Recognition and Identification of Landslides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types of Landslides.Indd
Landslide Types and Processes andslides in the United States occur in all 50 States. The primary regions of landslide occurrence and potential are the coastal and mountainous areas of California, Oregon, Land Washington, the States comprising the intermountain west, and the mountainous and hilly regions of the Eastern United States. Alaska and Hawaii also experience all types of landslides. Landslides in the United States cause approximately $3.5 billion (year 2001 dollars) in dam- age, and kill between 25 and 50 people annually. Casualties in the United States are primar- ily caused by rockfalls, rock slides, and debris flows. Worldwide, landslides occur and cause thousands of casualties and billions in monetary losses annually. The information in this publication provides an introductory primer on understanding basic scientific facts about landslides—the different types of landslides, how they are initiated, and some basic information about how they can begin to be managed as a hazard. TYPES OF LANDSLIDES porate additional variables, such as the rate of movement and the water, air, or ice content of The term “landslide” describes a wide variety the landslide material. of processes that result in the downward and outward movement of slope-forming materials Although landslides are primarily associ- including rock, soil, artificial fill, or a com- ated with mountainous regions, they can bination of these. The materials may move also occur in areas of generally low relief. In by falling, toppling, sliding, spreading, or low-relief areas, landslides occur as cut-and- La Conchita, coastal area of southern Califor- flowing. Figure 1 shows a graphic illustration fill failures (roadway and building excava- nia. -
Mass Wasting and Landslides
Mass Wasting and Landslides Mass Wasting 1 Introduction Landslide and other ground failures posting substantial damage and loss of life In U.S., average 25–50 deaths; damage more than $3.5 billion For convenience, definition of landslide includes all forms of mass-wasting movements Landslide and subsidence: naturally occurred and affected by human activities Mass wasting Downslope movement of rock and soil debris under the influence of gravity Transportation of large masses of rock Very important kind of erosion 2 Mass wasting Gravity is the driving force of all mass wasting Effects of gravity on a rock lying on a hillslope 3 Boulder on a hillside Mass Movement Mass movements occur when the force of gravity exceeds the strength of the slope material Such an occurrence can be precipitated by slope-weakening events Earthquakes Floods Volcanic Activity Storms/Torrential rain Overloading the strength of the rock 4 Mass Movement Can be either slow (creep) or fast (landslides, debris flows, etc.) As terrain becomes more mountainous, the hazard increases In developed nations impacts of mass-wasting or landslides can result in millions of dollars of damage with some deaths In less developed nations damage is more extensive because of population density, lack of stringent zoning laws, scarcity of information and inadequate preparedness **We can’t always predict or prevent the occurrence of mass- wasting events, a knowledge of the processes and their relationship to local geology can lead to intelligent planning that will help -
Mass Movements General Anatomy
CE/SC 10110-20110: Planet Earth Mass Movements Earth Portrait of a Planet Fifth Edition Chapter 16 Mass movement (or mass wasting) is the downslope motion of rock, regolith (soil, sediment, and debris), snow, and ice. General Anatomy Discrete slump blocks Head scarp Bulging toe Road for scale Disaster in the Andes: Yungay, Peru, 1970 Fractures rock, loosens soil particles. Seismic energy overstresses the system. Yungay, Peru, in the Santa River Valley beneath the heavily glaciated Nevado Huascarán (21,860 feet). May, 1970, earthquake occurred offshore ~100 km away - triggered many small rock falls. An 800-meter-wide block of ice was dislodged and avalanched downhill, scooping out small lakes and breaking off large masses of rock debris. Disaster in the Andes: Yungay, Peru, 1970 More than 50 million cubic meters of muddy debris traveled 3.7 km (12,000 feet) vertically and 14.5 km (9 miles) horizontally in less than 4 minutes! Main mass of material traveled down a steep valley, blocking the Santa River and burying ~18,000 people in Ranrachirca. A small part shot up the valley wall, was momentarily airborne before burying the village of Yungay. Estimated death toll = 17,000. Disaster in the Andes: Yungay, Peru, 1970 Before After Whats Left of Yungay. Common Mass Movements Rockfalls and Slides Slow Fast Debris Flows Slumping Lahars and Mudflows Solifluction and Creep These different kinds of mass movements are arranged from slowest (left) to fastest (right). Types of Mass Movement Different types of mass movement based on 4 factors: 1) Type of material involved (rock, regolith, snow, ice); 2) Velocity of the movement (slow, intermediate, fast); 3) Character of the movement (chaotic cloud, slurry, coherent mass; 4) Environment (subaerial, submarine). -
Weathering, Erosion, and Mass-Wasting Processes
Weathering, Erosion, and Mass-Wasting Processes Designed to meet South Carolina Department of Education 2005 Science Academic Standards 1 Table of Contents (1 of 2) Definitions: Weathering, Erosion, and Mass-Wasting (slide 4) (Standards: 3-3.8 ; 5-3.1) Types of Weathering (slide 5) (Standards: 3-3.8 ; 5-3.1) Mechanical Weathering (slide 6) (Standards: 3-3.8 ; 5-3.1) Exfoliation (slide 7) (Standards: 3-3.8 ; 5-3.1) Frost Wedging (slide 8) (Standards: 3-3.8 ; 5-3.1) Temperature Change (slide 9) (Standards: 3-3.8 ; 5-3.1) Salt Wedging (slide 10) (Standards: 3-3.8 ; 5-3.1) Abrasion (slide 11) (Standards: 3-3.8 ; 5-3.1) Chemical Weathering (slide 12) (Standards: 3-3.8 ; 5-3.1) Carbonation (slide 13) (Standards: 3-3.8 ; 5-3.1) Hydrolysis (slide 14) (Standards: 3-3.8 ; 5-3.1) Hydration (slide 15) (Standards: 3-3.8 ; 5-3.1) Oxidation (slide 16) (Standards: 3-3.8 ; 5-3.1) Solution (slide 17) (Standards: 3-3.8 ; 5-3.1) Biological Weathering (slide 18) (Standards: 3-3.8 ; 5-3.1) Lichen, Algae, and Decaying Plants (slide 19) (Standards: 3-3.8 ; 5-3.1) Plant Roots (slide 20) (Standards: 3-3.8 ; 5-3.1) Organism Activity: Burrowing, Tunneling, and Acid Secreting Organisms (slide 21) (Standards: 3-3.8 ; 5-3.1) Differential Weathering (slide 22) (Standards: 3-3.8 ; 5-3.1) 2 Table of Contents, cont. (2 of 2) Types of Erosion (slide 23) (Standards: 3-3.8 ; 5-3.1) Fluvial (slide 24) (Standards: 3-3.8 ; 5-3.1) Aeolian (slide 25) (Standards: 3-3.8 ; 5-3.1) Ice: Glacial and Periglacial (slide 26) (Standards: 3-3.8 ; 5-3.1) Gravity (slide -
Alphabetical Glossary of Geomorphology
International Association of Geomorphologists Association Internationale des Géomorphologues ALPHABETICAL GLOSSARY OF GEOMORPHOLOGY Version 1.0 Prepared for the IAG by Andrew Goudie, July 2014 Suggestions for corrections and additions should be sent to [email protected] Abime A vertical shaft in karstic (limestone) areas Ablation The wasting and removal of material from a rock surface by weathering and erosion, or more specifically from a glacier surface by melting, erosion or calving Ablation till Glacial debris deposited when a glacier melts away Abrasion The mechanical wearing down, scraping, or grinding away of a rock surface by friction, ensuing from collision between particles during their transport in wind, ice, running water, waves or gravity. It is sometimes termed corrosion Abrasion notch An elongated cliff-base hollow (typically 1-2 m high and up to 3m recessed) cut out by abrasion, usually where breaking waves are armed with rock fragments Abrasion platform A smooth, seaward-sloping surface formed by abrasion, extending across a rocky shore and often continuing below low tide level as a broad, very gently sloping surface (plain of marine erosion) formed by long-continued abrasion Abrasion ramp A smooth, seaward-sloping segment formed by abrasion on a rocky shore, usually a few meters wide, close to the cliff base Abyss Either a deep part of the ocean or a ravine or deep gorge Abyssal hill A small hill that rises from the floor of an abyssal plain. They are the most abundant geomorphic structures on the planet Earth, covering more than 30% of the ocean floors Abyssal plain An underwater plain on the deep ocean floor, usually found at depths between 3000 and 6000 m. -
Landslide Types and Processes
Chapter Three Landslide Types and Processes David J. Varnes3 It is the purpose of this chapter to re- geology, and hence lie outside the prov- view the whole range of earth move- ince of the committee. ments that may properly be regarded as landslides and to classify these move- Types of Landslides ments according to factors that have some bearing on prevention or control. CLASSIFICATION As defined for use in this volume the term "landslide" denotes downward and Many classifications have already been outward movement of slope-forming ma- proposed for earth movements, based terials composed of natural rock, soils, variously on the kind of . material, type artificial fills, -or combinations of these of movement, causes, and many other materials. The moving mass may pro- factors. There are, in. fact, so many such ceed by any one of three principal types schemes embedded with varying degrees of movement: falling, sliding, or flowing, of firmness in geological and engineering or by their combinations. Parts of a literature that the committee has ap- landslide may move upward while other proached the question of a "new" classi- parts move downward. The lower limit fication with considerable misgivings. As of the rate of movement of landslide ma- Terzaghi has stated (1950, p. 88), "A terial is restricted in this book by the phenomenon involving such a multitude economic aspect to that actual or po- of combinations between materials and tential rate of movement which provokes disturbing agents opens unlimited vistas correction or maintenance. Normal sur- for the classification enthusiast. The re- ficial creep is excluded. -
Mass Wasting
Frank Press, Raymond Siever, John Grotzinger, and Thomas H. Jordan Mass Wasting Understanding Earth Process by which Fourth Edition material moves downslope under Chapter 12: Mass the force of gravity Wasting Copyright © 2004 by W. H. Freeman & Company 1 2 Factors Influencing Mass Movement Mass Movement is Classified on the Basis of: • Nature of slope materials • Nature of material • Steepness of slope • Velocity of movement • Water content • Nature of movement • Slope stability 3 4 Mass Movement Depends on Water Content 5 6 Water Content Lose of Steep slopes vegetations and in damp sand root systems maintained by increases moisture susceptibility of between soils to erosion grains and mass movement 7 8 Types of Rock Mass Movement • Rock fall • Rock slide • Rock avalanche 9 10 Rock Fall Rockfall in Zion National Park 11 12 Rockslide Rockslide The rapid movement of large blocks of detached bedrock sliding more or less as a unit 13 14 Rockslide Rock Avalanche The rapid* mass movement of broken rock material, often riding on a cushion of trapped air. Usually triggered b y an earthquake. *10’s to 100’s of km/hr 15 16 Rock Avalanches Triggered by an Rock Avalanche Earthquake (Nov. 3, 2002) in Alaska 17 18 Types of Unconsolidated Mass Creep Movement Unconsolidated Flows The downhill movement of soil and other debris, typically at rates of Creep about 1 to 10 mm/year Earth Flow Increased velocity Debris Flow Earth Flow 19 20 Evidence of Creep 21 22 Earthflow Earthflow A fluid movement of relatively fine‐ grained material, e.g. soil, weathered shale, and clay. -
The Northeastern Half of Ko'olau Volcano Has Slumped Into The
1 SOUTHEAST O‘AHU GEOLOGY FIELD TRIP GUIDE Scott K. Rowland (Hawai‘i Institute of Geophysics & Planetology) Michael O. Garcia (Department of Geology & Geophysics) UNIVERSITY OF HAWAI‘I AT MĀNOA 2 Above: Geologic map of O‘ahu, from Macdonald et al. (1983) This guide borrows from previous guides written by George Walker, Ralph Moberly, and Steve Self 1 INTRODUCTION This field trip will examine the geologic structure, history, and features of the southeastern part of Ko‘olau Volcano. Many of the original literature sources are difficult to find so we have tended to cite more recent compilations such as Volcanoes in the Sea (Macdonald et al. 1983). The Island of O‘ahu is constructed from two shield volcanoes, Wai‘anae and Ko‘olau (front inside cover; Figure 1). Both of these volcanoes were at one time at least the size that Kīlauea is today, and probably even larger (Figure 2). Wai‘anae is the older of the two (subaerial flows are ~3.9 to ~2.8 million years old; e.g., Presley et al. 1997) and makes Figure 1. Shaded relief image of O‘ahu. The dashed line approximates the boundary up the western part of O‘ahu. between Wai‘anae and Ko‘olau. Ko‘olau is younger and makes up the eastern part. Its subaerial shield flows are ~2.9 million to 2.1 million years old, and as we will see later, after these shield flows had been eroded for a considerable time, rejuvenated activity occurred, lasting until perhaps as recently as 30 to 50 thousand years ago. -
Chapter 4 Instability of Hawaiian Volcanoes
Characteristics of Hawaiian Volcanoes Editors: Michael P. Poland, Taeko Jane Takahashi, and Claire M. Landowski U.S. Geological Survey Professional Paper 1801, 2014 Chapter 4 Instability of Hawaiian Volcanoes By Roger P. Denlinger1 and Julia K. Morgan2 Abstract Hawaiian volcanoes build long rift zones and some as magma pressure gradients; from resisting forces that rapidly of the largest volcanic edifices on Earth. For the active diminish with slip, such as those arising from coupling of volcanoes on the Island of Hawai‘i, the growth of these rift pore pressure and dilatancy within décollement sediment; or, zones is upward and seaward and occurs through a repetitive from some interplay between driving and resisting forces that process of decades-long buildup of a magma-system produces flank motion. Our understanding of the processes of head along the rift zones, followed by rapid large-scale flank motion is limited by available data, though recent studies displacement of the seaward flank in seconds to minutes. have increased our ability to quantitatively address flank This large-scale flank movement, which may be rapid enough instability and associated hazards. to generate a large earthquake and tsunami, always causes subsidence along the coast, opening of the rift zone, and collapse of the magma-system head. If magma continues Introduction to flow into the conduit and out into the rift system, then the cycle of growth and collapse begins again. This pattern The southern end of the Hawaiian-Emperor volcanic chain characterizes currently active Kīlauea Volcano, where (fig. 1) includes some of the largest volcanoes on Earth. The periods of upward and seaward growth along rift zones were sheer size of these volcanoes is enabled by the development punctuated by large (>10 m) and rapid flank displacements in of long rift zones that extend outward from the summits for 1823, 1868, 1924, and 1975. -
Glossary of Geology
Glossary of Basic Geological Terms English term Czech term Explanation ablation ablace The process of decreasing of ice volume of a glacier. Synonym wastage. The grinding away of a rock by friction and impact during abrasion abraze transportation. Age given in years or some other unit of time (mostly in million of absolute age absolutní stáří years). Great fan-shaped deposit of sediment on the deep-sea floor at the base abyssal fan abysální dejekční kužel of many submarine canyons. Very flat sediment-covered region of the deep-sea floor, usually at the abyssal plain abysální rovina base of the continental rise. Rock-forming minerals which occur in a rock in a very small amount accessory minerals akcesorické minerály (several percents of mineral content) and which have no effect to classification of a rock. Igneous rocks with high amount of silica. They are macroscopically acid rocks kyselé vyvřelé horniny recognizable by high percentage of quartz, K-feldspars and/or acidic plagioclases. Glacier with a positive budget, so that accumulation results in the lower advancing glacier postupující ledovec (rostoucí) edges being pushed outward and downward. aftershock Small earthquake that follows a main shock. Kind of plagioclase (acidic) within the feldspar group with formula albite albit NaAlSi3O8. Its colour is light grey to grey. Other properties see feldspars. Clastic sediments or sedimentary rocks with size of particles between aleurites aleurity 0,002-0,063 mm. Minerals, which were transported from other place into a newly formed allothigenous minerals sediment. These minerals are highly resistent to weathering processes. Minerals of igneous rocks which crystallize as latest in a process of magma crystallization. -
PDF file in the Journal Format
ISSN 8755-6839 SCIENCE OF TSUNAMI HAZARDS The International Journal of The Tsunami Society Volume 20 Number 5 Published Electronically 2002 MODELING THE 1958 LITUYA BAY MEGA TSUNAMI, II 241 Charles L. Mader Los Alamos National Laboratory, Los Alamos, New Mexico USA Michael L. Gittings Science Applications International Corp., Los Alamos, New Mexico USA EVALUATION OF THE THREAT OF MEGA TSUNAMIS GENERATION FROM POSTULATED MASSIVE SLOPE FAILURES OF ISLAND STRATOVOLCANOES ON LA PALMA, CANARY ISLANDS, AND ON THE ISLAND OF HAWAII 251 George Pararas-Carayannis, Honolulu, Hawaii USA AN EXPERIMENTAL STUDY OF TSUNAMI RUNUP ON DRY AND WET HORIZONTAL COASTLINES 278 Hubert Chanson The University of Queensland, Brisbane, Australia Shin-ichi Aoki and Mamoru Maruyama Toyohashi University of Technology, Toyohashi, Japan copyright c 2002 THE TSUNAMI SOCIETY P. O. Box 37970, Honolulu, HI 96817, USA WWW.STHJOURNAL.ORG OBJECTIVE: The Tsunami Society publishes this journal to increase and disseminate knowledge about tsunamis and their hazards. DISCLAIMER: Although these articles have been technically reviewed by peers, The Tsunami Society is not responsible for the veracity of any state- ment, opinion or consequences. EDITORIAL STAFF Dr. Charles Mader, Editor Mader Consulting Co. 1049 Kamehame Dr., Honolulu, HI. 96825-2860, USA EDITORIAL BOARD Mr. George Curtis, University of Hawaii - Hilo Dr. Zygmunt Kowalik, University of Alaska Dr. Tad S. Murty, Baird and Associates - Ottawa Dr. Yurii Shokin, Novosibirsk Mr. Thomas Sokolowski, Alaska Tsunami Warning Center Professor Stefano Tinti, University of Bologna TSUNAMI SOCIETY OFFICERS Dr. Barbara H. Keating, President Dr. Tad S. Murty, Vice President Dr. Charles McCreery, Secretary Dr. Laura Kong, Treasurer Submit manuscripts of articles, notes or letters to the Editor. -
1 Papa`U Seamount and the Hilina Slump: Slope Failure and Volcanic Spreading Along the Mobile South Flank of Kilauea Volcano, HI
1 Papa`u Seamount and the Hilina Slump: Slope Failure and Volcanic Spreading Along the Mobile South Flank of Kilauea Volcano, HI Julia K. Morgan Department of Earth Science, Rice University, Houston, TX 77005 Gregory F. Moore Department of Geology and Geophysics, SOEST, University of Hawaii, Honolulu, HI 96822 David A. Clague Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039 (Revised, submitted to Journal of Geophysical Research, April 21 2003) 2 Abstract New multichannel reflection data and high-resolution bathymetry over the submarine slopes of Kilauea volcano provide evidence for current and prior landsliding, suggesting a dynamic interplay among slope failure, regrowth, and volcanic spreading. Disrupted strata along the upper reaches of Kilauea’s flank denote a coherent slump, correlated with the active Hilina slump. The slump comprises mostly slope sediments, underlain by a detachment 3-5 km deep. Extension and subsidence along the upper flank is compensated by uplift and folding of the slump toe, which surfaces about midway down the submarine flank. Uplift of strata forming Papa`u seamount, and offset of surface features along the western boundary of Kilauea, indicate that the slump has been displaced ~3 km in a south-southeast direction. This trajectory matches co-seismic and continuous ground displacements for the Hilina slump block on-land, and contrasts with the southeast vergence of the rest of the creeping south flank. To the northeast, slope sediments are thinned and disrupted within a recessed region of the central flank, demonstrating catastrophic slope failure in the recent past. Debris from the collapsed flank was shed into the moat in front of Kilauea, building an extensive apron.