Studies on Fractionalization and Topology in Strongly Correlated Systems from Zero to Two Dimensions Yichen Hu University of Pennsylvania, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Order in Physics
The Himalayan Physics Vol. 6 & 7, April 2017 (108-111) ISSN 2542-2545 Topological Order in Physics Ravi Karki Department of Physics, Prithvi Narayan Campus, Pokhara Email: [email protected] Abstract : In general, we know that there are four states of matter solid, liquid, gas and plasma. But there are much more states of matter. For e. g. there are ferromagnetic states of matter as revealed by the phenomenon of magnetization and superfluid states defined by the phenomenon of zero viscosity. The various phases in our colorful world are so rich that it is amazing that they can be understood systematically by the symmetry breaking theory of Landau. Topological phenomena define the topological order at macroscopic level. Topological order need new mathematical framework to describe it. More recently it is found that at microscopic level topological order is due to the long range quantum entanglement, just like the fermions fluid is due to the fermion-pair condensation. Long range quantum entanglement leads to many amazing emergent phenomena, such as fractional quantum numbers, non- Abelian statistics ad perfect conducting boundary channels. It can even provide a unified origin of light and electron i.e. gauge interactions and Fermi statistics. Light waves (gauge fields) are fluctuations of long range entanglement and electron (fermion) are defect of long range entanglements. Keywords: Topological order, degeneracy, Landau-symmetry, chiral spin state, string-net condensation, quantum glassiness, chern number, non-abelian statistics, fractional statistics. 1. INTRODUCTION 2. BACKGROUND In physics, topological order is a kind of order in zero- Although all matter is formed by atoms , matter can have temperature phase of matter also known as quantum matter. -
Arxiv:2007.11161V3 [Cond-Mat.Str-El] 13 Mar 2021
Topological phase transition and single/multi anyon dynamics of /2 spin liquid Zheng Yan,1 Yan-Cheng Wang,2 Nvsen Ma,3 Yang Qi,4, 5, 6, ∗ and Zi Yang Meng1, y 1Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong 2School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China 3School of Physics, Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Beihang University, Beijing 100191, China 4State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China 5Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China 6Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China Among the quantum many-body models that host anyon excitation and topological orders, quantum dimer models (QDM) provide a unique playground for studying the relation between single-anyon and multi-anyon continuum spectra. However, as the prototypical correlated system with local constraints, the generic solution of QDM at different lattice geometry and parameter regimes is still missing due to the lack of controlled methodologies. Here we obtain, via the newly developed sweeping cluster quantum Monte Carlo algorithm, the excitation spectra in different phases of the triangular lattice QDM. Our resultsp revealp the single vison excitations inside the /2 quantum spin liquid (QSL) and its condensation towards the 12 × 12 valence bond solid (VBS), and demonstrate the translational symmetry fractionalization and emergent O(4) symmetry at the QSL-VBS transition. We find the single vison excitations, whose convolution qualitatively reproduces the dimer spectra, are not free but subject to interaction effects throughout the transition. -
Nano Boubles and More … Talk
NanoNano boublesboubles andand moremore ……Talk Jan Zaanen 1 The Hitchhikers Guide to the Scientific Universe $14.99 Amazon.com Working title: ‘no strings attached’ 2 Nano boubles Boubles = Nano = This Meeting ?? 3 Year Round X-mas Shops 4 Nano boubles 5 Nano HOAX Nanobot = Mechanical machine Mechanical machines need RIGIDITY RIGIDITY = EMERGENT = absent on nanoscale 6 Cash 7 Correlation boubles … 8 Freshly tenured … 9 Meaningful meeting Compliments to organizers: Interdisciplinary with focus and a good taste! Compliments to the speakers: Review order well executed! 10 Big Picture Correlated Cuprates, Manganites, Organics, 2-DEG MIT “Competing Phases” “Intrinsic Glassiness” Semiconductors DMS Spin Hall Specials Ruthenates (Honerkamp ?), Kondo dots, Brazovksi… 11 Cross fertilization: semiconductors to correlated Bossing experimentalists around: these semiconductor devices are ingenious!! Pushing domain walls around (Ohno) Spin transport (spin Hall, Schliemann) -- somehow great potential in correlated … Personal highlight: Mannhart, Okamoto ! Devices <=> interfaces: lots of correlated life!! 12 Cross fertilization: correlated to semiconductors Inhomogeneity !! Theorists be aware, it is elusive … Go out and have a look: STM (Koenraad, Yazdani) Good or bad for the holy grail (high Tc)?? Joe Moore: Tc can go up by having high Tc island in a low Tc sea Resistance maximum at Tc: Lesson of manganites: big peak requires large scale electronic reorganization. 13 More resistance maximum Where are the polarons in GaMnAs ??? Zarand: strong disorder, large scale stuff, but Anderson localization at high T ?? Manganites: low T degenerate Fermi-liquid to high T classical (polaron) liquid Easily picked up by Thermopower (Palstra et al 1995): S(classical liquid) = 1000 * S(Fermi liquid) 14 Competing orders First order transition + Coulomb frustration + more difficult stuff ==> (dynamical) inhomogeniety + disorder ==> glassiness 2DEG-MIT (Fogler): Wigner X-tal vs. -
Arxiv:1610.05737V1 [Cond-Mat.Quant-Gas] 18 Oct 2016 Different from Photon Lasers and Constitute Genuine Quantum Degenerate Macroscopic States
Topological order and equilibrium in a condensate of exciton-polaritons Davide Caputo,1, 2 Dario Ballarini,1 Galbadrakh Dagvadorj,3 Carlos Sánchez Muñoz,4 Milena De Giorgi,1 Lorenzo Dominici,1 Kenneth West,5 Loren N. Pfeiffer,5 Giuseppe Gigli,1, 2 Fabrice P. Laussy,6 Marzena H. Szymańska,7 and Daniele Sanvitto1 1CNR NANOTEC—Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy 2University of Salento, Via Arnesano, 73100 Lecce, Italy 3Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom 4Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain 5PRISM, Princeton Institute for the Science and Technology of Materials, Princeton Unviversity, Princeton, NJ 08540 6Russian Quantum Center, Novaya 100, 143025 Skolkovo, Moscow Region, Russia 7Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom We report the observation of the Berezinskii–Kosterlitz–Thouless transition for a 2D gas of exciton-polaritons, and through the joint measurement of the first-order coherence both in space and time we bring compelling evidence of a thermodynamic equilibrium phase transition in an otherwise open driven/dissipative system. This is made possible thanks to long polariton lifetimes in high-quality samples with small disorder and in a reservoir-free region far away from the excitation spot, that allow topological ordering to prevail. The observed quasi-ordered phase, characteristic for an equilibrium 2D bosonic gas, with a decay of coherence in both spatial and temporal domains with the same algebraic exponent, is reproduced with numerical solutions of stochastic dynamics, proving that the mechanism of pairing of the topological defects (vortices) is responsible for the transition to the algebraic order. -
Subsystem Symmetry Enriched Topological Order in Three Dimensions
PHYSICAL REVIEW RESEARCH 2, 033331 (2020) Subsystem symmetry enriched topological order in three dimensions David T. Stephen ,1,2 José Garre-Rubio ,3,4 Arpit Dua,5,6 and Dominic J. Williamson7 1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany 2Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany 3Departamento de Análisis Matemático y Matemática Aplicada, UCM, 28040 Madrid, Spain 4ICMAT, C/ Nicolás Cabrera, Campus de Cantoblanco, 28049 Madrid, Spain 5Department of Physics, Yale University, New Haven, Connecticut 06511, USA 6Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA 7Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA (Received 16 April 2020; revised 27 July 2020; accepted 3 August 2020; published 28 August 2020) We introduce a model of three-dimensional (3D) topological order enriched by planar subsystem symmetries. The model is constructed starting from the 3D toric code, whose ground state can be viewed as an equal-weight superposition of two-dimensional (2D) membrane coverings. We then decorate those membranes with 2D cluster states possessing symmetry-protected topological order under linelike subsystem symmetries. This endows the decorated model with planar subsystem symmetries under which the looplike excitations of the toric code fractionalize, resulting in an extensive degeneracy per unit length of the excitation. We also show that the value of the topological entanglement entropy is larger than that of the toric code for certain bipartitions due to the subsystem symmetry enrichment. Our model can be obtained by gauging the global symmetry of a short-range entangled model which has symmetry-protected topological order coming from an interplay of global and subsystem symmetries. -
Observing Spinons and Holons in 1D Antiferromagnets Using Resonant
Summary on “Observing spinons and holons in 1D antiferromagnets using resonant inelastic x-ray scattering.” Umesh Kumar1,2 1 Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA 2 Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN 37996, USA (Dated Jan 30, 2018) We propose a method to observe spinon and anti-holon excitations at the oxygen K-edge of Sr2CuO3 using resonant inelastic x-ray scattering (RIXS). The evaluated RIXS spectra are rich, containing distinct two- and four-spinon excitations, dispersive antiholon excitations, and combinations thereof. Our results further highlight how RIXS complements inelastic neutron scattering experiments by accessing charge and spin components of fractionalized quasiparticles Introduction:- One-dimensional (1D) magnetic systems are an important playground to study the effects of quasiparticle fractionalization [1], defined below. Hamiltonians of 1D models can be solved with high accuracy using analytical and numerical techniques, which is a good starting point to study strongly correlated systems. The fractionalization in 1D is an exotic phenomenon, in which electronic quasiparticle excitation breaks into charge (“(anti)holon”), spin (“spinon”) and orbit (“orbiton”) degree of freedom, and are observed at different characteristic energy scales. Spin-charge and spin-orbit separation have been observed using angle-resolved photoemission spectroscopy (ARPES) [2] and resonant inelastic x-ray spectroscopy (RIXS) [1], respectively. RIXS is a spectroscopy technique that couples to spin, orbit and charge degree of freedom of the materials under study. Unlike spin-orbit, spin-charge separation has not been observed using RIXS to date. In our work, we propose a RIXS experiment that can observe spin-charge separation at the oxygen K-edge of doped Sr2CuO3, a prototype 1D material. -
Topological Quantum Compiling Layla Hormozi
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Topological Quantum Compiling Layla Hormozi Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES TOPOLOGICAL QUANTUM COMPILING By LAYLA HORMOZI A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2007 The members of the Committee approve the Dissertation of Layla Hormozi defended on September 20, 2007. Nicholas E. Bonesteel Professor Directing Dissertation Philip L. Bowers Outside Committee Member Jorge Piekarewicz Committee Member Peng Xiong Committee Member Kun Yang Committee Member Approved: Mark A. Riley , Chair Department of Physics Joseph Travis , Dean, College of Arts and Sciences The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS To my advisor, Nick Bonesteel, I am indebted at many levels. I should first thank him for introducing me to the idea of topological quantum computing, for providing me with the opportunity to work on the problems that are addressed in this thesis, and for spending an infinite amount of time helping me toddle along, every step of the process, from the very beginning up until the completion of this thesis. I should also thank him for his uniquely caring attitude, for his generous support throughout the years, and for his patience and understanding for an often-recalcitrant graduate student. Thank you Nick — I truly appreciate all that you have done for me. -
Physics of Resonating Valence Bond Spin Liquids Julia Saskia Wildeboer Washington University in St
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 8-13-2013 Physics of Resonating Valence Bond Spin Liquids Julia Saskia Wildeboer Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Wildeboer, Julia Saskia, "Physics of Resonating Valence Bond Spin Liquids" (2013). All Theses and Dissertations (ETDs). 1163. https://openscholarship.wustl.edu/etd/1163 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Physics Dissertation Examination Committee: Alexander Seidel, Chair Zohar Nussinov Michael C. Ogilvie Jung-Tsung Shen Xiang Tang Li Yang Physics of Resonating Valence Bond Spin Liquids by Julia Saskia Wildeboer A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2013 St. Louis, Missouri TABLE OF CONTENTS Page LIST OF FIGURES ................................ v ACKNOWLEDGMENTS ............................. ix DEDICATION ................................... ix ABSTRACT .................................... xi 1 Introduction .................................. 1 1.1 Landau’s principle of symmetry breaking and topological order .... 2 1.2 From quantum dimer models to spin models .............. 5 1.2.1 The Rokhsar-Kivelson (RK) point ................ 12 1.3 QDM phase diagrams ........................... 14 1.4 Z2 quantum spin liquid and other topological phases .......... 15 1.4.1 Z2 RVB liquid ........................... 16 1.4.2 U(1) critical RVB liquid .................... -
Charge and Spin Fractionalization in Strongly Correlated Topological Insulators
Charge and spin fractionalization in strongly correlated topological insulators Predrag Nikolić George Mason University October 26, 2011 Acknowledgments Zlatko Tešanović Michael Levin Tanja Duric IQM @ Johns Hopkins University of Maryland Max Planck Institute, Dresden • Affiliations and sponsors The Center for Quantum Science Charge and spin fractionalization in strongly correlated topological insulators 2/33 Overview • TIs with time-reversal symmetry – Introduction to topological band-insulators – Introduction to interacting TIs • Experimental realization of strongly correlated TIs – Cooper pair TI by proximity effect – Exciton TI • Theory of strongly correlated TIs – Topological Landau-Ginzburg theory – Charge and spin fractionalization Charge and spin fractionalization in strongly correlated topological insulators 3/33 Topological vs. Conventional • Conventional states of matter – Characterized by local properties (LDOS, order parameter...) • Topological states of matter – Characterized by non-local properties (entanglement, edge modes, torus spectra...) • Examples of topological quantum states – Quantum Hall states & “topological insulators” – Spin liquids, string-net condensates... Charge and spin fractionalization in strongly correlated topological insulators 4/33 The Appeal of Topological • Macroscopic quantum entanglement – What makes quantum mechanics fascinating... – Still uncharted class of quantum states • Non-local properties are hard to perturb – Standard for measurements of resistivity – Topological quantum computation • -
Evidence for Singular-Phonon-Induced Nematic Superconductivity in a Topological Superconductor Candidate Sr0.1Bi2se3
ARTICLE https://doi.org/10.1038/s41467-019-10942-2 OPEN Evidence for singular-phonon-induced nematic superconductivity in a topological superconductor candidate Sr0.1Bi2Se3 Jinghui Wang1, Kejing Ran1, Shichao Li1, Zhen Ma1, Song Bao1, Zhengwei Cai1, Youtian Zhang1, Kenji Nakajima 2, Seiko Ohira-Kawamura2,P.Čermák3,4, A. Schneidewind 3, Sergey Y. Savrasov5, Xiangang Wan1,6 & Jinsheng Wen 1,6 1234567890():,; Superconductivity mediated by phonons is typically conventional, exhibiting a momentum- independent s-wave pairing function, due to the isotropic interactions between electrons and phonons along different crystalline directions. Here, by performing inelastic neutron scat- tering measurements on a superconducting single crystal of Sr0.1Bi2Se3, a prime candidate for realizing topological superconductivity by doping the topological insulator Bi2Se3,wefind that there exist highly anisotropic phonons, with the linewidths of the acoustic phonons increasing substantially at long wavelengths, but only for those along the [001] direction. This obser- vation indicates a large and singular electron-phonon coupling at small momenta, which we propose to give rise to the exotic p-wave nematic superconducting pairing in the MxBi2Se3 (M = Cu, Sr, Nb) superconductor family. Therefore, we show these superconductors to be example systems where electron-phonon interaction can induce more exotic super- conducting pairing than the s-wave, consistent with the topological superconductivity. 1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China. 2 J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan. 3 Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany. -
Spin Liquids with Topological Order
Spin Liquids with Topological Order 2d Mott Insulators with one electron per unit cell Quantum s=1/2 magnets Will show that topologically ordered spin liquids have: • an emergent “gauge structure” • Quantum number fractionalization • Ground state degeneracy on a torus Focus on Spin liquids with: • Z2 Topological order • Fully gapped with bosonic “spinons” and “visons” • 2d square lattice and Kagome lattice Resonating Valence Bond “Picture” 2d square lattice s=1/2 AFM = Singlet or a Valence Bond - Gains exchange energy J Valence Bond Solid Plaquette Resonance Resonating Valence Bond “Spin liquid” Plaquette Resonance Resonating Valence Bond “Spin liquid” Plaquette Resonance Resonating Valence Bond “Spin liquid” Gapped Spin Excitations “Break” a Valence Bond - costs energy of order J Create s=1 excitation Try to separate two s=1/2 “spinons” Valence Bond Solid Energy cost is linear in separation Spinons are “Confined” in VBS RVB State: Exhibits Fractionalization! Energy cost stays finite when spinons are separated Spinons are “deconfined” in the RVB state Spinon carries the electrons spin, but not its charge ! The electron is “fractionalized”. Gauge Theory Formulation of RVB Spin liquid Focus on the Valence bonds and their quantum dynamics - “A Quantum Dimer model” Place a “spin” on each link i j of the lattice vector of Pauli matrices no bond on link ij Define: Plaquette “Flux” bond on link ij 1 -1 -1 1 Hamiltonian: Need a Constraint: One valence bond coming out of each site Z2 Gauge Theory: Qi = -1 implies one or three bonds out of each -
Geometry, Topology, and Response in Condensed Matter Systems by Dániel Varjas a Dissertation Submitted in Partial Satisfaction
Geometry, topology, and response in condensed matter systems by D´anielVarjas A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Joel E. Moore, Chair Professor Ashvin Vishwanath Professor Sayeef Salahuddin Summer 2016 Geometry, topology, and response in condensed matter systems Copyright 2016 by D´anielVarjas 1 Abstract Geometry, topology, and response in condensed matter systems by D´anielVarjas Doctor of Philosophy in Physics University of California, Berkeley Professor Joel E. Moore, Chair Topological order provides a new paradigm to view phases of matter. Unlike conven- tional symmetry breaking order, these states are not distinguished by different patterns of symmetry breaking, instead by their intricate mathematical structure, topology. By the bulk-boundary correspondence, the nontrivial topology of the bulk results in robust gap- less excitations on symmetry preserving surfaces. We utilize both of these views to study topological phases together with the analysis of their quantized physical responses to per- turbations. First we study the edge excitations of strongly interacting abelian fractional quantum Hall liquids on an infinite strip geometry. We use the infinite density matrix renormalization group method to numerically measure edge exponents in model systems, including subleading orders. Using analytic methods we derive a generalized Luttinger's theorem that relates momenta of edge excitations. Next we consider topological crystalline insulators protected by space group symme- try. After reviewing the general formalism, we present results about the quantization of the magnetoelectric response protected by orientation-reversing space group symmetries.