Mining an “Anti-Knowledge Base” from Wikipedia Updates with Applications to Fact Checking and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

Mining an “Anti-Knowledge Base” from Wikipedia Updates with Applications to Fact Checking and Beyond Mining an “Anti-Knowledge Base” from Wikipedia Updates with Applications to Fact Checking and Beyond Georgios Karagiannis, Immanuel Xuezhi Wang, Cong Yu Trummer, Saehan Jo, Shubham Google, NY, USA Khandelwal fxuezhiw,[email protected] Cornell University, NY, USA fgk446,it224,sj683,[email protected] ABSTRACT mantic web and data mining. The research work has been We introduce the problem of anti-knowledge mining. Our impactful|leading to significant advancement in major search goal is to create an \anti-knowledge base" that contains fac- engine features such as Google's Knowledge Graph [26] and tual mistakes. The resulting data can be used for analysis, Bing's Satori [19]. Little attention, however, has been paid training, and benchmarking in the research domain of auto- to the large number of erroneous facts on the Web. While mated fact checking. Prior data sets feature manually gen- storing all the world's wrong facts would be infeasible and erated fact checks of famous misclaims. Instead, we focus not particularly useful, we argue that a knowledge base of on the long tail of factual mistakes made by Web authors, common factual mistakes, what we call an anti-knowledge ranging from erroneous sports results to incorrect capitals. base, can complement the traditional knowledge base for We mine mistakes automatically, by an unsupervised ap- many applications including, but not limited to, automated proach, from Wikipedia updates that correct factual mis- fact checking. Specifically, collecting common factual mis- takes. Identifying such updates (only a small fraction of the takes enables us to develop learning algorithms for detect- total number of updates) is one of the primary challenges. ing long tail factual mistakes in a much more precise way We mine anti-knowledge by a multi-step pipeline. First, than verification against a traditional knowledge base can we filter out candidate updates via several simple heuris- accomplish. Furthermore, an anti-knowledge base can pro- tics. Next, we correlate Wikipedia updates with other state- vide values for the research community in conducting new ments made on the Web. Using claim occurrence frequen- studies such as how users make mistakes and designing novel cies as input to a probabilistic model, we infer the likelihood systems such as alerting users when they are working on of corrections via an iterative expectation-maximization ap- mistake-prone topics. proach. Finally, we extract mistakes in the form of subject- In this paper, we formally introduce the concept of an predicate-object triples and rank them according to several anti-knowledge base (AKB) and propose the first algorith- criteria. Our end result is a data set containing over 110,000 mic approach for anti-knowledge mining (AKM). Similar to ranked mistakes with a precision of 85% in the top 1% and traditional knowledge bases, an anti-knowledge base con- a precision of over 60% in the top 25%. We demonstrate tains hsubject, predicate, objecti triples with associated meta- that baselines achieve significantly lower precision. Also, we data, where each triple represents a factually mistaken claim exploit our data to verify several hypothesis on why users that has been asserted by users on the Web. Whenever pos- make mistakes. We finally show that the AKB can be used sible, we pair each mistaken triple with a correction triple in to find mistakes on the entire Web. the anti-knowledge base so that users get the correct knowl- edge as well. A formal and more elaborate definitions can PVLDB Reference Format: be found in Section 3. Georgios Karagiannis, Immanuel Trummer, Saehan Jo, Shubham At first, it may seem possible to mine mistakes by com- Khandelwal, Xuezhi Wang, Cong Yu. VLDB. PVLDB, 13(4): paring claims extracted from text against an existing knowl- xxxx-yyyy, 2019. DOI: https://doi.org/10.14778/3372716.3372727 edge base. As we will show in Section 8, this approach leads however to an excessive number of false positives (i.e., claims erroneously marked up as mistakes) due to incom- 1. INTRODUCTION plete knowledge bases and imperfect extraction. We could Constructing a knowledge base of high quality facts at leverage prior work on detecting conflicting statements on large scale is one of the main topics of many research com- the Web [28]. However, conflicting statements may simply munities ranging from natural language processing to se- indicate a controversial topic where different users have dif- ferent opinions, rather than a factual mistake. Our key idea is to exploit a property that distinguishes factual mistakes This work is licensed under the Creative Commons Attribution- from generally accepted claims as well as subjective topics: NonCommercial-NoDerivatives 4.0 International License. To view a copy a diligent user community will correct factual mistakes once of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For they are spotted. any use beyond those covered by this license, obtain permission by emailing A static view on the Web is insufficient to leverage this [email protected]. Copyright is held by the owner/author(s). Publication rights licensed to the VLDB Endowment. property. Hence, we assume that we are given an update Proceedings of the VLDB Endowment, Vol. 13, No. 4 log on a collection of documents. By comparing original ISSN 2150-8097. and updated text versions for each update, we obtain can- DOI: https://doi.org/10.14778/3372716.3372727 561 didates for factual mistakes. Of course, text updates may 2. RELATED WORK not only correct factual mistakes (but also expand text, cor- Prior efforts [29] at generating corpora for fact checking rect spelling mistakes, or update controversial statements based on the ClaimReview standard [24] leverage manual an- to reflect one author's personal opinion). One of the main notations by human fact checkers. This limits coverage and challenges solved by our approach is therefore to filter out size of generated data sets. Prior work on mining conflicting those updates that correct factual mistakes to form AKB Web sources has focused on extracting correct facts [31] or entries. To do so, we exploit a multi-stage pipeline com- subjective opinions [28] as opposed to mining factual mis- bining simple heuristics, a probabilistic model trained via takes with high precision. A large body of work in the area unsupervised learning, as well as feedback obtained from of fact checking is aimed at supporting human fact check- a static Web snapshot (counting the number of supporting ers in verifying specific claims or documents [9{13], e.g. by statements for text before and after updates). identifying relevant text documents for verification [29]. The proposed approach is fully automated and targeted at min- Example 1.1. Imagine the sentence \Heineken is Danish" ing factual mistakes from large document collections. Note is updated to \Heineken is Dutch". This update is correct- that tools such as ClaimBuster [11, 12] link claims to verify ing a factual mistake since Heineken is indeed based in the to previously annotated fact checks. Automatically gener- Netherlands (as can be learned from authoritative sources ated fact checks may extend the coverage of tools working such as the company's Web site). Our goal is to distinguish according to that principle. such updates from other types of updates. We use this exam- Knowledge Base Construction has received wide attention ple (an actual update mined by our approach) throughout in both academia and industry [7,18,25,27,33]. Open infor- most of the paper. mation extraction is a closely related area, where the goal For this paper, we leverage the Wikipedia update log as is to extract relational tuples from massive corpora without source for factual mistake candidates (while we exploit a a pre-specified vocabulary [1, 8]). Our work is complemen- snapshot of the entire Web for feedback). We select Wikipedia tary as we mine anti-knowledge. We apply our approach to due to its size, breadth of topics, and due to its large and ac- Wikipedia update logs. In that, our work connects to prior tive user community. Furthermore, mistakes that appear on work leveraging Wikipedia as data source (e.g., identifying Wikipedia tend to propagate further (we show some exam- relevant articles to controversial topics [23], identifying up- ples for mistakes propagating from Wikipedia to the rest of date intentions [30], or mining data sets for grammatical the Web in Section 8). Therefore, the potential impact (e.g., error corrections [16]). The goal of our work (as well as via fact checking tools) of mining mistakes from Wikipedia the method) differs however from all of those. Our work is is higher than for other Web sources. While we focus on also complementary to prior work leveraging different types Wikipedia in this paper, please note that the general ap- of data from the Wikipedia corpus (e.g., analyzing logs of proach we propose is not specific to Wikipedia and could structured Wikidata queries [3], as opposed to logs of up- also be applied to different sources of updates and static dates to natural language Wikipedia text). feedback (e.g., an update log of Web documents in a com- Our approach uses a probabilistic model and unsuper- pany's intranet). Finally, note that Wikipedia is imperfect vised learning (in one stage of the pipeline) to classify up- and may contain uncorrected mistakes. We will not be able dated sentences as factual mistakes, based on several in- to spot those mistakes by mining the update log. However, put features. In that, it connects in general to systems our goal is to mine common factual mistakes. Each occur- performing weakly supervised learning such as Snorkel [20] rence increases the likelihood that at least one corresponding and approaches for efficient inference, e.g.
Recommended publications
  • Realising the Potential of Algal Biomass Production Through Semantic Web and Linked Data
    LEAPS: Realising the Potential of Algal Biomass Production through Semantic Web and Linked data ∗ Monika Solanki Johannes Skarka Craig Chapman KBE Lab Karlsruhe Institute of KBE Lab Birmingham City University Technology (ITAS) Birmingham City University [email protected] [email protected] [email protected] ABSTRACT In order to derive fuels from biomass, algal operation plant Recently algal biomass has been identified as a potential sites are setup that facilitate biomass cultivation and con- source of large scale production of biofuels. Governments, version of the biomass into end use products, some of which environmental research councils and special interests groups are biofuels. Microalgal biomass production in Europe is are funding several efforts that investigate renewable energy seen as a promising option for biofuels production regarding production opportunities in this sector. However so far there energy security and sustainability. Since microalgae can be has been no systematic study that analyses algal biomass cultivated in photobioreactors on non-arable land this tech- potential especially in North-Western Europe. In this paper nology could significantly reduce the food vs. fuel dilemma. we present a spatial data integration and analysis frame- However, until now there has been no systematic analysis work whereby rich datasets from the algal biomass domain of the algae biomass potential for North-Western Europe. that include data about algal operation sites and CO2 source In [20], the authors assessed the resource potential for mi- sites amongst others are semantically enriched with ontolo- croalgal biomass but excluded all areas not between 37◦N gies specifically designed for the domain and made available and 37◦S, thus most of Europe.
    [Show full text]
  • From Cataloguing Cards to Semantic Web 1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scientific Open-access Literature Archive and Repository Archeologia e Calcolatori 20, 2009, 111-128 REPRESENTING KNOWLEDGE IN ARCHAEOLOGY: FROM CATALOGUING CARDS TO SEMANTIC WEB 1. Introduction Representing knowledge is the basis of any catalogue. The Italian Ca- talogue was based on very valuable ideas, developed in the late 1880s, with the basic concept of putting objects in their context. Initially cataloguing was done manually, with typewritten cards. The advent of computers led to some early experimentations, and subsequently to the de�nition of a more formalized representation schema. The web produced a cultural revolution, and made the need for technological and semantic interoperability more evi- dent. The Semantic Web scenario promises to allow a sharing of knowledge, which will make the knowledge that remained unexpressed in the traditional environments available to any user, and allow objects to be placed in their cultural context. In this paper we will brie�y recall the principles of cataloguing and lessons learned by early computer experiences. Subsequently we will descri- be the object model for archaeological items, discussing its strong and weak points. In section 5 we present the web scenario and approaches to represent knowledge. 2. Cataloguing: history and principles The Italian Catalogue of cultural heritage has its roots in the experiences and concepts, developed in the late 1880s and early 1900s, by the famous art historian Adolfo Venturi, who was probably one of the �rst scholars to think explicitly in terms of having a frame of reference to describe works of art, emphasizing as the main issue the context in which the work had been produced.
    [Show full text]
  • Download Slides
    a platform for all that we know savas parastatidis http://savas.me savasp transition from web to apps increasing focus on information (& knowledge) rise of personal digital assistants importance of near-real time processing http://aptito.com/blog/wp-content/uploads/2012/05/smartphone-apps.jpg today... storing computing computers are huge amounts great tools for of data managing indexing example google and microsoft both have copies of the entire web (and more) for indexing purposes tomorrow... storing computing computers are huge amounts great tools for of data managing indexing acquisition discovery aggregation organization we would like computers to of the world’s information also help with the automatic correlation analysis and knowledge interpretation inference data information knowledge intelligence wisdom expert systems watson freebase wolframalpha rdbms google now web indexing data is symbols (bits, numbers, characters) information adds meaning to data through the introduction of relationship - it answers questions such as “who”, “what”, “where”, and “when” knowledge is a description of how the world works - it’s the application of data and information in order to answer “how” questions G. Bellinger, D. Castro, and A. Mills, “Data, Information, Knowledge, and Wisdom,” Inform. pp. 1–4, 2004 web – the data platform web – the information platform web – the knowledge platform foundation for new experiences “wisdom is not a product of schooling but of the lifelong attempt to acquire it” representative examples wolframalpha watson source:
    [Show full text]
  • Knowledge Extraction for Hybrid Question Answering
    KNOWLEDGEEXTRACTIONFORHYBRID QUESTIONANSWERING Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von Ricardo Usbeck, M.Sc. geboren am 01.04.1988 in Halle (Saale), Deutschland Die Annahme der Dissertation wurde empfohlen von: 1. Professor Dr. Klaus-Peter Fähnrich (Leipzig) 2. Professor Dr. Philipp Cimiano (Bielefeld) Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 17. Mai 2017 mit dem Gesamtprädikat magna cum laude. Leipzig, den 17. Mai 2017 bibliographic data title: Knowledge Extraction for Hybrid Question Answering author: Ricardo Usbeck statistical information: 10 chapters, 169 pages, 28 figures, 32 tables, 8 listings, 5 algorithms, 178 literature references, 1 appendix part supervisors: Prof. Dr.-Ing. habil. Klaus-Peter Fähnrich Dr. Axel-Cyrille Ngonga Ngomo institution: Leipzig University, Faculty for Mathematics and Computer Science time frame: January 2013 - March 2016 ABSTRACT Over the last decades, several billion Web pages have been made available on the Web. The growing amount of Web data provides the world’s largest collection of knowledge.1 Most of this full-text data like blogs, news or encyclopaedic informa- tion is textual in nature. However, the increasing amount of structured respectively semantic data2 available on the Web fosters new search paradigms. These novel paradigms ease the development of natural language interfaces which enable end- users to easily access and benefit from large amounts of data without the need to understand the underlying structures or algorithms. Building a natural language Question Answering (QA) system over heteroge- neous, Web-based knowledge sources requires various building blocks.
    [Show full text]
  • Datatone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3
    DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization Tong Gao1, Mira Dontcheva2, Eytan Adar1, Zhicheng Liu2, Karrie Karahalios3 1University of Michigan, 2Adobe Research 3University of Illinois, Ann Arbor, MI San Francisco, CA Urbana Champaign, IL fgaotong,[email protected] fmirad,[email protected] [email protected] ABSTRACT to be both flexible and easy to use. General purpose spread- Answering questions with data is a difficult and time- sheet tools, such as Microsoft Excel, focus largely on offer- consuming process. Visual dashboards and templates make ing rich data transformation operations. Visualizations are it easy to get started, but asking more sophisticated questions merely output to the calculations in the spreadsheet. Asking often requires learning a tool designed for expert analysts. a “visual question” requires users to translate their questions Natural language interaction allows users to ask questions di- into operations on the spreadsheet rather than operations on rectly in complex programs without having to learn how to the visualization. In contrast, visual analysis tools, such as use an interface. However, natural language is often ambigu- Tableau,1 creates visualizations automatically based on vari- ous. In this work we propose a mixed-initiative approach to ables of interest, allowing users to ask questions interactively managing ambiguity in natural language interfaces for data through the visualizations. However, because these tools are visualization. We model ambiguity throughout the process of often intended for domain specialists, they have complex in- turning a natural language query into a visualization and use terfaces and a steep learning curve. algorithmic disambiguation coupled with interactive ambigu- Natural language interaction offers a compelling complement ity widgets.
    [Show full text]
  • Directions in AI Research and Applications at Siemens Corporate
    AI Magazine Volume 11 Number 1 (1991)(1990) (© AAAI) Research in Progress of linguistic phenomena. The com- Directions in AI Research putational work concerns questions of adequate processing models and algorithms, as embodied in the and Applications at actual interfaces being developed. These topics are explored in the Siemens Corporate Research framework of three projects: The nat- ural language consulting dialogue and Development project (Wisber) takes up research- oriented topics (descriptive grammar formalisms and linguistically adequate grammar specification, handling of Wolfram Buettner, Klaus Estenfeld, discourse, and so on), the data-access Hans Haugeneder, and Peter Struss project (Sepp) focuses on the practi- cal application of state-of-the-art technology, and the work on gram- mar-development environments ■ Many barriers exist today that prevent particular, Prolog extensions; and (4) (Ape) centers on the problem of ade- effective industrial exploitation of current design and analysis of neural networks. quate tools for specifying linguistic and future AI research. These barriers can The lab’s 26 researchers are orga- knowledge sources and efficient pro- only be removed by people who are work- nized into four groups corresponding cessing methods. ing at the scientific forefront in AI and to these areas. Together, they provide Wisber is jointly funded by the know potential industrial needs. Siemens with innovative software The Knowledge Processing Laboratory’s German government and several research and development concentrates in technologies, appropriate applications, industrial and academic partners. the following areas: (1) natural language prototypical implementations of AI The goal of the project is to develop interfaces to knowledge-based systems and systems, and evaluations of new a knowledge-based advice-giving databases; (2) theoretical and experimen- techniques and trends.
    [Show full text]
  • A Framework for Ontology-Based Library Data Generation, Access and Exploitation
    Universidad Politécnica de Madrid Departamento de Inteligencia Artificial DOCTORADO EN INTELIGENCIA ARTIFICIAL A framework for ontology-based library data generation, access and exploitation Doctoral Dissertation of: Daniel Vila-Suero Advisors: Prof. Asunción Gómez-Pérez Dr. Jorge Gracia 2 i To Adelina, Gustavo, Pablo and Amélie Madrid, July 2016 ii Abstract Historically, libraries have been responsible for storing, preserving, cata- loguing and making available to the public large collections of information re- sources. In order to classify and organize these collections, the library commu- nity has developed several standards for the production, storage and communica- tion of data describing different aspects of library knowledge assets. However, as we will argue in this thesis, most of the current practices and standards available are limited in their ability to integrate library data within the largest information network ever created: the World Wide Web (WWW). This thesis aims at providing theoretical foundations and technical solutions to tackle some of the challenges in bridging the gap between these two areas: library science and technologies, and the Web of Data. The investigation of these aspects has been tackled with a combination of theoretical, technological and empirical approaches. Moreover, the research presented in this thesis has been largely applied and deployed to sustain a large online data service of the National Library of Spain: datos.bne.es. Specifically, this thesis proposes and eval- uates several constructs, languages, models and methods with the objective of transforming and publishing library catalogue data using semantic technologies and ontologies. In this thesis, we introduce marimba-framework, an ontology- based library data framework, that encompasses these constructs, languages, mod- els and methods.
    [Show full text]
  • Ontologies to Interpret Remote Sensing Images: Why Do We Need Them?
    Ontologies to interpret remote sensing images : why do we need them? Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot, Laurent Durieux To cite this version: Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot, Laurent Durieux. Ontologies to inter- pret remote sensing images : why do we need them?. GIScience and Remote Sensing, Taylor & Francis: STM, Behavioural Science and Public Health Titles, 2019, pp.1-29. 10.1080/15481603.2019.1587890. halshs-02079438 HAL Id: halshs-02079438 https://halshs.archives-ouvertes.fr/halshs-02079438 Submitted on 26 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. GIScience & Remote Sensing ISSN: 1548-1603 (Print) 1943-7226 (Online) Journal homepage: https://www.tandfonline.com/loi/tgrs20 Ontologies to interpret remote sensing images: why do we need them? Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot & Laurent Durieux To cite this article: Damien Arvor, Mariana Belgiu, Zoe Falomir, Isabelle Mougenot & Laurent Durieux (2019): Ontologies to interpret remote sensing images: why do we need them?, GIScience & Remote Sensing To link to this article: https://doi.org/10.1080/15481603.2019.1587890 © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
    [Show full text]
  • Question Answering
    Question Answering What is Ques+on Answering? Dan Jurafsky Ques%on Answering One of the oldest NLP tasks (punched card systems in 1961) Simmons, Klein, McConlogue. 1964. Indexing and ( ( Dependency Logic for Answering English Quesons. !"#$%&' )&*#'%+,-.'$/#0$ American Documentaon 15:30, 196-204 What do worms eat? Worms eat grass Horses with worms eat grass worms horses worms eat with eat eat grass worms grass what Birds eat worms Grass is eaten by worms birds worms eat eat 2 worms grass Dan Jurafsky Ques%on Answering: IBM’s Watson • Won Jeopardy on February 16, 2011! WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA” Bram Stoker INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 3 Dan Jurafsky Apple’s Siri 4 Dan Jurafsky Wolfram Alpha 5 Dan Jurafsky Types of Ques%ons in Modern Systems • Factoid ques+ons • Who wrote “The Universal Declara4on of Human Rights”? • How many calories are there in two slices of apple pie? • What is the average age of the onset of au4sm? • Where is Apple Computer based? • Complex (narrave) ques+ons: • In children with an acute febrile illness, what is the efficacy of acetaminophen in reducing fever? • What do scholars think about Jefferson’s posi4on on dealing with pirates? 6 Dan Jurafsky Commercial systems: mainly factoid quesons Where is the Louvre Museum located? In Paris, France What’s the abbreviaon for limited L.P. partnership? What are the names of Odin’s ravens? Huginn and Muninn What currency is used in China? The yuan What kind of nuts are used in marzipan? almonds What instrument does
    [Show full text]
  • Ques+On Answering
    Queson Answering Debapriyo Majumdar Information Retrieval – Spring 2015 Indian Statistical Institute Kolkata Adapted from slides by Dan Jurafsky (Stanford) and Tao Yang (UCSB) Queson Answering One of the oldest NLP tasks (punched card systems in 1961) Simmons, Klein, McConlogue. 1964. Indexing and Dependency Logic for Answering English Ques%on: Poten%al-Answers: Questions. American Documentation 15:30, 196-204 What do worms eat? Worms eat grass Horses with worms eat grass worms horses worms eat with eat eat grass worms grass what Birds eat worms Grass is eaten by worms birds worms eat eat worms grass 2 Ques%on Answering: IBM’s Watson § Won Jeopardy on February 16, 2011! WILLIAM WILKINSON’S “AN ACCOUNT OF THE PRINCIPALITIES OF WALLACHIA AND MOLDOVIA” Bram Stoker INSPIRED THIS AUTHOR’S MOST FAMOUS NOVEL 3 Apple’s Siri § A seemingly “limited” set of few possible questions § Answers based on contextual parameters 4 Wolfram Alpha, Google 5 Wolfram Alpha But in this case, Google returns a standard list of document links 6 Types of Ques%ons in Modern Systems § Factoid questions – Answers are short – The question can be rephrased as “fill in the blanks” question Examples: – Who directed the movie Titanic? – How many calories are there in two slices of apple pie? – Where is Louvre museum located? § Complex (narrative) questions: – What precautionary measures should we take to be safe from swine flu? – What do scholars think about Jefferson’s position on dealing with pirates? 7 Paradigms for QA § IR-based approaches – TREC QA Track (AskMSR, ISI,
    [Show full text]
  • The Negative Impact of A-Box Materialization on Rdf2vec Knowledge Graph Embeddings
    More is not Always Better: The Negative Impact of A-box Materialization on RDF2vec Knowledge Graph Embeddings Andreea Ianaa, Heiko Paulheima aData and Web Science Group, University of Mannheim, Germany Abstract RDF2vec is an embedding technique for representing knowledge graph entities in a continuous vector space. In this paper, we investigate the effect of materializing implicit A-box axioms induced by subproperties, as well as symmetric and transitive properties. While it might be a reasonable assumption that such a materialization before computing embeddings might lead to better embeddings, we conduct a set of experiments on DBpedia which demonstrate that the materialization actually has a negative effect on the performance of RDF2vec. In our analysis, we argue that despite the huge body of work devotedon completing missing information in knowledge graphs, such missing implicit information is actually a signal, not a defect, and we show examples illustrating that assumption. Keywords RDF2Vec, Embedding, Reasoning, Knowledge Graph Completion, A-box Materialization 1. Introduction A straightforward assumption is that completing miss- ing knowledge in a knowledge graph before computing RDFvec [1] was originally conceived for exploiting knowl- node representations will lead to better results. However, edge graphs in data mining. Since most popular data in this paper, we show that the opposite actually holds: mining tools require a feature vector representation of completing the knowledge graph before computing an records, various techniques have been proposed for cre- RDF2vec embedding actually leads to worse results in ating vector space representations from subgraphs, in- downstream tasks. cluding adding datatype properties as features or creat- ing binary features for types [2].
    [Show full text]
  • Question Answering
    Queson Answering Evangelos Kanoulas [email protected] Question answering EVI Siri Google (Amazon) (Apple) Question answering Question answering h7p://youtu.be/WFR3lOm_xhE?t=20s Connecons to Related Fields • Informaon retrieval • Natural language processing • Databases • Machine learning • Ar%ficial intelligence Queson Answering Types of Ques%ons in Modern Systems • Factoid quesons – Who wrote “The Universal Declaraon of Human Rights”? – How many calories are there in two slices of apple pie? – What is the average age of the onset of au%sm? – Where is Apple Computer based? • Complex (narrave) ques%ons: – In children with an acute febrile illness, what is the efficacy of acetaminophen in reducing fever? – What do scholars think about Jefferson’s posi%on on dealing with pirates? Commercial systems: mainly factoid quesons Where is the Louvre Museum In Paris, France located? What’s the abbreviaon for L.P. limited partnership? What are the names of Odin’s Huginn and Muninn ravens? What currency is used in China? The yuan What kind of nuts are used in almonds marzipan? What instrument does Max drums Roach play? What is the telephone number 650-723-2300 Paradigms for QA • IR-based approaches – TREC; Google • Knowledge-based approaches – Apple Siri; Wolfram Alpha; Amazon Evi • Hybrid approaches – IBM Watson Many ques%ons can already be answered by web search • a IR-based Ques%on Answering • a IR-based Factoid QA Document DocumentDocumentDocument Document Document Indexing Answer Passage Question Retrieval Processing Docume Document Query Document Document
    [Show full text]