Download This Article in PDF Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Astronomy from Darkness to Blazing Glory
Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice: -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma. -
A Collection of Curricula for the STARLAB Greek Mythology Cylinder
A Collection of Curricula for the STARLAB Greek Mythology Cylinder Including: A Look at the Greek Mythology Cylinder Three Activities: Constellation Creations, Create a Myth, I'm Getting Dizzy by Gary D. Kratzer ©2008 by Science First/STARLAB, 95 Botsford Place, Buffalo, NY 14216. www.starlab.com. All rights reserved. Curriculum Guide Contents A Look at the Greek Mythology Cylinder ...................3 Leo, the Lion .....................................................9 Introduction ......................................................3 Lepus, the Hare .................................................9 Andromeda ......................................................3 Libra, the Scales ................................................9 Aquarius ..........................................................3 Lyra, the Lyre ...................................................10 Aquila, the Eagle ..............................................3 Ophuichus, Serpent Holder ..............................10 Aries, the Ram ..................................................3 Orion, the Hunter ............................................10 Auriga .............................................................4 Pegasus, the Winged Horse..............................11 Bootes ..............................................................4 Perseus, the Champion .....................................11 Cancer, the Crab ..............................................4 Phoenix ..........................................................11 Canis Major, the Big Dog -
Large Peculiar Velocities in the Hydra Centaurus Supercluster
LARGE PECULIAR VELOCITIES IN THE HYDRA CENTAURUS SUPERCLUSTER M. Aaronson1*, G.D. Bothun2, K.G. Budge3, JA. Dawe4, R.J. Dickens5, RJ. Hall6, J.R. Lucey7, J.R. Mould3, J.D. Murray6, R.A. Schommer8, A.E. Wright6. 1 Steward Observatory, University of Arizona 2 University of Michigan 3 California Institute of Technology 4 Australian National University 5Rutherford Appleton Laboratory 6 Australian National Radio Astronomy Observatory 7Anglo Australian Observatory 8 Rutgers University ABSTRACT Six clusters forming part of the Hydra-Cen Supercluster and its ex- tension on the opposite side of the galactic plane are under study at 21 cm with the Parkes radiotélescope. The infrared Tully-Fisher relation is used to determine the relative distances of the clusters. These clusters exhibit significant and generally positive peculiar velocities ranging from essentially zero for the Hydra cluster to as much as 1000 km/sec for the Pavo and Centaurus clusters. An upper limit of 500 km/sec was previously found in the study of clusters accessible from Arecibo. Data collection is not yet complete, however, and is further subject to unstud- ied systematic errors due to present reliance on photographic galaxy diameters. Nevertheless, these preliminary results support the notion of a large scale (and pre- sumably gravit at ionally) disturbed velocity field in the second and third quadrants of the supergalactic plane. 1. INTRODUCTION Comparison of the ratios of distances of galaxies with the ratios of their recession velocities allows one to learn something about the "noise" in the Hubble flow on various scales. One is subject to the limitation, however, that distance indicators are imprecise, and the 0.4 mag scatter in the infrared Tully-Fisher (IRTF) relation translates to an uncertainty of 1000 km/sec in an individual galaxy at cz = 5000 km/sec. -
Hungry Mother State Park Stargazing for March, April And
Welcome to Hungry Mother State Park Hungry Mother State Park Attention all stargazers, the night sky is calling. Here at the park we have some prime viewing areas located at the Stargazing spillway, the beach front and the ballfield behind Ferrell Hall. Year-round in the Park the sky is filled with stars, planets and constellations with stories to tell. Here Please watch for additional in the Northern Hemisphere we have monthly Stargazing guides to circumpolar constellations that can be learn more about stargazing in viewed all year long. What are you our park. waiting for? Let’s go stargazing. For more information about March Constellations Virginia State Parks, please visit: Cancer Canis Minor www.virginiastateparks.gov April Constellations Discovery Center Hydra Hours of Operation: Leo 10 a.m. - 6:30 p.m. daily May Constellations Corvus March/April/May Virgo Star Gazing Smart Phone Apps Star Walk 2 Night Sky Star Tracker Interpretation Office: Sky Map Phone: 276-781-7413 [email protected] March Constellations April Constellations the god Zeus placed the figure of a gigantic lion in the sky with the rest of the stars. Cancer (The Crab) Hydra (The Serpent) The people of Nemea were terrorized by the According to an ancient Greek legend, the Hydra is the longest constellation in the sky. lion. Several times they tried to destroy the figure of a gigantic crab was placed in the It is so long that it takes more than six hours beast. Heracles was ordered by the king, nighttime sky by the goddess Hera to form to rise completely. -
Searching for Star-Forming Galaxies in the Fornax and Hydra Clusters ? O
Astronomy & Astrophysics manuscript no. paper7 c ESO 2020 January 23, 2020 Searching for star-forming galaxies in the Fornax and Hydra clusters ? O. Vaduvescu1;2, C. Kehrig3, J. M. Vilchez4, and E. Unda-Sanzana2 1 Isaac Newton Group of Telescopes, Apto. 321, E-38700 Santa Cruz de la Palma, Canary Islands, Spain e-mail: [email protected] 2 Instituto de Astronom´ıa, Universidad Catolica´ del Norte, Avenida Angamos 0610, Antofagasta, Chile 3 Leibniz-Institut fur Astrophysik Postdam, innoFSPECPostdam, An der Sternwarte16, 14482 Postdam, Germany 4 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Apto. 3004, 18080, Granada, Spain Astronomy and Astrophysics 533, A65 (2011) ABSTRACT Context. The formation and evolution of dwarf galaxies is relatively difficult to understand because of their faint emission in all regimes that require large aperture telescopes. Aims. We intend to study the evolution of star forming dwarf galaxies in clusters. We selected Fornax and Hydra clusters to com- plement our previous study of Virgo. On the basis of available literature data, we selected ten star-forming candidates in Fornax and another ten objects in Hydra. Methods. We used Gemini South with GMOS to acquire Hα images necessary to detect star-forming regions in the two galaxy samples. We then performed long-slit spectroscopy for the brightest six candidates, to derive their chemical properties. Finally, we employed the VLT with HAWK-I to observe all galaxies in the K0 band to derive their main physical properties. Results. We studied the morphology of our two samples, finding five objects in Fornax and six in Hydra with structures consistent with those of star-forming dwarfs, i.e., dwarf irregulars (dIs) or blue compact dwarfs (BCDs). -
Clusters of Galaxy Hierarchical Structure the Universe Shows Range of Patterns of Structures on Decidedly Different Scales
Astronomy 218 Clusters of Galaxy Hierarchical Structure The Universe shows range of patterns of structures on decidedly different scales. Stars (typical diameter of d ~ 106 km) are found in gravitationally bound systems called star clusters (≲ 106 stars) and galaxies (106 ‒ 1012 stars). Galaxies (d ~ 10 kpc), composed of stars, star clusters, gas, dust and dark matter, are found in gravitationally bound systems called groups (< 50 galaxies) and clusters (50 ‒ 104 galaxies). Clusters (d ~ 1 Mpc), composed of galaxies, gas, and dark matter, are found in currently collapsing systems called superclusters. Superclusters (d ≲ 100 Mpc) are the largest known structures. The Local Group Three large spirals, the Milky Way Galaxy, Andromeda Galaxy(M31), and Triangulum Galaxy (M33) and their satellites make up the Local Group of galaxies. At least 45 galaxies are members of the Local Group, all within about 1 Mpc of the Milky Way. The mass of the Local Group is dominated by 11 11 10 M31 (7 × 10 M☉), MW (6 × 10 M☉), M33 (5 × 10 M☉) Virgo Cluster The nearest large cluster to the Local Group is the Virgo Cluster at a distance of 16 Mpc, has a width of ~2 Mpc though it is far from spherical. It covers 7° of the sky in the Constellations Virgo and Coma Berenices. Even these The 4 brightest very bright galaxies are giant galaxies are elliptical galaxies invisible to (M49, M60, M86 & the unaided M87). eye, mV ~ 9. Virgo Census The Virgo Cluster is loosely concentrated and irregularly shaped, making it fairly M88 M99 representative of the most M100 common class of clusters. -
Supernova Star Maps
Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova. -
A Systematic Search for X-Ray Cavities in Galaxy Clusters, Groups, and Elliptical Galaxies
DRAFT VERSION OCTOBER 13, 2016 Preprint typeset using LATEX style emulateapj v. 5/2/11 A SYSTEMATIC SEARCH FOR X-RAY CAVITIES IN GALAXY CLUSTERS, GROUPS, AND ELLIPTICAL GALAXIES ;y JAEJIN SHIN1,JONG-HAK WOO1 , AND JOHN S. MULCHAEY2 1Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, Republic of Korea 2Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA, 91101, USA Draft version October 13, 2016 ABSTRACT We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β-modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-ray center similar to previous studies (i.e., Bîrzan et al. 2004; Diehl et al. 2008; Dong et al. 2010). We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment. 1. INTRODUCTION 2009; Bae & Woo 2014; Woo et al. 2015). The empirical scaling relations between supermassive black In contrast, the radio mode feedback has been investigated holes (SMBHs) and their host galaxy properties imply the co- in more massive systems at much larger scales. -
University of Virginia Department of Astronomy Leander Mccormick Observatory Charlottesville, Virginia, 22903-0818 ͓S0002-7537͑95͒02201-3͔
1 University of Virginia Department of Astronomy Leander McCormick Observatory Charlottesville, Virginia, 22903-0818 ͓S0002-7537͑95͒02201-3͔ This report covers the period 1 September 2003 to 31 Theory, Long Term Space Astrophysics, Origins of Solar August 2004. Systems, and XMM programs, JPL, Chandra, Space Tele- scope Science Institute, and the NSF Stars/Stellar Systems 1. PERSONNEL and Gravitational Physics Programs. During this time the departmental teaching faculty con- sisted of Steven A. Balbus, Roger A. Chevalier, John F. 2. FACILITIES Hawley, Zhi-Yun Li, Steven R. Majewski, Edward M. The Leander McCormick Observatory with its 26-in Murphy, Robert W. O’Connell, Robert T. Rood, Craig L. Clark refractor on Mount Jefferson is now used exclusively Sarazin, William C. Saslaw, Michael F. Skrutskie, Trinh X. for education and public outreach. It is heavily used for both Thuan, Charles R. Tolbert, and D. Mark Whittle. our graduate and undergraduate courses. The Public Night Research scientists associated with the department were program has been expanded. During the year a plan to Gregory J. Black, Richard J. Patterson, P. Kenneth Seidel- greatly expand the education and public outreach program mann, Anne J. Verbiscer, John C. Wilson, and Kiriaki M. was initiated. This is described in § 4. Xilouris. The 0.7-m and the 1-m reflectors on Fan Mountain were Robert E. Johnson from Materials Science has his re- used during the year for our undergraduate majors and search group in planetary astronomy located within the de- graduate observational astronomy courses. A major upgrade partment. In retirement both Laurence W. Fredrick and of instrumentation is underway and is described in § 3.7. -
Thermal Instability in Gravitationally-Stratified Plasmas: Implications for Multi-Phase Structure in Clusters and Galaxy Halos
Mon. Not. R. Astron. Soc. 000, 000{000 (0000) Printed 5 December 2012 (MN LATEX style file v2.2) Thermal Instability in Gravitationally-Stratified Plasmas: Implications for Multi-Phase Structure in Clusters and Galaxy Halos Michael McCourt,1 Prateek Sharma,1,2 Eliot Quataert1 & Ian J. Parrish1 1Department of Astronomy and∗ Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720 2Einstein Fellow; Present Address: Department of Physics, Indian Institute of Science, Bangalore 560012, India Submitted to MNRAS, May 2011 ABSTRACT We study the interplay among cooling, heating, conduction, and magnetic fields in gravitationally-stratified plasmas using simplified, plane-parallel numerical simulations. Since the physical heating mechanism remains uncertain in massive halos such as groups or clusters, we adopt a simple, phenomenological prescription which enforces global thermal equilibrium and prevents a cooling-flow. The plasma remains susceptible to local thermal instability, however, and cooling drives an inward flow of material. For physically plausible heating mechanisms in clusters, the thermal stability of the plasma is independent of its convective stability. We find that the ratio of the cooling timescale to the dynamical timescale tcool=tff controls the non-linear evolution and saturation of the thermal instability: when tcool=tff . 1, the plasma develops extended multi-phase structure, whereas when tcool=tff & 1 it does not. (In a companion paper, we show that the criterion for thermal instability in a more realistic, spherical potential is somewhat less stringent, tcool=tff . 10.) When thermal conduction is anisotropic with respect to the magnetic field, the criterion for multi-phase gas is essentially independent of the thermal conductivity of the plasma.