Immune Cells in Spleen and Mucosa + CD127 Neg Production of IL-17

Total Page:16

File Type:pdf, Size:1020Kb

Immune Cells in Spleen and Mucosa + CD127 Neg Production of IL-17 Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 neg is online at: average * The Journal of Immunology published online 21 June 2010 Immune Cells in Spleen and Mucosa from submission to initial decision + 4 weeks from acceptance to publication TLR5 Signaling Stimulates the Innate Production of IL-17 and IL-22 by CD3 CD127 Laurye Van Maele, Christophe Carnoy, Delphine Cayet, Pascal Songhet, Laure Dumoutier, Isabel Ferrero, Laure Janot, François Erard, Julie Bertout, Hélène Leger, Florent Sebbane, Arndt Benecke, Jean-Christophe Renauld, Wolf-Dietrich Hardt, Bernhard Ryffel and Jean-Claude Sirard http://www.jimmunol.org/content/early/2010/06/21/jimmun ol.1000115 J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2010/06/21/jimmunol.100011 5.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. Published June 21, 2010, doi:10.4049/jimmunol.1000115 The Journal of Immunology TLR5 Signaling Stimulates the Innate Production of IL-17 and IL-22 by CD3negCD127+ Immune Cells in Spleen and Mucosa Laurye Van Maele,*,†,‡,x,{,1 Christophe Carnoy,*,†,‡,x,{,1 Delphine Cayet,*,†,‡,x,{,1 Pascal Songhet,‖ Laure Dumoutier,# Isabel Ferrero,** Laure Janot,††,‡‡ Franc¸ois Erard,††,‡‡ Julie Bertout,{ He´le`ne Leger,x,xx,{{ Florent Sebbane,*,†,‡,x,{ Arndt Benecke,x,xx,{{ Jean-Christophe Renauld,# Wolf-Dietrich Hardt,‖ Bernhard Ryffel,††,‡‡ and Jean-Claude Sirard*,†,‡,x,{ In adaptive immunity, Th17 lymphocytes produce the IL-17 and IL-22 cytokines that stimulate mucosal antimicrobial defenses and tissue repair. In this study, we observed that the TLR5 agonist flagellin induced swift and transient transcription of genes encoding IL-17 and IL-22 in lymphoid, gut, and lung tissues. This innate response also temporarily enhanced the expression of genes Downloaded from associated with the antimicrobial Th17 signature. The source of the Th17-related cytokines was identified as novel populations of CD3negCD127+ immune cells among which CD4-expressing cells resembling lymphoid tissue inducer cells. We also demonstrated that dendritic cells are essential for expression of Th17-related cytokines and so for stimulation of innate cells. These data define that TLR-induced activation of CD3negCD127+ cells and production of Th17-related cytokines may be crucial for the early defenses against pathogen invasion of host tissues. The Journal of Immunology, 2010, 185: 000–000. http://www.jimmunol.org/ oll-like receptors are key players in innate immunity and RecentstudieshighlightedthecontributionofIL-17A,IL-17F,and are essential for sensing microbial components and trigger- IL-22 to defensive reactions within the mucosa (3–6). These cyto- T ing the host defense (1). At the luminal interface, the TLR kines help orchestrate innate immunity by stimulating epithelial response is mediated by the epithelium and mainly consists of neu- cells to produce defense molecules, matrix proteases, and tissue trophil recruitment and activation (2). After microbes cross the ep- repair molecules (7, 8). The source of IL-17A, IL-17F, and IL-22 ithelium, sensing occurs within the lamina propria. However, the varies. During an adaptive response, the lymphocytes that differen- nature of the TLR-mediated innate cells and defense factors that are tiate into Th17 cells are the main producers of cytokines (9). IL-17A triggered by microbial desequestration has yet to be defined. can rapidly be produced during innate responses to bacteria or mi- crobial molecular patterns by gd T lymphocytes in a TLR4- by guest on September 28, 2021 dependent manner, NKT cells activated with a-galactosylceramide, *Institut Pasteur de Lille, Centre d’Infection et d’Immunite´ de Lille; †Institut Na- or lymphoid tissue inducer (LTi)-like cells following stimulation tional de la Sante´ et de la Recherche Me´dicale Unite´ 1019; ‡Centre National de la with the TLR2/Dectin-1 agonist zymosan (10–12). NK-like and Recherche Scientifique Unite´ Mixte de Recherche 8204; xUniversite´ Lille Nord de France; {{Institut de Recherche Interdisciplinaire, Centre National de la Recherche LTi-like innate lymphocytes expressing IL-7Ra, NKp46, the Scientifique Unite´ de Service et de Recherche 3078; {Institut Fe´de´ratif de Recherche transcription factor RORgt, and eventually CCR6 are sources of xx †† 142, Lille; Institut des Hautes E´tudes Scientifiques, Bures-sur-Yvette; University of IL-22 and/or IL-17 in mucosa under steady-state conditions (13– Orle´ans and ‡‡Centre National de la Recherche Scientifique Molecular Immunology and Embryology Unite´ Mixte de Recherche 6218, Institut de Transgenose, Orle´ans, 18). Interestingly, microbial flora-colonizing mucosa are required to ‖ France; Institute of Microbiology, Eidgeno¨ssiche Technische Hochschule Zurich, switch on lasting IL-17 and IL-22 production (15, 17). In absence Zurich; **Ludwig Institute for Cancer Research, Lausanne Branch, University of of these innate lymphocytes, infectious colitis is exacerbated, sug- Lausanne, Epalinges, Switzerland; and #Ludwig Institute for Cancer Research, Brussels Branch, de Duve Institute, Universite´ catholique de Louvain, Brussels, gesting an operational role of IL-22 and IL-17 in the gut’s innate Belgium immunity (15, 17). However, the link between TLR-mediated sig- 1L.V.M., C.C., and D.C. contributed equally to this work. naling, Th17-related cytokine production by innate immune cells, Received for publication January 15, 2010. Accepted for publication May 11, 2010. and mucosal defenses has not been defined. This work was supported by the Institut National de la Sante´ et de la Recherche The ability of TLR5 signaling to induce mucosal production of Me´dicale (to. C.C., L.V.M., D.C., and J.-C.S.), the Institut Pasteur de Lille, the IL-17 and IL-22 and thereby promote antimicrobial defense has Universite´ Lille Nord de France, and the Re´gion Nord Pas de Calais (ARCir Europe). W.-D.H. and J.-C.S. are funded by the European Community (Grant INCO-CT-2006- never been investigated. TLR5 detects flagellins—the main pro- 032296). tein of bacterial flagella (19). Flagellins are expressed by bacteria, Microarray data were deposited in the publicly available database (http://mace.ihes. particularly pathogenic bacteria, in the gut and the lung and acti- fr) with accession number 2844328654. vate epithelial TLR5 signaling (19–21). Flagellin expression is Address correspondence and reprint requests to Dr. Jean-Claude Sirard, Center for switched off as soon as bacteria translocate into the lamina propria Infection and Immunity of Lille, Institut National de la Sante´ et de la Recherche (22). Detection of flagellin molecules represents therefore an Me´dicale Unite´ 1019, Centre National de la Recherche Scientifique Unite´ Mixte de Recherche 8204, Institut Pasteur de Lille, 1, rue du Professeur Calmette, 59019 Lille alarm signal for subepithelial invasion and/or disruption of the Cedex, France. E-mail address: [email protected] epithelial barrier function. TLR5 signaling is rapidly induced in The online version of this article contains supplemental material. the lamina propria dendritic cells (DCs) of the small intestine (23). Abbreviations used in this paper: Ct, cycle threshold; DC, dendritic cell; DTX, diph- In the current study, we show that flagellin activates (via DCs) the theria toxin; gc, common g-chain; LTi, lymphoid tissue inducer; ns, nonsignificant; splenic and mucosal production of IL-17 and IL-22 and the sub- WT, wild-type. sequent expression of target genes. This TLR5-mediated response Copyright Ó 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 was associated with a unique population of immune cells express- www.jimmunol.org/cgi/doi/10.4049/jimmunol.1000115 2 TLR-MEDIATED INNATE IMMUNE CELL ACTIVATION ing CD127 but not CD3 that resembles LTi cells, LTi-like, or NK- Microarrays neg + like innate lymphocytes. Our findings suggest that CD3 CD127 Total RNA (2 mg) was processed on the Mouse Whole Genome Arrays innate immune cells may be instrumental to the host’s mucosal version 2.0 (Applied Biosystems) (27). Data were analyzed using the defense through the early production of Th17-related cytokines. NeONORM method, and heat maps were created as described previously (27, 28). Gene Ontology was analyzed using the Panther Protein Classi- Materials and Methods fication System (www.pantherdb.org). Mice Statistical analysis Specific pathogen-free mouse strains C57BL/6J, C57BL/6J-Ly5.1, BALB/ The Mann-Whitney U test and the Graphpad Prism software 5.0 were used 2 2 2 2 2 2 2 2 2 2 2 2 c, and Tcrb / , Tcrd / , Tcrb / Tcrd / , Tlr5 / (24); Myd88 / (25); in analyses. The Limma test with Benjamini-Hochberg false discovery rate transgenic animals for pre-TCRa, Cd11c-DTR-EGFP (Itagx-DTR/EGFP) (FDR) correction was used for high-throughput PCR with TaqMan Low 2 2 2 2 2 2 (26); Rag2 / Il2rg / backcrossed on C57BL/6J mice; Cd1d / Density Arrays.
Recommended publications
  • THE ROLE of HOMEODOMAIN TRANSCRIPTION FACTOR IRX5 in CARDIAC CONTRACTILITY and HYPERTROPHIC RESPONSE by © COPYRIGHT by KYOUNG H
    THE ROLE OF HOMEODOMAIN TRANSCRIPTION FACTOR IRX5 IN CARDIAC CONTRACTILITY AND HYPERTROPHIC RESPONSE By KYOUNG HAN KIM A THESIS SUBMITTED IN CONFORMITY WITH THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE DEPARTMENT OF PHYSIOLOGY UNIVERSITY OF TORONTO © COPYRIGHT BY KYOUNG HAN KIM (2011) THE ROLE OF HOMEODOMAIN TRANSCRIPTION FACTOR IRX5 IN CARDIAC CONTRACTILITY AND HYPERTROPHIC RESPONSE KYOUNG HAN KIM DOCTOR OF PHILOSOPHY GRADUATE DEPARTMENT OF PHYSIOLOGY UNIVERSITY OF TORONTO 2011 ABSTRACT Irx5 is a homeodomain transcription factor that negatively regulates cardiac fast transient + outward K currents (Ito,f) via the KV4.2 gene and is thereby a major determinant of the transmural repolarization gradient. While Ito,f is invariably reduced in heart disease and changes in Ito,f can modulate both cardiac contractility and hypertrophy, less is known about a functional role of Irx5, and its relationship with Ito,f, in the normal and diseased heart. Here I show that Irx5 plays crucial roles in the regulation of cardiac contractility and proper adaptive hypertrophy. Specifically, Irx5-deficient (Irx5-/-) hearts had reduced cardiac contractility and lacked the normal regional difference in excitation-contraction with decreased action potential duration, Ca2+ transients and myocyte shortening in sub-endocardial, but not sub-epicardial, myocytes. In addition, Irx5-/- mice showed less cardiac hypertrophy, but increased interstitial fibrosis and greater contractility impairment following pressure overload. A defect in hypertrophic responses in Irx5-/- myocardium was confirmed in cultured neonatal mouse ventricular myocytes, exposed to norepinephrine while being restored with Irx5 replacement. Interestingly, studies using mice ii -/- virtually lacking Ito,f (i.e. KV4.2-deficient) showed that reduced contractility in Irx5 mice was completely restored by loss of KV4.2, whereas hypertrophic responses to pressure-overload in hearts remained impaired when both Irx5 and Ito,f were absent.
    [Show full text]
  • Relb Deficiency in Dendritic Cells Protects from Autoimmune
    RelB Deficiency in Dendritic Cells Protects from Autoimmune Inflammation Due to Spontaneous Accumulation of Tissue T Regulatory Cells This information is current as of September 24, 2021. Nico Andreas, Maria Potthast, Anna-Lena Geiselhöringer, Garima Garg, Renske de Jong, Julia Riewaldt, Dennis Russkamp, Marc Riemann, Jean-Philippe Girard, Simon Blank, Karsten Kretschmer, Carsten Schmidt-Weber, Thomas Korn, Falk Weih and Caspar Ohnmacht Downloaded from J Immunol 2019; 203:2602-2613; Prepublished online 2 October 2019; doi: 10.4049/jimmunol.1801530 http://www.jimmunol.org/content/203/10/2602 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2019/10/01/jimmunol.180153 Material 0.DCSupplemental References This article cites 74 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/203/10/2602.full#ref-list-1 by guest on September 24, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc.
    [Show full text]
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Off the Beaten Pathway: the Complex Cross Talk Between Notch and NF-Kb Clodia Osipo1,2, Todd E Golde3, Barbara a Osborne4 and Lucio a Miele1,2,5
    Laboratory Investigation (2008) 88, 11–17 & 2008 USCAP, Inc All rights reserved 0023-6837/08 $30.00 PATHOBIOLOGY IN FOCUS Off the beaten pathway: the complex cross talk between Notch and NF-kB Clodia Osipo1,2, Todd E Golde3, Barbara A Osborne4 and Lucio A Miele1,2,5 The canonical Notch pathway that has been well characterized over the past 25 years is relatively simple compared to the plethora of recently published data suggesting non-canonical signaling mechanisms and cross talk with other pathways. The manner in which other pathways cross talk with Notch signaling appears to be extraordinarily complex and, not surprisingly, context-dependent. While the physiological relevance of many of these interactions remains to be estab- lished, there is little doubt that Notch signaling is integrated with numerous other pathways in ways that appear increasingly complex. Among the most intricate cross talks described for Notch is its interaction with the NF-kB pathway, another major cell fate regulatory network involved in development, immunity, and cancer. Numerous reports over the last 11 years have described multiple cross talk mechanisms between Notch and NF-kB in diverse experimental models. This article will provide a brief overview of the published evidence for Notch–NF-kB cross talk, focusing on vertebrate systems. Laboratory Investigation (2008) 88, 11–17; doi:10.1038/labinvest.3700700; published online 3 December 2007 KEYWORDS: Notch signaling; NF-kB cross talk; non-canonical signaling; IKK kinases CANONICAL NOTCH SIGNALING endocytosed into the ligand-expressing cell.10 This unmasks Canonical Notch signaling has been recently reviewed by the HD and triggers an extracellular cleavage in it by ADAM several authors,1–6 and the reader is referred to these reviews (a disintegrin and metalloproteinase) 10 or 17,1,2 followed by for detailed information and additional references.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • Eda-Activated Relb Recruits an SWI/SNF (BAF) Chromatin-Remodeling Complex and Initiates Gene Transcription in Skin Appendage Formation
    Eda-activated RelB recruits an SWI/SNF (BAF) chromatin-remodeling complex and initiates gene transcription in skin appendage formation Jian Simaa,1,2, Zhijiang Yana,1, Yaohui Chena, Elin Lehrmanna, Yongqing Zhanga, Ramaiah Nagarajaa, Weidong Wanga, Zhong Wangb, and David Schlessingera,2 aLaboratory of Genetics and Genomics, National Institute on Aging/NIH-Intramural Research Program, Baltimore, MD 21224; and bDepartment of Cardiac Surgery, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI 48109 Edited by Elaine Fuchs, The Rockefeller University, New York, NY, and approved June 28, 2018 (received for review January 23, 2018) Ectodysplasin A (Eda) signaling activates NF-κB during skin ap- during organ development induce distinct BAF complexes to pendage formation, but how Eda controls specific gene transcrip- modulate gene expression. tion remains unclear. Here, we find that Eda triggers the formation Here, we report that skin-specific Eda signaling triggers the for- of an NF-κB–associated SWI/SNF (BAF) complex in which p50/RelB re- mation of a large BAF-containing complex that includes a BAF cruits a linker protein, Tfg, that interacts with BAF45d in the BAF com- complex, an NF-κB dimer of p50/RelB, and a specific linker pro- plex. We further reveal that Tfg is initially induced by Eda-mediated tein, Tfg (TRK-fusion gene). Thus, Eda/NF-κB signaling operates RelB activation and then bridges RelB and BAF for subsequent gene through a BAF complex to regulate specific gene expression in regulation. The BAF component BAF250a is particularly up-regulated in organ development, which may exemplify a more general paradigm skin appendages, and epidermal knockout of BAF250a impairs skin for gene-specific regulation in many other systems.
    [Show full text]
  • Autoimmune-Mediated Thymic Atrophy Is Accelerated but Reversible in Relb-Deficient Mice
    ORIGINAL RESEARCH published: 22 May 2018 doi: 10.3389/fimmu.2018.01092 Autoimmune-Mediated Thymic Atrophy Is Accelerated but reversible in relB-Deficient Mice Brendan J. O’Sullivan1, Suman Yekollu1, Roland Ruscher1, Ahmed M. Mehdi1, Muralidhara Rao Maradana1, Ann P. Chidgey 2 and Ranjeny Thomas1* 1 Diamantina Institute, Translational Research Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia, 2 Stem Cells and Immune Regeneration Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia Polymorphisms impacting thymic function may decrease peripheral tolerance and hasten autoimmune disease. The NF-κB transcription factor subunit, RelB, is essential for the development and differentiation of medullary thymic epithelial cells (mTECs): RelB-deficient mice have reduced thymic cellularity and markedly fewer mTECs, lack- ing AIRE. The precise mechanism of this mTEC reduction in the absence of RelB is Edited by: unclear. To address this, we studied mTECs and dendritic cells (DCs), which critically Antony Basten, regulate negative selection, and thymic regulatory T-cells (tTreg) in RelB−/− mice, which Garvan Institute of Medical / Research, Australia have spontaneous multiorgan autoimmune disease. RelB− − thymi were organized, with − + Reviewed by: medullary structures containing AIRE mTECs, DCs, and CD4 thymocytes, but fewer Mitsuru Matsumoto, tTreg. Granulocytes infiltrated the RelB−/− thymic cortex, capsule, and medulla, producing Tokushima University, Japan inflammatory thymic medullary atrophy, which could be treated by granulocyte depletion Lianjun Zhang, or RelB+ DC immunotherapy, with concomitant recovery of mTEC and tTreg numbers. Université de Lausanne, These data indicate that central tolerance defects may be accelerated by autoimmune Switzerland thymic inflammation where impaired RelB signaling impairs the medullary niche, and may *Correspondence: Ranjeny Thomas be reversible by therapies enhancing peripheral Treg or suppressing inflammation.
    [Show full text]
  • Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent- Title Responsive Biomarker
    Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent- Title Responsive Biomarker Author(s) 山村, 宏江 Citation 北海道大学. 博士(工学) 甲第11137号 Issue Date 2013-09-25 DOI 10.14943/doctoral.k11137 Doc URL http://hdl.handle.net/2115/77180 Type theses (doctoral) File Information Hiroe_Yamamura.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Doctoral Thesis Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent-Responsive Biomarker Hiroe Hara-Yamamura Acknowledgement My doctoral research works presented here cannot be completed without a numerous number of tangible and intangible supports from my peers, my supervisor, instructors, friends, and family. I would first express my deepest gratitude to Prof. Satoshi OKABE for his technical advices and crisp ideas which often came to break the deadlock of my research progress, and for continued provision of another chance to me, even in the least fruitful season. Indeed, my three years in Prof. OKABE’s lab was “luxuri- ous” time in my life with a lot of supports, encouragements, and chances. In addition, I appreciate both Prof. Daisuke SANO and Dr. Satoshi ISHII for offering their insights on my experimental design and data analysis as well as giving me words of encouragements from time to time. Also, thank you to Prof. Takashi KUSUI from Toyama Prefectural University for his assistance to bioassay techniques and valuable discussion dur- ing my 1st year and 2nd year evaluation presentations. Furthermore, I would like to express my gratitude to specific efforts kindly provide by: Mr. Kenzo Kudo, Prof.
    [Show full text]
  • Detecting Global in Uence of Transcription Factor Interactions On
    Detecting Global Inuence of Transcription Factor Interactions on Gene Expression in Lymphoblastoid Cells Using Neural Network Models. Neel Patel Case Western Reserve University https://orcid.org/0000-0001-9953-6734 William S. Bush ( [email protected] ) Case Western Reserve University https://orcid.org/0000-0002-9729-6519 Research Keywords: Transcription factors, Gene expression, Machine learning, Neural network, Chromatin-looping, Regulatory module, Multi-omics. Posted Date: August 3rd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-406028/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Detecting global influence of transcription factor interactions on gene expression in lymphoblastoid cells using neural network models. Neel Patel1,2 and William S. Bush2* 1Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA. 2Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.*-corresponding author(email:[email protected]) Abstract Background Transcription factor(TF) interactions are known to regulate gene expression in eukaryotes via TF regulatory modules(TRMs). Such interactions can be formed due to co-localizing TFs binding proximally to each other in the DNA sequence or between distally binding TFs via long distance chromatin looping. While the former type of interaction has been characterized extensively, long distance TF interactions are still largely understudied. Furthermore, most prior approaches have focused on characterizing physical TF interactions without accounting for their effects on gene expression regulation. Understanding how TRMs influence gene expression regulation could aid in identifying diseases caused by disruptions to these mechanisms. In this paper, we present a novel neural network based approach to detect TRM in the GM12878 immortalized lymphoblastoid cell line.
    [Show full text]
  • GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity
    Article GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity Graphical Abstract Authors Sharon M. Louie, Elizabeth A. Grossman, Lisa A. Crawford, ..., Andrei Goga, Eranthie Weerapana, Daniel K. Nomura Correspondence [email protected] In Brief Using a reactivity-based chemoproteomic platform, Louie et al. have identified GSTP1 as a triple-negative breast cancer target that, when inhibited, impairs breast cancer pathogenicity through inhibiting GAPDH activity and downstream metabolism and signaling pathways. Highlights d We used chemoproteomics to profile metabolic drivers of breast cancer d GSTP1 is a novel triple-negative breast cancer-specific target d GSTP1 inhibition impairs triple-negative breast cancer pathogenicity d GSTP1 inhibition impairs GAPDH activity to affect metabolism and signaling Louie et al., 2016, Cell Chemical Biology 23, 1–12 May 19, 2016 ª 2016 Elsevier Ltd. http://dx.doi.org/10.1016/j.chembiol.2016.03.017 Please cite this article in press as: Louie et al., GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity, Cell Chemical Biology (2016), http://dx.doi.org/10.1016/j.chembiol.2016.03.017 Cell Chemical Biology Article GSTP1 Is a Driver of Triple-Negative Breast Cancer Cell Metabolism and Pathogenicity Sharon M. Louie,1 Elizabeth A. Grossman,1 Lisa A. Crawford,2 Lucky Ding,1 Roman Camarda,3 Tucker R. Huffman,1 David K. Miyamoto,1 Andrei Goga,3 Eranthie Weerapana,2 and Daniel K. Nomura1,* 1Departments of Chemistry and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA 2Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA 3Department of Cell and Tissue Biology and Medicine, University of California, San Francisco, San Francisco, CA 94143, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2016.03.017 SUMMARY subtypes that are correlated with heightened malignancy and poor prognosis remain poorly understood.
    [Show full text]
  • In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs.
    [Show full text]