cvrp is K cycles starting in the j j depot, each customer is visited once and the sum of the customers visited on the cycles does not exceed the capacity C. In the optimization version we are seeking the feasible solution where the sum of the edge weights of the selected cycles is minimal. cvrp is often defined on a complete graph G(V; E) and test instances are available at www.branchandcut.org. Rather than referring to a solution as a set of cycles the abbreviation routes is often used and we will therefore use this. A natural extension of cvrp is the inclusion of time windows. A time window is defined as a time interval [a ; b ] for which a customer i V can be i i 2 c serviced by the vehicle. Furthermore, a service time si is associated with the customer i V . To include the time windows an asymmetric formulation 2 c is often used. Let A be a set of arcs, where each arc (i; j) A has a cost 2 cij and a travel time τij associated.
Recommended publications
  • Advances in Interior Point Methods and Column Generation
    Advances in Interior Point Methods and Column Generation Pablo Gonz´alezBrevis Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Pablo Gonz´alezBrevis) ii To my endless inspiration and angels on earth: Paulina, Crist´obal and Esteban iii Abstract In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from un- stable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these tech- niques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solu- tions are used in the course of the algorithm.
    [Show full text]
  • Hyperheuristics in Logistics Kassem Danach
    Hyperheuristics in Logistics Kassem Danach To cite this version: Kassem Danach. Hyperheuristics in Logistics. Combinatorics [math.CO]. Ecole Centrale de Lille, 2016. English. NNT : 2016ECLI0025. tel-01485160 HAL Id: tel-01485160 https://tel.archives-ouvertes.fr/tel-01485160 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre: 315 Centrale Lille THÈSE présentée en vue d’obtenir le grade de DOCTEUR en Automatique, Génie Informatique, Traitement du Signal et des Images par Kassem Danach DOCTORAT DELIVRE PAR CENTRALE LILLE Hyperheuristiques pour des problèmes d’optimisation en logistique Hyperheuristics in Logistics Soutenue le 21 decembre 2016 devant le jury d’examen: President: Pr. Laetitia Jourdan Université de Lille 1, France Rapporteurs: Pr. Adnan Yassine Université du Havre, France Dr. Reza Abdi University of Bradford, United Kingdom Examinateurs: Pr. Saïd Hanafi Université de Valenciennes, France Dr. Abbas Tarhini Lebanese American University, Lebanon Dr. Rahimeh Neamatian Monemin University Road, United Kingdom Directeur de thèse: Pr. Frédéric Semet Ecole Centrale de Lille, France Co-encadrant: Dr. Shahin Gelareh Université de l’ Artois, France Invited Professor: Dr. Wissam Khalil Université Libanais, Lebanon Thèse préparée dans le Laboratoire CRYStAL École Doctorale SPI 072 (EC Lille) 2 Acknowledgements Firstly, I would like to express my sincere gratitude to my advisor Prof.
    [Show full text]
  • A Branch-And-Price Approach with Milp Formulation to Modularity Density Maximization on Graphs
    A BRANCH-AND-PRICE APPROACH WITH MILP FORMULATION TO MODULARITY DENSITY MAXIMIZATION ON GRAPHS KEISUKE SATO Signalling and Transport Information Technology Division, Railway Technical Research Institute. 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan YOICHI IZUNAGA Information Systems Research Division, The Institute of Behavioral Sciences. 2-9 Ichigayahonmura-cho, Shinjyuku-ku, Tokyo 162-0845, Japan Abstract. For clustering of an undirected graph, this paper presents an exact algorithm for the maximization of modularity density, a more complicated criterion to overcome drawbacks of the well-known modularity. The problem can be interpreted as the set-partitioning problem, which reminds us of its integer linear programming (ILP) formulation. We provide a branch-and-price framework for solving this ILP, or column generation combined with branch-and-bound. Above all, we formulate the column gen- eration subproblem to be solved repeatedly as a simpler mixed integer linear programming (MILP) problem. Acceleration tech- niques called the set-packing relaxation and the multiple-cutting- planes-at-a-time combined with the MILP formulation enable us to optimize the modularity density for famous test instances in- cluding ones with over 100 vertices in around four minutes by a PC. Our solution method is deterministic and the computation time is not affected by any stochastic behavior. For one of them, column generation at the root node of the branch-and-bound tree arXiv:1705.02961v3 [cs.SI] 27 Jun 2017 provides a fractional upper bound solution and our algorithm finds an integral optimal solution after branching. E-mail addresses: (Keisuke Sato) [email protected], (Yoichi Izunaga) [email protected].
    [Show full text]
  • Optimal Placement by Branch-And-Price
    Optimal Placement by Branch-and-Price Pradeep Ramachandaran1 Ameya R. Agnihotri2 Satoshi Ono2;3;4 Purushothaman Damodaran1 Krishnaswami Srihari1 Patrick H. Madden2;4 SUNY Binghamton SSIE1 and CSD2 FAIS3 University of Kitakyushu4 Abstract— Circuit placement has a large impact on all aspects groups of up to 36 elements. The B&P approach is based of performance; speed, power consumption, reliability, and cost on column generation techniques and B&B. B&P has been are all affected by the physical locations of interconnected applied to solve large instances of well known NP-Complete transistors. The placement problem is NP-Complete for even simple metrics. problems such as the Vehicle Routing Problem [7]. In this paper, we apply techniques developed by the Operations We have tested our approach on benchmarks with known Research (OR) community to the placement problem. Using optimal configurations, and also on problems extracted from an Integer Programming (IP) formulation and by applying a the “final” placements of a number of recent tools (Feng Shui “branch-and-price” approach, we are able to optimally solve 2.0, Dragon 3.01, and mPL 3.0). We find that suboptimality is placement problems that are an order of magnitude larger than those addressed by traditional methods. Our results show that rampant: for optimization windows of nine elements, roughly suboptimality is rampant on the small scale, and that there is half of the test cases are suboptimal. As we scale towards merit in increasing the size of optimization windows used in detail windows with thirtysix elements, we find that roughly 85% of placement.
    [Show full text]
  • A New Trust Region Method with Simple Model for Large-Scale Optimization ∗
    A New Trust Region Method with Simple Model for Large-Scale Optimization ∗ Qunyan Zhou,y Wenyu Sunz and Hongchao Zhangx Abstract In this paper a new trust region method with simple model for solv- ing large-scale unconstrained nonlinear optimization is proposed. By employing generalized weak quasi-Newton equations, we derive several schemes to construct variants of scalar matrices as the Hessian approx- imation used in the trust region subproblem. Under some reasonable conditions, global convergence of the proposed algorithm is established in the trust region framework. The numerical experiments on solving the test problems with dimensions from 50 to 20000 in the CUTEr li- brary are reported to show efficiency of the algorithm. Key words. unconstrained optimization, Barzilai-Borwein method, weak quasi-Newton equation, trust region method, global convergence AMS(2010) 65K05, 90C30 1. Introduction In this paper, we consider the unconstrained optimization problem min f(x); (1.1) x2Rn where f : Rn ! R is continuously differentiable with dimension n relatively large. Trust region methods are a class of powerful and robust globalization ∗This work was supported by National Natural Science Foundation of China (11171159, 11401308), the Natural Science Fund for Universities of Jiangsu Province (13KJB110007), the Fund of Jiangsu University of Technology (KYY13012). ySchool of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China. Email: [email protected] zCorresponding author. School of Mathematical Sciences, Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China. Email: [email protected] xDepartment of Mathematics, Louisiana State University, USA. Email: [email protected] 1 methods for solving (1.1).
    [Show full text]
  • Branch-And-Bound Experiments in Convex Nonlinear Integer Programming
    Noname manuscript No. (will be inserted by the editor) More Branch-and-Bound Experiments in Convex Nonlinear Integer Programming Pierre Bonami · Jon Lee · Sven Leyffer · Andreas W¨achter September 29, 2011 Abstract Branch-and-Bound (B&B) is perhaps the most fundamental algorithm for the global solution of convex Mixed-Integer Nonlinear Programming (MINLP) prob- lems. It is well-known that carrying out branching in a non-simplistic manner can greatly enhance the practicality of B&B in the context of Mixed-Integer Linear Pro- gramming (MILP). No detailed study of branching has heretofore been carried out for MINLP, In this paper, we study and identify useful sophisticated branching methods for MINLP. 1 Introduction Branch-and-Bound (B&B) was proposed by Land and Doig [26] as a solution method for MILP (Mixed-Integer Linear Programming) problems, though the term was actually coined by Little et al. [32], shortly thereafter. Early work was summarized in [27]. Dakin [14] modified the branching to how we commonly know it now and proposed its extension to convex MINLPs (Mixed-Integer Nonlinear Programming problems); that is, MINLP problems for which the continuous relaxation is a convex program. Though a very useful backbone for ever-more-sophisticated algorithms (e.g., Branch- and-Cut, Branch-and-Price, etc.), the basic B&B algorithm is very elementary. How- Pierre Bonami LIF, Universit´ede Marseille, 163 Av de Luminy, 13288 Marseille, France E-mail: [email protected] Jon Lee Department of Industrial and Operations Engineering, University
    [Show full text]
  • Constrained Multifidelity Optimization Using Model Calibration
    Struct Multidisc Optim (2012) 46:93–109 DOI 10.1007/s00158-011-0749-1 RESEARCH PAPER Constrained multifidelity optimization using model calibration Andrew March · Karen Willcox Received: 4 April 2011 / Revised: 22 November 2011 / Accepted: 28 November 2011 / Published online: 8 January 2012 c Springer-Verlag 2012 Abstract Multifidelity optimization approaches seek to derivative-free and sequential quadratic programming meth- bring higher-fidelity analyses earlier into the design process ods. The method uses approximately the same number of by using performance estimates from lower-fidelity models high-fidelity analyses as a multifidelity trust-region algo- to accelerate convergence towards the optimum of a high- rithm that estimates the high-fidelity gradient using finite fidelity design problem. Current multifidelity optimization differences. methods generally fall into two broad categories: provably convergent methods that use either the high-fidelity gradient Keywords Multifidelity · Derivative-free · Optimization · or a high-fidelity pattern-search, and heuristic model cali- Multidisciplinary · Aerodynamic design bration approaches, such as interpolating high-fidelity data or adding a Kriging error model to a lower-fidelity function. This paper presents a multifidelity optimization method that bridges these two ideas; our method iteratively calibrates Nomenclature lower-fidelity information to the high-fidelity function in order to find an optimum of the high-fidelity design prob- A Active and violated constraint Jacobian lem. The
    [Show full text]
  • Computing a Trust Region Step
    Distribution Category: Mathematics and Computers ANL--81-83 (UC-32) DE82 005656 ANIr81483 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 COMPUTING A TRUST REGION STEP Jorge J. Mord and D. C. Sorensen Applied Mathematics Division DISCLAIMER - -. ".,.,... December 1981 Computing a Trust Region Step Jorge J. Mord and D. C. Sorensen Applied Mathematics Division Argonne National Laboratory Argonne Illinois 60439 1. Introduction. In an important class of minimization algorithms called "trust region methods" (see, for example, Sorensen [1981]), the calculation of the step between iterates requires the solution of a problem of the form (1.1) minij(w): 1|w |isAl where A is a positive parameter, I- II is the Euclidean norm in R", and (1.2) #(w) = g w + Mw7Bw, with g E R", and B E R a symmetric matrix. The quadratic function ' generally represents a local model to the objective function defined by interpolatory data at an iterate and thus it is important to be able to solve (1.1) for any symmetric matrix B; in particular, for a matrix B with negative eigenvalues. In trust region methods it is sometimes helpful to include a scaling matrix for the variables. In this case, problem (1.1) is replaced by (1.3) mint%(v):IIDu Is A where D E R""" is a nonsingular matrix. The change of variables Du = w shows that problem (1.3) is equivalent to (1.4) minif(w):1|w| Is Al where f(w) _%f(D-'w), and that the solutions of problems (1.3) and (1.4) are related by Dv = w.
    [Show full text]
  • Cocircuits of Vector Matroids
    RICE UNIVERSITY Cocircuits of Vector Matroids by John David Arellano A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Arts APPROVED, THESIS COMMITTEE: ?~ Ill::f;Cks, Chair Associate Professor of Computational and Applied Mathematics ~~~~ Richard A. Tapia Maxfield-Oshman Professor of Engineering University Professor of Computational and Applied Mathematics Wotao Yin Assistant Professor of Computational and Applied Mathematics Houston, Texas August, 2011 ABSTRACT Cocircuits of Vector Matroids by John David Arellano In this thesis, I present a set covering problem (SCP) formulation of the matroid cogirth problem, finding the cardinality of the smallest cocircuit of a matroid. Ad­ dressing the matroid cogirth problem can lead to significantly enhancing the design process of sensor networks. The solution to the matroid cogirth problem provides the degree of redundancy of the corresponding sensor network, and allows for the evalu­ ation of the quality of the network. I provide an introduction to matroids, and their relation to the degree of redundancy problem. I also discuss existing methods devel­ oped to solve the matroid cogirth problem and the SCP. Computational results are provided to validate a branch-and-cut algorithm that addresses the SCP formulation. Acknowledgments I would like to thank my parents and family for the love and support throughout my graduate career. I would like to thank my advisor, Dr. Illya Hicks, and the rest of my committee for their guidance and support. I would also like to thank Dr. Maria Cristina Villalobos for her guidance and support during my undergraduate career. A thanks also goes to Nabor Reyna, Dr.
    [Show full text]
  • Generic Branch-Cut-And-Price
    Generic Branch-Cut-and-Price Diplomarbeit bei PD Dr. M. L¨ubbecke vorgelegt von Gerald Gamrath 1 Fachbereich Mathematik der Technischen Universit¨atBerlin Berlin, 16. M¨arz2010 1Konrad-Zuse-Zentrum f¨urInformationstechnik Berlin, [email protected] 2 Contents Acknowledgments iii 1 Introduction 1 1.1 Definitions . .3 1.2 A Brief History of Branch-and-Price . .6 2 Dantzig-Wolfe Decomposition for MIPs 9 2.1 The Convexification Approach . 11 2.2 The Discretization Approach . 13 2.3 Quality of the Relaxation . 21 3 Extending SCIP to a Generic Branch-Cut-and-Price Solver 25 3.1 SCIP|a MIP Solver . 25 3.2 GCG|a Generic Branch-Cut-and-Price Solver . 27 3.3 Computational Environment . 35 4 Solving the Master Problem 39 4.1 Basics in Column Generation . 39 4.1.1 Reduced Cost Pricing . 42 4.1.2 Farkas Pricing . 43 4.1.3 Finiteness and Correctness . 44 4.2 Solving the Dantzig-Wolfe Master Problem . 45 4.3 Implementation Details . 48 4.3.1 Farkas Pricing . 49 4.3.2 Reduced Cost Pricing . 52 4.3.3 Making Use of Bounds . 54 4.4 Computational Results . 58 4.4.1 Farkas Pricing . 59 4.4.2 Reduced Cost Pricing . 65 5 Branching 71 5.1 Branching on Original Variables . 73 5.2 Branching on Variables of the Extended Problem . 77 5.3 Branching on Aggregated Variables . 78 5.4 Ryan and Foster Branching . 79 i ii Contents 5.5 Other Branching Rules . 82 5.6 Implementation Details . 85 5.6.1 Branching on Original Variables . 87 5.6.2 Ryan and Foster Branching .
    [Show full text]
  • A Branch and Price Approach to the K-Clustering Minimum Biclique Completion Problem
    A Branch and Price Approach to the k-Clustering Minimum Biclique Completion Problem Stefano Gualandia,1, Francesco Maffiolib, Claudio Magnic aDipartimento di Matematica, Universit`adegli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy bPolitecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano, Italy cMax Planck Institute for Computer Science, Department 1: Algorithms and Complexity, Campus E1 4, 66123 Saarbr¨ucken, Germany Abstract Given a bipartite graph G = (S, T, E), we consider the problem of finding k bipartite subgraphs, called ”clusters”, such that each vertex i of S appears in exactly one of them, every vertex j of T appears in each cluster in which at least one of its neighbors appears, and the total number of edges needed to make each cluster complete (i.e., to become a biclique) is minimized. This problem is known as k-clustering Minimum Biclique Completion Problem and has been shown strongly NP-hard. It has applications in bundling channels for multicast transmissions. Given a set of demands of services from clients, the application consists of finding k multicast sessions that partition the set of demands. Each service has to belong to a single multicast session, while each client can appear in more sessions. We extend previous work by developing a Branch and Price algorithm that embeds a new metaheuristic based on Variable Neighborhood Infeasible Search and a non-trivial branching rule. The metaheuristic is also adapted to solve efficiently the pricing subproblem. In addition to the random instances used in the literature, we present structured instances generated using the MovieLens data set collected by the GroupLens Research Project.
    [Show full text]
  • Welcome to the 2013 MOPTA Conference!
    Welcome to the 2013 MOPTA Conference! Mission Statement The Modeling and Optimization: Theory and Applications (MOPTA) conference is an annual event aiming to bring together a diverse group of people from both discrete and continuous optimization, working on both theoretical and applied aspects. The format consists of invited talks from distinguished speakers and selected contributed talks, spread over three days. The goal is to present a diverse set of exciting new developments from different optimization areas while at the same time providing a setting that will allow increased interaction among the participants. We aim to bring together researchers from both the theoretical and applied communities who do not usually have the chance to interact in the framework of a medium- scale event. MOPTA 2013 is hosted by the Department of Industrial and Systems Engineering at Lehigh University. Organization Committee Frank E. Curtis - Chair [email protected] Tamás Terlaky [email protected] Ted Ralphs [email protected] Katya Scheinberg [email protected] Lawrence V. Snyder [email protected] Robert H. Storer [email protected] Aurélie Thiele [email protected] Luis Zuluaga [email protected] Staff Kathy Rambo We thank our sponsors! 1 Program Wednesday, August 14 – Rauch Business Center 7:30-8:10 - Registration and continental breakfast - Perella Auditorium Lobby 8:10-8:20 - Welcome: Tamás Terlaky, Department Chair, Lehigh ISE - Perella Auditorium (RBC 184) 8:20-8:30 - Opening remarks: Patrick Farrell, Provost, Lehigh University
    [Show full text]