Leading the New Space Age: Government Backs Ambitious Plans for the UK in Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
50 Satellite Formation-Flying and Rendezvous
Parkinson, et al.: Global Positioning System: Theory and Applications — Chap. 50 — 2017/11/26 — 19:03 — page 1 1 50 Satellite Formation-Flying and Rendezvous Simone D’Amico1) and J. Russell Carpenter2) 50.1 Introduction to Relative Navigation GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at dis- tributed precise relative navigation between tens of swarming nano- and micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are pre- sented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (m- to cm-level accuracy). -
UK Space Agency Civil Space Strategy 2012-2016
UK Space Agency Civil Space Strategy An executive agency of the Department of Business, Innovation UK SPACE AGENCY Polaris House, North Star Avenue, Swindon, Wiltshire, SN2 1SZ Tel +44(0)207 215 5000 Email [email protected] Web www.bis.gov.uk/ukspaceagency CIVIL SPACE STRATEGY 2012-2016 The UK Space Agency To lead and sustain the growth of the UK Space Sector Foreword A strategy is more than simply words. A strategy demonstrates that we are carefully considering the options available to us; that we have an eye on the long-term, and most importantly, that we are committed to action. We are currently celebrating the 50th anniversary of the UK’s first foray into space, recognizing the pioneers who first ventured into unknown scientific territory with the Ariel-1 satellite. In the intervening half-century, space has become part of our lives. We use its technology to navigate our streets, access the internet and communicate around the globe. And UK space expertise has cemented Britain at the forefront of the exploration of our Universe. We have landed the Huygens probe on Titan, flown by Halley’s comet with the Giotto mission, probed the mysteries of the Universe with Herschel and Planck, and advanced our understanding of planet Earth through the Envisat and Cryosat missions. Today, space continues to be a key sector for Britain’s future. Its economic contribution to the UK economy is impressive. Total space-related turnover was £9.1 billion in 2010/11 (compared to £7.5 billion in 2008/09). This represents a real growth of 15.6% since 2008/09. -
The Space Race
The Space Race Aims: To arrange the key events of the “Space Race” in chronological order. To decide which country won the Space Race. Space – the Final Frontier “Space” is everything Atmosphere that exists outside of our planet’s atmosphere. The atmosphere is the layer of Earth gas which surrounds our planet. Without it, none of us would be able to breathe! Space The sun is a star which is orbited (circled) by a system of planets. Earth is the third planet from the sun. There are nine planets in our solar system. How many of the other eight can you name? Neptune Saturn Mars Venus SUN Pluto Uranus Jupiter EARTH Mercury What has this got to do with the COLD WAR? Another element of the Cold War was the race to control the final frontier – outer space! Why do you think this would be so important? The Space Race was considered important because it showed the world which country had the best science, technology, and economic system. It would prove which country was the greatest of the superpowers, the USSR or the USA, and which political system was the best – communism or capitalism. https://www.youtube.com/watch?v=xvaEvCNZymo The Space Race – key events Discuss the following slides in your groups. For each slide, try to agree on: • which of the three options is correct • whether this was an achievement of the Soviet Union (USSR) or the Americans (USA). When did humans first send a satellite into orbit around the Earth? 1940s, 1950s or 1960s? Sputnik 1 was launched in October 1957. -
The Economic Impact of Physics Research in the UK: Satellite Navigation Case Study
The economic impact of physics research in the UK: Satellite Navigation Case Study A report for STFC November 2012 Contents Executive Summary................................................................................... 3 1 The science behind satellite navigation......................................... 4 1.1 Introduction ................................................................................................ 4 1.2 The science................................................................................................ 4 1.3 STFC’s role in satellite navigation.............................................................. 6 1.4 Conclusions................................................................................................ 8 2 Economic impact of satellite navigation ........................................ 9 2.1 Introduction ................................................................................................ 9 2.2 Summary impact of GPS ........................................................................... 9 2.3 The need for Galileo................................................................................. 10 2.4 Definition of the satellite navigation industry............................................ 10 2.5 Methodological approach......................................................................... 11 2.6 Upstream direct impacts .......................................................................... 12 2.7 Downstream direct impacts..................................................................... -
Galileo FOC-M7 SAT 19-20-21-22
LAUNCH KIT December 2017 VA240 Galileo FOC-M7 SAT 19-20-21-22 VA240 Galileo FOC-M7 SAT 19-20-21-22 ARIANESPACE’S SECOND ARIANE 5 LAUNCH FOR THE GALILEO CONSTELLATION AND EUROPE For its 11th launch of the year, and the sixth Ariane 5 liftoff from the Guiana Space Center (CSG) in French Guiana during 2017, Arianespace will orbit four more satellites for the Galileo constellation. This mission is being performed on behalf of the European Commission under a contract with the European Space Agency (ESA). For the second time, an Ariane 5 ES version will be used to orbit satellites in Europe’s own satellite navigation system. At the completion of this flight, designated Flight VA240 in Arianespace’s launcher family numbering system, 22 Galileo spacecraft will have been launched by Arianespace. Arianespace is proud to deploy its entire family of launch vehicles to address Europe’s needs and guarantee its independent access to space. Galileo, an iconic European program Galileo is Europe’s own global navigation satellite system. Under civilian control, Galileo offers guaranteed high-precision positioning around the world. Its initial services began in December CONTENTS 2016, allowing users equipped with Galileo-enabled devices to combine Galileo and GPS data for better positioning accuracy. The complete Galileo constellation will comprise a total of 24 operational satellites (along with > THE LAUNCH spares); 18 of these satellites already have been orbited by Arianespace. ESA transferred formal responsibility for oversight of Galileo in-orbit operations to the GSA VA240 mission (European GNSS Agency) in July 2017. Page 3 Therefore, as of this launch, the GSA will be in charge of the operation of the Galileo satellite Galileo FOC-M7 satellites navigation systems on behalf of the European Union. -
United Kingdom of Great Britain and Northern Ireland
SPACE DEBRIS MITIGATION STANDARDS UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND National mechanism: Outer Space Act 1986 (OSA) Description: The Outer Space Act is the legal basis for the regulation of activities in outer space (including the launch and operation of space objects) carried out by persons connected with the United Kingdom. The Act confers licensing and other powers on the Secretary of State acting through the UK Space Agency. The Act ensures compliance with UK obligations under the international conventions covering the use of outer space to which the UK is a signatory. Under the legislation of the OSA, the Secretary of State shall not grant a licence unless he is satisfied that the activities authorised by the licence will not jeopardise public health or the safety of persons or property, will be consistent with the international obligations of the United Kingdom, and will not impair the national security of the United Kingdom. Further the Secretary of State requires the licensee to conduct his operations in such a way as to prevent the contamination of outer space or adverse changes in the environment of the Earth, and to avoid interference with activities of others in the peaceful exploration and use of outer space. The Secretary of State requires the licensee to insure himself against liability incurred in respect of damage or loss suffered by third parties, in the United Kingdom or elsewhere, as a result of the activities authorised by the licence. Further the licensee shall indemnify Her Majesty’s government in the United Kingdom against any claims brought against the government in respect of damage or loss arising out of activities carried on by him to which this Act applies. -
Space Debris
IADC-11-04 April 2013 Space Debris IADC Assessment Report for 2010 Issued by the IADC Steering Group Table of Contents 1. Foreword .......................................................................... 1 2. IADC Highlights ................................................................ 2 3. Space Debris Activities in the United Nations ................... 4 4. Earth Satellite Population .................................................. 6 5. Satellite Launches, Reentries and Retirements ................ 10 6. Satellite Fragmentations ................................................... 15 7. Collision Avoidance .......................................................... 17 8. Orbital Debris Removal ..................................................... 18 9. Major Meetings Addressing Space Debris ........................ 20 Appendix: Satellite Break-ups, 2000-2010 ............................ 22 IADC Assessment Report for 2010 i Acronyms ADR Active Debris Removal ASI Italian Space Agency CNES Centre National d’Etudes Spatiales (France) CNSA China National Space Agency CSA Canadian Space Agency COPUOS Committee on the Peaceful Uses of Outer Space, United Nations DLR German Aerospace Center ESA European Space Agency GEO Geosynchronous Orbit region (region near 35,786 km altitude where the orbital period of a satellite matches that of the rotation rate of the Earth) IADC Inter-Agency Space Debris Coordination Committee ISRO Indian Space Research Organization ISS International Space Station JAXA Japan Aerospace Exploration Agency LEO Low -
The Navy Navigation Satellite System (Transit)
ROBERT J. DANCHIK THE NAVY NAVIGATION SATELLITE SYSTEM (TRANSIT) This article provides an update on the status of the Navy Navigation Satellite System (TRANSIT). Some insights are provided on the evolution of the system into its current configuration, as well as a discussion of future plans. BACKGROUND sign goal was never achieved for long in those early In 1958, research scientists at APL solved the orbit days because the satellites had short operational life of the first Russian satellite, Sputnik-I, by analysis of times. The failures largely resulted from inadequate the observed Doppler shift of its transmitted signal. component quality and the large number of wiring in This led immediately to the concept of satellite navi terconnections. However, after OSCAR 2 10 and OS gation and the development of the U.S. Navy Navi CAR 12 were launched in 1966 and 1967, respectively, gation Satellite System (TRANSIT) by APL, under the enough data on the failure mechanisms became avail sponsorship of the Navy's Special Projects Office, to able to APL to achieve the desired advances in reli provide position fixes for the Fleet Ballistic Missile ability. The integrated circuit introduced in OSCAR Weapon System submarines. (The articles in Ref. 1, 10 significantly extended the satellite lifetime by im a previous issue of the fohns Hopkins APL Techni proving component reliability and reducing the num cal Digest devoted to TRANSIT, give the principles ber of interconnections. Subsequently, the last major of operation and early history of the system.) Now, design change made to the solar cell interconnections, 26 years after its conception, the system is mature. -
The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more. -
Supporting the Sustainable Development Goals
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030. -
European Space Expo
Europ ean Space Harnessing Policy Space to s erve the citizen The EU is establishing a European Space Policy and setting up a strong European Space Programme. These initiatives are vital to the growth and development of our society and will have a direct positive impact on our lives. European Space Expo The establishment of a Europe-wide Space Policy demon- strates the ability of the EU to take the lead in areas of Discover what space strategic importance that link a variety of policy areas - from telecommunications to humanitarian aid. brings to your life Along with Europe’s two flagship Space Programmes, Galileo (global satellite navigation system) and GMES (global monitoring for environment and security system), Europe is also strengthening its capacity for sea monitor- ing, border surveillance, space exploration and providing all EU countries with access to space. European Space Policy will ensure that Europe plays a lead- ing and significant role in space and that space-based tech- nologies maximise benefits to its citizens and contribute to competitiveness, growth and job creation. Space Research – New ideas for a brighter future European Commission Space Research and Development activities play an important part in European Space Policy and complement the efforts of Member States and other key players, including the European Space Agency (ESA). Europe has been active in the space sector for decades. Its activities range from launchers and space exploration, to satellite applications that provide services to society. Space Research contributes to achieving important objectives in areas such as transport, agriculture, fisher- ies, emergency management, humanitarian aid and more. -
GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.