A Mallow Maelstrom of Genome Multiplications and Maybe Misleading Methods? Justin L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Composition and Physiological Effects of Sterculia Colorata Components
Chemical Composition and Physiological Effects of Sterculia colorata Components A Project Submitted By Samia Tabassum ID: 14146042 Session: Spring 2014 To The Department of Pharmacy in Partial Fulfillment of the Requirements for the Degree of Bachelor of Pharmacy Dhaka, Bangladesh September, 2018 Dedicated to my family, for always giving me unconditional love and support. Certification Statement This is to corroborate that, this project work titled ‘Chemical composition and Physiological effects of Sterculia colorata components’ proffered for the partial attainment of the requirements for the degree of Bachelor of Pharmacy (Hons.) from the Department of Pharmacy, BRAC University, comprises my own work under the guidance andsupervision of Dr. Mohd. Raeed Jamiruddin, Assistant Professor, Department of Pharmacy, BRAC University and this project work is the result of the author’s original research and has not priorly been submitted for a degree or diploma in any university. To the best of my insight and conviction, the project contains no material already distributed or composed by someone else aside from where due reference is made in the project paper itself. Signed, __________________________ Countersigned by the supervisor, __________________________ Acknowledgement I would like to express my gratitude towards Dr. Mohd. Raeed Jamiruddin, Assistant Professor of Pharmacy Department, BRAC University for giving me guidance and consistent support since the initiating day of this project work. As a person, he has inspired me with his knowledge on phytochemistry, which made me more eager about the project work when it began. Furthermore, I might want to offer my thanks towards him for his unflinching patience at all phases of the work. -
Gypsy Moth CP
INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Gypsy moth (Asian and European strains) Lymantria dispar dispar Plant Health Australia December 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Asian and European gypsy moth (Lymantria dispar dispar) 1 Purpose and background of this contingency plan .............................................................. 5 2 Australian nursery industry .................................................................................................... 5 3 Eradication or containment determination ............................................................................ 6 4 Pest information/status .......................................................................................................... -
Novitates Neocaledonicae VI: Acropogon Mesophilus (Malvaceae, Sterculioideae), a Rare and Threatened New Species from the Mesic Forest of New Caledonia
Phytotaxa 307 (3): 183–190 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.307.3.2 Novitates neocaledonicae VI: Acropogon mesophilus (Malvaceae, Sterculioideae), a rare and threatened new species from the mesic forest of New Caledonia JÉRÔME MUNZINGER1 & GILDAS GÂTEBLÉ2 1AMAP, IRD, CNRS, INRA, Université Montpellier, F-34000 Montpellier (France). email: [email protected] 2Institut Agronomique néo-Calédonien (IAC), Station de Recherche Agronomique de Saint-Louis, BP 711, 98810 Mont-Dore (Nouvelle- Calédonie). E-mail: [email protected] Abstract A new species, Acropogon mesophilus Munzinger & Gâteblé (Malvaceae, Sterculioideae), is described from New Caledo- nia. This species is endemic to non-ultramafic areas, along the southwestern coast of Grande-Terre. The species has large leaves, widely ovate to ovate, and entire, and might be confused with only two other endemic species, namely A. bullatus (Pancher & Sebert) Morat and A. veillonii Morat. However, A. mesophilus differs from the other two species most evidently by its leaves 3-nerved, flat, and with truncate to rounded bases, versus leaves 5-nerved, bullate, and with cordate bases. A line drawing and color photos are provided for the new species, along with a discussion of its morphological affinities and a preliminary risk of extinction assessment of Endangered. Keywords: Acropogon, Malvaceae, mesic forest, New Caledonia, new species, Sterculioideae, taxonomy, threatened species Introduction Forests in New Caledonia are currently more or less arbitrarily divided into sclerophyll (or dry) and dense humid forests, the latter being further separated into two main types depending on edaphic conditions, i.e., on ultramafic versus non-ultramafic substrate (Jaffré et al. -
Asian Pacific Journal of Tropical Disease
Asian Pac J Trop Dis 2016; 6(6): 492-501 492 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Disease journal homepage: www.elsevier.com/locate/apjtd Review article doi: 10.1016/S2222-1808(16)61075-7 ©2016 by the Asian Pacific Journal of Tropical Disease. All rights reserved. Phytochemistry, biological activities and economical uses of the genus Sterculia and the related genera: A reveiw Moshera Mohamed El-Sherei1, Alia Yassin Ragheb2*, Mona El Said Kassem2, Mona Mohamed Marzouk2*, Salwa Ali Mosharrafa2, Nabiel Abdel Megied Saleh2 1Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt 2Department of Phytochemistry and Plant Systematics, National Research Centre, 33 El Bohouth St., Dokki, Giza, Egypt ARTICLE INFO ABSTRACT Article history: The genus Sterculia is represented by 200 species which are widespread mainly in tropical and Received 22 Mar 2016 subtropical regions. Some of the Sterculia species are classified under different genera based Received in revised form 5 Apr 2016 on special morphological features. These are Pterygota Schott & Endl., Firmiana Marsili, Accepted 20 May 2016 Brachychiton Schott & Endl., Hildegardia Schott & Endl., Pterocymbium R.Br. and Scaphium Available online 21 Jun 2016 Schott & Endl. The genus Sterculia and the related genera contain mainly flavonoids, whereas terpenoids, phenolic acids, phenylpropanoids, alkaloids, and other types of compounds including sugars, fatty acids, lignans and lignins are of less distribution. The biological activities such as antioxidant, anti-inflammatory, antimicrobial and cytotoxic activities have Keywords: been reported for several species of the genus. On the other hand, there is confusion on the Sterculia Pterygota systematic position and classification of the genus Sterculia. -
Strategies for the Eradication Or Control of Gypsy Moth in New Zealand
Strategies for the eradication or control of gypsy moth in New Zealand Travis R. Glare1, Patrick J. Walsh2*, Malcolm Kay3 and Nigel D. Barlow1 1 AgResearch, PO Box 60, Lincoln, New Zealand 2 Forest Research Associates, Rotorua (*current address Galway-Mayo Institute of Technology, Dublin Road, Galway, Republic of Ireland) 3Forest Research, Private Bag 3020, Rotorua Efforts to remove gypsy moth from an elm, Malden, MA, circa 1891 May 2003 STATEMENT OF PURPOSE The aim of the report is to provide background information that can contribute to developing strategies for control of gypsy moth. This is not a contingency plan, but a document summarising the data collected over a two year FRST-funded programme on biological control options for gypsy moth relevant to New Zealand, completed in 1998 and subsequent research on palatability of New Zealand flora to gypsy moth. It is mainly aimed at discussing control options. It should assist with rapidly developing a contingency plan for gypsy moth in the case of pest incursion. Abbreviations GM gypsy moth AGM Asian gypsy moth NAGM North America gypsy moth EGM European gypsy moth Bt Bacillus thuringiensis Btk Bacillus thuringiensis kurstaki MAF New Zealand Ministry of Agriculture and Forestry MOF New Zealand Ministry of Forestry (defunct, now part of MAF) NPV nucleopolyhedrovirus LdNPV Lymantria dispar nucleopolyhedrovirus NZ New Zealand PAM Painted apple moth, Teia anartoides FR Forest Research PIB Polyhedral inclusion bodies Strategies for Asian gypsy moth eradication or control in New Zealand page 2 SUMMARY Gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae), poses a major threat to New Zealand forests. It is known to attack over 500 plant species and has caused massive damage to forests in many countries in the northern hemisphere. -
Screening of Medicinal and Edible Plants in Okinawa, Japan, for Enhanced Proliferative and Collagen Synthesis Activities in NB1RGB Human Skin Fibroblast Cells
Biosci. Biotechnol. Biochem., 76 (12), 2317–2320, 2012 Note Screening of Medicinal and Edible Plants in Okinawa, Japan, for Enhanced Proliferative and Collagen Synthesis Activities in NB1RGB Human Skin Fibroblast Cells y Makoto TAKAHASHI,1 Yonathan ASIKIN,2 Kensaku TAKARA,1 and Koji WADA1; 1Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan 2Course of Biochemistry and Applied Bioscience, United Graduate School of Agricultural Science, Kagoshima University, Kagoshima 890-0065, Japan Received June 21, 2012; Accepted August 21, 2012; Online Publication, December 7, 2012 [doi:10.1271/bbb.120478] To identify plants with bioactive potential for skin survey the additional medicinal characteristics of these care, methanol extracts of 56 plant parts from 47 plants, we evaluated the effects of the Okinawan plant medical and edible plants cultivated in Okinawa were extracts on cell proliferation and type I collagen syn- tested for their proliferative effects on NB1RGB skin thesis in human skin cell lines. fibroblast cells. Extracts from six plants, Bischofia A total of 56 plant parts from 47 species collected javanica, Colocasia esculenta, Melaleuca alternifolia, from the University of Ryukyus campus (Okinawa, Piper angustifolia, Jasminum sambac, and Curcuma Japan) are listed in Table 1. Each dried plant part (2 g) longa, showed higher NB1RGB cell proliferation activ- was ground using a mini-grinder (Model DF-15, ity (>10%) than the control, at various concentrations. Shenzhen Laitong Co., Shenzhen, China), and then Among the six extracts, only the C. longa extract caused soaked in 20 mL of methanol at room temperature for an increase in collagen synthesis in NB1RGB cells, as 24 h. -
Download This PDF File
[VOL. 4 REINWARDTIA REINWARDTIA 280 Published by Herbarium Bogoriense, Kebun Raya Indonesia Volume 4, Part. 2, pp. 281-310 (1957) caudatus Copel. 270; habbemensis 272; pteridifolia PresL 276; truneata Copel. 268; hirtus var. candidus Nakai Willd. 261, 271. 269, var. virescens Nakai 270; lami- Platyzoma R. Br. 257. anus Copel. 269; myriapoda Nakai 271; Polypodium dichotovvum Thunb. 261, 277; perpaleaceus Copel. 272; pinnatus Co- THE GENUS FIRMIANA MARSILI (Sterculiaceae) glaucum, Thunb. 261; lineare Burm. pel. 267, 270; jmlcher Copel. 271. 261, 275. Stromatopteris Mett. 257, 260, 261; mo- A. J. G. H. KOSTERMANS * niliformis Mett. 261. Subfam. Sticherioideae Nakai 260. Subfam. Stromatopteroideae Nakai 261. Sticherus Presl 258, 259, 260, 261, 266; SUMMARY 1. Firmiana Marsili and Erythropsis Lindley are congeneric. 2. Firmiana Marsili links Sterculia L. and Scaphium Schott & Endl. 3. Eight species are recognized: Firmiana eolorata (Roxb.) R. Br.; F. diversifolia A. Gray; F. fidgens (Wall, ex King) Corner; F. hainanensis Kosterm.; F. major Hand.-Mazz.; F. papuana Mildbr.; F. philippinensis Kosterm.; F. simplex (L.) W. F. Wight. 4. Seventeen binomials are referred to other genera. While a paper on Firmiana was in the press, I received some addition- al, important information from the Kew Herbarium and from Mr. J. E. Dandy of the British Museum. These "Additional Notes" were placed at. ADDENDUM the end of the article. In a subsequent letter that reached me when the article already had In Gleichenia subgenus Diplopterygium the following species must been printed and issued**, the problem of Firmiana simplex was solved, be placed: thanks to the tenacity of Mr. Dandy. Moreover, F. -
The Tree How to Identify a Linden (Tilia Spp.) the Pesticides the Pest
The Tree Tilia cordata, the Littleleaf Linden tree is native to Europe. It has been at the center of several bumble bee kills in Oregon. T. cordata often produces more flowers than other linden trees. It also produces mannose in its nectar that may be slightly toxic. Many native bees and wasps do not have the enzyme to break down mannose. European honey bees, Apis mellifera, do not appear to be as affected by mannose; at least one theory is that because they are from Europe, they share a developmental history with T. cordata. In general, linden trees have few pest problems; aphids are listed as one of the only insect pests of Tilia trees. Tilia leaf comparison How to Identify a Linden (Tilia spp.) DURING THE WINTER/DORMANT SEASON: 1. Bark is gray-brown and on mature trees is ridged or plated. 2. Twigs are light brown to gray, or may be red-tinged. 3. Buds are prominent, single, plump and often bulge on one side, and are red-brown to dark red in color. 4. Floral bracts and fruit may remain on the tree through winter. DURING THE GROWING SEASON: 1. Leaves are singular, alternate, heart-shaped, finely toothed, and the undersides of leaves often are fuzzy. Leaves at the stem end are asymmetrically attached to the stem. 2. Flowers are attached by floral bract that is 2-to-4 inches long. White to yellow flowers with five petals in hanging clusters of five-to-seven bloom in mid-June or early July. Flowers are fragrant and highly attractive to pollinators. -
Chinaxiv:202107.00062V1 中图分类号:Q949 文献标识码:A
ChinaXiv合作期刊 利用叶绿体基因组数据解析锦葵科梧桐亚科的系统位置和 属间关系 黎若竹 1,2,蔡杰 3,杨俊波 3,张志荣 3,李德铢 3,郁文彬 1,4,5* (1. 中国科学院西双版纳热带植物园 综合保护中心,云南 勐腊 666303;2. 中国科学院大 学,北京 100049; 3. 中国科学院昆明植物研究所 中国西南野生生物种质资源库,昆明 650201; 4. 中国科学院核心植物园保护生物学协同中心,云南 勐腊 666303;5. 中国科学 院东南亚生物多样性研究中心,云南 勐腊 666303) 摘 要:分子系统学研究将传统梧桐科与锦葵科、木棉科和椴树科合并为广义锦葵科,并进 一步分为 9 个亚科。然而,9 个亚科之间的关系尚未完全明确,且梧桐亚科内的属间关系也 未得到解决。为了明确梧桐亚科在锦葵科中的系统发育位置,厘清梧桐亚科内部属间系统发 育关系,该研究对锦葵科 8 个亚科进行取样,共选取 55 个样本,基于叶绿体基因组数据, 采用最大似然法和贝叶斯分析构建系统发育树。结果表明:(1)广义锦葵科中,刺果藤亚科 和扁担杆亚科组成 Byttneriina 分支,Malvadendrina 分支中山芝麻亚科为其他亚科的姐妹群, 随后分出梧桐亚科(WCG、LSC 和 SSC 矩阵构成的数据集),以及 Malvatheca 分支(木棉 亚科和锦葵亚科)与非洲芙蓉亚科-椴树亚科的姐妹关系;(2)在梧桐亚科中,可乐果属分 支( Cola clade)是独立一支,随后是酒瓶树属分支(Brachychiton clade)与 苹 婆 属( Sterculia clade)+ 银叶树属分支(Heritiera clade)形成姐妹关系(WCG、LSC 和 CDS 矩阵);(3) 在可乐果属分支(Cola clade)中,可乐果属等为梧桐属(含闭果桐属)和胖大海属+舟翅桐 属的姐妹群。该研究基于叶绿基因组数据基本澄清了广义锦葵科的亚科系统关系以及梧桐亚 科内各属关系,系统发育树框架基本明晰,但梧桐亚科在 Malvadendrina 分支的位置和酒瓶 树属在梧桐亚科的位置,以 及 梧桐属的概念及范围仍需进一步研究,尤其是结合核基因组数 据进行分析。 关键词:梧桐亚科,梧桐属,锦葵科,系统发育基因组,叶绿体基因组 chinaXiv:202107.00062v1 中图分类号:Q949 文献标识码:A 收稿日期:2021-03-24 基金项目:中国科学院重大科技基础设施开放研究项目(2017-LSF-GBOWS-02);云南省万人计划“青年 拔尖人才”[Supported by the Large-scale Scientific Facilities of the Chinese Academy of Sciences (No. 2017-LSF-GBOWS-02); Ten Thousand Talents Program of Yunnan for Top‐notch Young Talents.]。 作者简介:黎若竹(1996- ),硕士研究生,主要研究方向为保护生物学,(E-mail)[email protected]。 *通讯作者:郁文彬,博士,研究员,研究方向为植物系统演化,(E-mail)[email protected]。 1 ChinaXiv合作期刊 Plastid phylogenomics resolving phylogenetic placement and genera phylogeny of Sterculioideae (Malvaceae s. l.) LI Ruozhu1,2, CAI Jie3, YANG Junbo3, ZHANG Zhirong3, LI Dezhu3, YU Wenbin1,4,5* (1. Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China; 2. -
Foliar and Petiole Anatomy of Pterygota (Sterculioideae; Malvaceae) Species and Their Distribution in Nigeria
Anales de Biología 39: 103-109, 2017 ARTICLE DOI: http://dx.doi.org/10.6018/analesbio.39.12 Foliar and petiole anatomy of Pterygota (Sterculioideae; Malvaceae) species and their distribution in Nigeria Emmanuel Chukwudi Chukwuma, Luke Temitope Soyewo, Tolulope Fisayo Okanlawon & Omokafe Alaba Ugbogu Forest Herbarium Ibadan (FHI), Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Oyo State, Nigeria. Resumen Correspondence Anatomía foliar y del peciolo de especies de Pterigota EC. Chukwuma (Sterculioideae; Malvaceae) E-mail: [email protected] Se estudió la anatomía foliar y del peciolo de especies de Pterygo- Received: 18 February 2017 ta de Nigeria, proveyendo información sobre su distribución en el Accepted: 26 April 2017 área. Principalmente están distribuidas por el sur de Nigeria, espe- Published on-line: 22 June 2017 cialmente en zonas más húmedas. Los microcaracteres foliares muestran que las especies son hiposteomátcas y generalmente paracíticas, más abundantes en P. berquaertii, con un promedio de 115/mm2, que en P. macrocarpa, con 59/mm². Las células epidér- micas son irregulares, rectangulares y poligonales. El peciolo esfé- rico con epidermis uniseriada; la distribución celular varia desde solitarias a radiales múltiples. Este estudio ha proporcionado im- portante información sobre las especies indígenas. Son necesarios estudios posteriores para comprender grado y tiempo de evolución independiente de las especies en Nigeria. Palabras clave: Pterygota, Taxonomía, Foliar, Peciolo, Micro- morfología, Conservación. Abstract Leaf and petiole anatomy of Pterygota species in Nigeria were studied and their distribution within the area is also reported, follow- ing outlined standard protocols. They are chiefly distributed in Southern Nigeria especially in wetter areas. -
Department of the Interior
Vol. 79 Wednesday, No. 190 October 1, 2014 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Proposed Endangered Status for 21 Species and Proposed Threatened Status for 2 Species in Guam and the Commonwealth of the Northern Mariana Islands; Proposed Rule VerDate Sep<11>2014 17:56 Sep 30, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\01OCP2.SGM 01OCP2 mstockstill on DSK4VPTVN1PROD with PROPOSALS2 59364 Federal Register / Vol. 79, No. 190 / Wednesday, October 1, 2014 / Proposed Rules DEPARTMENT OF THE INTERIOR ES–2014–0038; Division of Policy and butterfly (Hypolimnas octocula Directives Management; U.S. Fish & mariannensis; NCN), the Mariana Fish and Wildlife Service Wildlife Headquarters, MS: BPHC, 5275 wandering butterfly (Vagrans egistina; Leesburg Pike, Falls Church, VA 22041– NCN), the Rota blue damselfly (Ischnura 50 CFR Part 17 3803. luta; NCN), the fragile tree snail [Docket No. FWS–R1–ES–2014–0038: We request that you send comments (Samoana fragilis; akaleha), the Guam 4500030113] only by the methods described above. tree snail (Partula radiolata; akaleha), We will post all comments on http:// the humped tree snail (Partula gibba; www.regulations.gov. This generally akaleha), and Langford’s tree snail RIN 1018–BA13 means that we will post any personal (Partula langfordi; akaleha)). Two plant species (Cycas micronesica (fadang) and Endangered and Threatened Wildlife information you provide us (see Public Tabernaemontana rotensis (NCN)) are and Plants; Proposed Endangered Comments below for more information). proposed for listing as threatened Status for 21 Species and Proposed FOR FURTHER INFORMATION CONTACT: species. -
310–312. 2007. 3. FIRMIANA Marsili in Saggi Sci. Lett. Accad. Padova 1
Flora of China 12: 310–312. 2007. 3. FIRMIANA Marsili in Saggi Sci. Lett. Accad. Padova 1: 114, 116. 1786. 梧桐属 wu tong shu Erythropsis Lindley ex Schott & Endlicher; Karaka Rafinesque. Trees or shrubs, deciduous. Leaves simple, palmately 3–5-lobed or entire. Inflorescence paniculate or rarely racemose, axillary or terminal. Flowers unisexual or polygamous, sometimes appearing before leaves. Calyx orange-red or golden, funnel-shaped or cylindrical, (4 or)5-lobed or -partite, lobes short or divided nearly to base, reflexed. Petals absent. Male flowers: stamens 10–20, in capitate cluster at apex of androgynophore; anther 2-celled, anther cells curved; undeveloped pistil present. Female flowers: ovary 5- locular, ovoid or globose, basally enclosed by undeveloped anthers; styles basally connate; stigmas as many as carpels; ovules 2 to many per locule. Follicles stipitate, endocarp membranous, dehiscent long before maturity, foliaceous. Seeds 1 to many per follicle, on inner margin of foliaceous endocarp, globose, endosperm flat or plicate; cotyledons flat, very thin. About 16 species: tropical, subtropical, and temperate Asia; seven species (five endemic) in China. The relationship between Firmiana and Hildegardia Schott & Endlicher is unresolved. Kostermans (Reinwardtia 4: 281–310. 1957) used a follicle character, dehiscence vs. indehiscence, to separate the two genera. Molecular data, based on limited sampling, support a division based on floral characters, especially relating to calyx morphology, but there are unpublished molecular data that suggest that Firmiana and Hildegardia may not be distinct. Firmiana is the older of the two names. 1a. Flowering when leafless; calyx lobes much shorter than tube. 2a. Base of leaf blade deeply cordate, apex obtuse; calyx funnel-shaped, base nearly cuneate .................................