Constellation Coloring Pages

Total Page:16

File Type:pdf, Size:1020Kb

Constellation Coloring Pages Constellation coloring pages OU Lynx Johann Bode, Uranographia (1801) Plate 6 (Ursa Major) Leo Minor the Little Lion, Ursa Major the Big Bear Plate 7 (Bootes) Bootes the Herdsman, Canes Venatici the Hunting Dogs, Coma Berenices the Hair of Berenice, Corona Borealis the Northern Crown, Mons Maenalus the Mountain, Quadrant Muralis the Mural Quadrant Plate 8 (Cygnus) Cygnus the Swan, Hercules, Lyra the Harp, Ramus Pomifer the Apple branch, Sagitta the Arrow, Vulpecula the Fox Plate 9 (Ophiuchus) Antinous the Servant, Aquila the Eagle, Ophiuchus the Snake Handler, Scutum the Shield, Serpens the Snake, The Bull of Poniatowski Plate 10 (Pegasus) Delphinus the Dolphin, Equuleus the Foal, Pegasus the Flying Horse Plate 12 (Orion and Taurus) Canis Minor the Little Dog, Gemini the Twins, Orion the Hunter, Psalterium Georgianum the Harp, Taurus the Bull Plate 14 (Virgo) Cauda Hydrae, Ears of wheat, Hydra the Water Snake, Libra the Balance, Virgo the Maiden Plate 15 (Sagittarius) Ara the Altar, Corona Australis the Southern Crown, Lupus the Wolf, Norma the Carpenter's Square, Scorpius the Scorpion, Tubus Herschelii Major the Telescope of Uranus Plate 17 (Cetus) Apparatus Chemicus, Cetus the Whale or Sea Monster, Eridanus the River, Fornax the Furnace, Machina Electrica the Electrostatic Generator, Sculptor the Sculptor's Workshop Plate 18 (Canis Major) Argo Navis, Caelum the Sculptor's Chisel, Canis Major the Big Dog, Caput Hydrum, Columba the Dove, Hydra the Water Snake, Lepus the Hare, Lochium Funis the Nautical Line of Argo Navis, Monoceros the Unicorn, Officina Typographica the Printing Press, Pyxis the Compass of Argo Navis Plate 19 (Hydra) Antlia the Air Pump, Argo Navis, Centaurus the Centaur, Corvus the Crow, Crater the Cup, Felis the Cat, Hydra the Water Snake Exhibit: Galileo’s World. Gallery: The Sky at Night. oulynx.org .
Recommended publications
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Lingva Latina
    HANS H. 0RBERG LINGVA LATINA PER SE ILLVSTRATA COLLOQV1APERSONARVM DOMVS LATINA ANNOMMV COLLOQV1APERSONAR� © Hans H. 0rberg 1998 Ornnia proprietatis iura reservantur Ex officina typographica Special-Trykkeriet Viborg anno 1998,2001,2005 Imagines delineavit Peer Lauritzen ISBN 87-997016-6-9 LINGVA LATINA PER SE ILLVSTRATA p ARS I: F AMILIA ROMANA PARS II: ROMA AETERNA INDICES GRAMMATICA LATINA EXERCITIA LATINA I & II COLLOQVIA PERSONARVM SERMONES ROMANI Plautus: AMPHITRYO COMOEDIA CATILINA. Sallustius & Cicero Caesar: DE BELLO GALLICO Petronius: CENA TRIMALCHIONIS Domus Latina, Skovvangen 7 DK-8500 Grenaa, Dania www.lingua-latina.dk AD DISCIPVLVM Colloquia quae hoc libro eontinentur legenda sunt post singula capitula eius libri cui titulus est FAMILIA ROMANA: Colloquium I post Capitulum I, Colloquium II post Capitulum II, item eetera. Diseipulus qui hune ordinem sequetur in legendo nullas dec1inationes sibi ignotas inveniet nee ulla voeabula nova praeter pauea quae illustrantur in marginibus paginarum aut per se intelleguntur. Itaque his amicorum Romanorum eolloquiis legendis discipulus studiosus res grammatieas neeessarias et voeabula Latina frequentissima, quae in ipsis eapitulis iam eognovit, etiam eertius diseet ac memoria retinebit. Hans H 0rberg Suavis autem est narratio quae habet colloquia personarum CICERO, Partitiones oratoriae 32 INDEX COLLOQVIORVM Colloquium I Miircus, lialii 7 Colloquium II Delia, Libanus 9 Colloquium III Delia, Syra, Aemilia, liilia lO Colloquium IV Syra, Diivus, liilius 12 Colloquium V liilius, Diivus, Medus
    [Show full text]
  • 1. Budorcas Taxicolor Tibetanus Milne-Edwards.- a Horn of an Adult and Skins and Skulls of Two Very Young Animals, Tai-Pa-Shiang, August 16 and October 25
    59.9(51.4) Article XXIX.- MAMMALS FROM SHEN-SI PROVINCE, CHINA. By J. A. ALLEN. A small collection of mammals from Mount Tai-pai, Shen-si Province, China, recently acquired by the Museum through Mr. Alan Owston of Yokohama, contains several species of interest. It comprises 55 specimens, representing 16 species, some of which appear to be undescribed. The material is rather poorly prepared, the skulls having been left in the skins, and when removed were found to be more or less mutilated, some of them lacking the whole of the postorbital portion. The collection is of interest as coming from a hitherto unexplored locality, the Tai-pa-shiang mountains, on the western border of Shen-si, which are said to reach an altitude of about 11,000 feet. The specimens are mostly labeled simply "Tai-pa- shiang," with the sex of the specimen and date of collection, but a few are labeled as from "Yumonko, foot of Tai-pa-shiang," and others are marked "Si-Tai-pa-shiang." In no case is the altitude indicated. 1. Budorcas taxicolor tibetanus Milne-Edwards.- A horn of an adult and skins and skulls of two very young animals, Tai-pa-shiang, August 16 and October 25. The two specimens are respectively male and female, and differ much in color, the male having the body, except the ventral surface and the dorsal stripe, pale yellowish, the dorsal stripe, the ventral surface and limbs dark dull reddish brown; top of nose and edge of ears blackish. The other has the body nearly white, with the underparts and limbs dark brown; the dorsal stripe is dark brown only over the shoulders, and black mixed with white on the top of the neck and posterior two-thirds of the dorsal line; black hairs are also appearing on the limbs.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • The Spitzer C2d Survey of Large, Nearby, Interstellar Clouds. IV
    Draft version October 24, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE SPITZER C2D SURVEY OF LARGE, NEARBY, INTERSTELLAR CLOUDS. IV. LUPUS OBSERVED WITH MIPS Nicholas L. Chapman1, Shih-Ping Lai1,2,3, Lee G. Mundy1, Neal J. Evans II4, Timothy Y. Brooke5, Lucas A. Cieza4, William J. Spiesman4, Luisa M. Rebull6, Karl R. Stapelfeldt7, Alberto Noriega-Crespo6, Lauranne Lanz1, Lori E. Allen8, Geoffrey A. Blake9, Tyler L. Bourke8, Paul M. Harvey4, Tracy L. Huard8, Jes K. Jørgensen8, David W. Koerner10, Philip C. Myers8, Deborah L. Padgett6, Annelia I. Sargent5, Peter Teuben1, Ewine F. van Dishoeck11, Zahed Wahhaj12, & Kaisa E. Young4,13 Draft version October 24, 2018 ABSTRACT We present maps of 7.78 square degrees of the Lupus molecular cloud complex at 24, 70, and 160µm. They were made with the Spitzer Space Telescope’s Multiband Imaging Photometer for Spitzer (MIPS) instrument as part of the Spitzer Legacy Program, “From Molecular Cores to Planet-Forming Disks” (c2d). The maps cover three separate regions in Lupus, denoted I, III, and IV. We discuss the c2d pipeline and how our data processing differs from it. We compare source counts in the three regions with two other data sets and predicted star counts from the Wainscoat model. This comparison shows the contribution from background galaxies in Lupus I. We also create two color magnitude diagrams using the 2MASS and MIPS data. From these results, we can identify background galaxies and distinguish them from probable young stellar objects. The sources in our catalogs are classified based on their spectral energy distribution (SED) from 2MASS and Spitzer wavelengths to create a sample of young stellar object candidates.
    [Show full text]
  • The Imperial Cult and the Individual
    THE IMPERIAL CULT AND THE INDIVIDUAL: THE NEGOTIATION OF AUGUSTUS' PRIVATE WORSHIP DURING HIS LIFETIME AT ROME _______________________________________ A Dissertation presented to the Faculty of the Department of Ancient Mediterranean Studies at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by CLAIRE McGRAW Dr. Dennis Trout, Dissertation Supervisor MAY 2019 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled THE IMPERIAL CULT AND THE INDIVIDUAL: THE NEGOTIATION OF AUGUSTUS' PRIVATE WORSHIP DURING HIS LIFETIME AT ROME presented by Claire McGraw, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. _______________________________________________ Professor Dennis Trout _______________________________________________ Professor Anatole Mori _______________________________________________ Professor Raymond Marks _______________________________________________ Professor Marcello Mogetta _______________________________________________ Professor Sean Gurd DEDICATION There are many people who deserve to be mentioned here, and I hope I have not forgotten anyone. I must begin with my family, Tom, Michael, Lisa, and Mom. Their love and support throughout this entire process have meant so much to me. I dedicate this project to my Mom especially; I must acknowledge that nearly every good thing I know and good decision I’ve made is because of her. She has (literally and figuratively) pushed me to achieve this dream. Mom has been my rock, my wall to lean upon, every single day. I love you, Mom. Tom, Michael, and Lisa have been the best siblings and sister-in-law. Tom thinks what I do is cool, and that means the world to a little sister.
    [Show full text]
  • The Multi-Messenger Discovery and Observation of a Binary Neutron Star
    The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 https://doi.org/10.3847/2041-8213/aa91c9 © 2017. The American Astronomical Society. All rights reserved. Multi-messenger Observations of a Binary Neutron Star Merger LIGO Scientific Collaboration and Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program),AST3, and CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, and NuSTAR Collaborations,Pan-STARRS,TheMAXITeam,TZACConsortium, KU Collaboration, Nordic Optical Telescope, ePESSTO, GROND, Texas Tech University, SALT Group, TOROS: Transient Robotic Observatory of the South Collaboration, The BOOTES Collaboration, MWA: Murchison Widefield Array, The CALET Collaboration, IKI-GW Follow-up Collaboration, H.E.S.S. Collaboration, LOFAR Collaboration, LWA: Long Wavelength Array, HAWC Collaboration, The Pierre Auger Collaboration, ALMA Collaboration, Euro VLBI Team, Pi of the Sky Collaboration, The Chandra Team at McGill University, DFN: Desert Fireball Network, ATLAS, High Time Resolution Universe Survey, RIMAS and RATIR, and SKA South Africa/MeerKAT (See the end matter for the full list of authors.) Received 2017 October 3; revised 2017 October 6; accepted 2017 October 6; published 2017 October 16 Abstract On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
    [Show full text]
  • Molecular Gas Content of Galaxies in the Hydra-Centaurus Supercluster
    MOLECULAR GAS CONTENT OF GALAXIES IN THE HYDRA-CENTAURUS SUPERCLUSTER W.K. Huchtmeier ™ ** <$ '"" & ^ O Max-Planck-Institut fiir Radioastronomie Auf dem Hugel 69 , 5300 Bonn 1 , W. Germany • Abstract A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(l-O) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(l-O) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster. The Hydra I cluster (Abell 1060) is one of the nearest clusters and very similar to the Virgo cluster in many global parameters like type, population, size, and shape. Both clusters have comparable velocity dispersions (i.e. total mass) and are spiral rich. Hydra is well isolated in velocity space and appears more circular (Kwast 1966), and might be dynamically more relaxed, although the center may contain significant substructures (Fitchett and Meritt 1988) or projected foreground groups. Both clusters contain low luminosity central X-ray sources. We assume a distance of 68.4 Mpc for Hydra I in order to allow direct comparison with some (nearly) complete galaxy samples. The Centaurus cluster provides a valuable contrast to Virgo and Coma. It is intermediate in distance and in galaxy population type with a relatively well defined SO-dominated core and an extensive S-rich halo. Its richness class in the Abell scale is 1 or 2 which is richer than Virgo and poorer than Coma.
    [Show full text]
  • Star Wheel Questions Set the Star Wheel for 9Pm on November 1St
    Star Wheel Questions Set the star wheel for 9pm on November 1st. the edges of the star window are where the sky meets the ground. This is called the horizon. 1. What constellation is near the northern horizon? (Ursa Major, Bootes) 2. What constellation is near the eastern horizon? (Orion, Eridanus) The center of the star wheel is the top of the sky, over your head. 3. Name two constellations that are near the top of the sky. (Cassiopeia, Cepheus, Andromeda) On the star wheel, bigger stars appear brighter in the sky. 4. Which constellation would be easier to see because it has more bright stars: Cassiopeia or Cepheus? (Cassiopeia) 5. Planets are not shown on the star wheel. Why not? (because they change positions over time) Now set the star wheel for midnight on March 15. 6. Where in the sky would you look to see Canis Major? (near the western horizon) 7. Look toward the east. What constellation is about halfway between the horizon and the top of the sky in the east? (Corona Borealis (best answer) also Hercules, Bootes) The lines connecting the stars give us an idea about which stars belong to a constellation, and offer a pattern for us to look for in the sky. Each star pattern is supposed to represent a person, object or animal. For instance, Leo is supposed to be a lion. You also may have noticed that some constellations are bigger than others. 8. What constellation in the southern sky is the largest? (Hydra) 9. What is a small constellation in the southern sky? (Corvus, Canis Minor) 10.
    [Show full text]
  • Multi-Messenger Observations of a Binary Neutron Star Merger
    DRAFT VERSION OCTOBER 6, 2017 Typeset using LATEX twocolumn style in AASTeX61 MULTI-MESSENGER OBSERVATIONS OF A BINARY NEUTRON STAR MERGER LIGO SCIENTIFIC COLLABORATION,VIRGO COLLABORATION AND PARTNER ASTRONOMY GROUPS (Dated: October 6, 2017) ABSTRACT On August 17, 2017 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB170817A) with a time-delay of 1.7swith respect to the merger ⇠ time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance +8 of 40 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range− 0.86 to 2.26 M . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT2017gfo) in NGC 4993 (at 40 Mpc) less ⇠ than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1-m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over 10 days. Following early non-detections, X-ray and radio emission were discovered at the ⇠ transient’s position 9 and 16 days, respectively, after the merger.
    [Show full text]
  • Using Herschel and Planck Observations to Delineate the Role of Magnetic Fields in Molecular Cloud Structure
    Astronomy & Astrophysics manuscript no. 35779arxiv c ESO 2019 September 12, 2019 Using Herschel and Planck observations to delineate the role of magnetic fields in molecular cloud structure Juan D. Soler1 1. Max Planck Institute for Astronomy, Konigstuhl¨ 17, 69117, Heidelberg, Germany. [email protected] Received 26 APR 2019 / Accepted 07 AUG 2019 ABSTRACT We present a study of the relative orientation between the magnetic field projected onto the plane of sky (B?) on scales down to 0.4 pc, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the distribution of gas column density (NH) structures on scales down to 0.026 pc, derived from the observations by Herschel in submillimeter wavelengths, toward ten nearby (d < 450 pc) molecular clouds. Using the histogram of relative orientation technique in combination with tools from circular statistics, we found that the mean relative orientation between NH and B? toward these regions increases progressively ◦ ◦ from 0 , where the NH structures lie mostly parallel to B?, with increasing NH, in many cases reaching 90 , where the NH structures lie mostly perpendicular to B?. We also compared the relative orientation between NH and B? and the distribution of NH, which is characterized by the slope of the tail of the NH probability density functions (PDFs). We found that the slopes of the NH PDF tail are steepest in regions where NH and B? are close to perpendicular. This coupling between the NH distribution and the magnetic field suggests that the magnetic fields play a significant role in structuring the interstellar medium in and around molecular clouds.
    [Show full text]