GEOMETRIC STRUCTURES IN FIELD THEORY Manuel de Le´on IMFF (C.S.I.C.), Serrano 123, 28006, Madrid, Spain E-Mail:
[email protected] Michael McLean and Larry K. Norris Department of Mathematics, North Carolina State Univerisity Box 8205, Raleigh, North Carolina, USA E-Mail:
[email protected],
[email protected] Angel Rey Roca and Modesto Salgado Departamento de Xeometr´ıa e Topolox´ıa, University of Santiago de Compostela Facultad de Matematicas, 15706 Santiago de Compostela, Spain E-Mail:
[email protected] Abstract This review paper is concerned with the generalizations to field theory of the tangent and cotangent structures and bundles that play fundamental roles in the Lagrangian and Hamiltonian formulations of classical mechanics. The paper reviews, compares and constrasts the various generalizations in order to bring some unity to the field of arXiv:math-ph/0208036v1 26 Aug 2002 study. The generalizations seem to fall into two categories. In one direction some have generalized the geometric structures of the bundles, arriving at the various axiomatic systems such as k-symplectic and k-tangent structures. The other direction was to fundamentally extend the bundles themselves and to then explore the natural geometry of the extensions. This latter direction gives us the multisymplectic geometry on jet and cojet bundles and n-symplectic geometry on frame bundles. CONTENTS ii Contents 1 Introduction 1 1.1 Cotangent-likestructures. .. 1 1.2 Tangent-likestructures . .. .. 2 1.3 Interconnections,andplanofthepaper . .... 2 2 Spaces with tangent-like structures 4 2.1 Almost tangent structures and T M ....................... 4 1 2.2 Almost k-tangent structures and Tk M ....................