Cardiothoracic Critical Care

Total Page:16

File Type:pdf, Size:1020Kb

Cardiothoracic Critical Care Cardiothoracic Critical Care a, b c Kevin W. Lobdell, MD *, Douglas W. Haden, MD , Kshitij P. Mistry, MD KEYWORDS Critical care Cardiothoracic surgery Quality Safety Value KEY POINTS High-value cardiothoracic critical care (CCC) is rapidly evolving to meet the demands of increased patient acuity and to incorporate advances in technology. The high-performing CCC system and culture should aim to learn quickly and continu- ously improve. CCC demands a proactive, interactive, precise, and expert team, as well as continuity. CARDIOTHORACIC DISEASE AND THERAPY Incidence and Prevalence Acquired heart disease is the leading cause of death in the United States, with 611,106 deaths forecasted for 2016; it affects 11.5% of the population and is estimated to result in 3.7 million hospitalizations annually with an average stay of 4.6 days.1 Approx- imately 152,000 coronary artery bypass (CAB) operations were recorded in the Society of Thoracic Surgeons-Adult Cardiac Database (STS-ACSD) in 2015, while approxi- mately 600,000 cardiac surgical procedures were expected to be performed in 2016.2 Congenital heart disease affects approximately 40,000 children annually in the United States, and 25% of those require surgery in their first year of life.3 8.5% of adults will have a diagnosis of cancer in their lifetime, and cancer was fore- casted to claim 584,881 lives in 2016 (the second most common cause of death in the United States).4 Furthermore, the American Cancer Society estimated 224,390 new cases of lung cancer in the United States for 2016 and 158,080 deaths (which ac- counts for approximately 25% of cancer deaths).5,6 The American Cancer Society also forecasted 16,910 new cases and 15,690 deaths from esophageal cancer in the United States for 2016 (approximately 20% of patients survive 5 years or more after diagnosis, a four-fold improvement over the last 40 years).7,8 The authors have nothing to disclose. a Sanger Heart and Vascular Institute, Carolinas HealthCare System, PO Box 32861, Charlotte, NC 28232, USA; b Carolinas HealthCare System, PO Box 32861, Charlotte, NC 28232, USA; c Cardiovascular Critical Care, Boston Children’s Hospital, Boston, MA, USA * Corrresponding author. E-mail address: [email protected] Surg Clin N Am 97 (2017) 811–834 http://dx.doi.org/10.1016/j.suc.2017.03.001 surgical.theclinics.com 0039-6109/17/ª 2017 Elsevier Inc. All rights reserved. 812 Lobdell et al Procedural Risk CAB surgery, which accounts for 53% of acquired cardiac surgical procedures recorded in the STS-ACSD, has an average operative mortality of 2.2% and mortality and/or major morbidity in 12.3%. Major and minor complications occur in 37.5% of patients; median intensive care unit (ICU) length of stay (LOS) is 47.4 hours, with a mean of 70.9 hours. To- tal LOS is 8.0 days (median) and 9.3 days (mean), readmission to ICU 2.8% and 30-day readmission 10%.9 More specifically, the average incidence of major morbidities and hospital acquired infection (HAI) includes stroke 1.3%, reoperation 3.5%, prolonged ventilation 8.2%, acute renal failure 2.1%, deep sternal wound infection 0.3%, pneu- monia 2.5%, and septicemia 0.9%. Common process metrics include early extubation 49.4% (<6 hours with median initial ventilation 3.6 hours and mean 6.0 hours), reintuba- tion 3.6%, and blood product transfusions 43%.9 Logically, increased complexity of pa- tient or associated procedures correlates with greater mortality, morbidity, and resource consumption. For example, left ventricular assist device implantation has been reported to have 13.2% postoperative mortality,10 while repair of type A aortic dissection has ranged from 12% to 24%.11 The 2015, STS-CCSD report recorded 52,224 operations in the most recent 4-year period with an overall mortality of 3.7% (neonatal 5 10.1%, infant 5 3.0%, chil- dren 5 0.9%, and adults 5 1.7%), which increases to 16.8% for the most complex procedures (STAT Category 5). The STS-GTSD relates a 1.3% mortality and 9.4% major morbidity for pulmonary lobectomy, 5.0% mortality and 16.0% major morbidity for pneumonectomy, and a 3.4% mortality and 33.1% major morbidity for esophagectomy.12 Procedure and Complication Costs Cardiac and thoracic surgery are costly and contribute substantially to a hospital’s in- come and profit margin.13,14 CAB averages $73,420 in the United States,15 while the total cost of lobectomy is estimated at $39,412,16 and esophagectomy charges aver- aged $120,000 to 140,000.17 Hospital costs for the congenital cardiac disease popu- lation are estimated at $1.9 billion.3 Additionally, recent estimates suggest approximately 13.4% of hospital costs, 4.1% of national health expenditures, and 0.66% of the gross domestic product are attributable to critical care.18 The additive costs of complications are considerable, and recent estimates for CAB range from $62,773 for mediastinitis (240% greater costs than without this complica- tion), $49,128 with renal failure, $40,704 with prolonged ventilation, $34,144 with post- operative stroke, $20,000 for reoperation for hemorrhage, to $2744 for atrial fibrillation.19 The CAB average LOS of 7.4 days was also significantly impacted by complications (ranging from 37.8 days for mediastinitis to 9.6 days for isolated atrial fibrillation). HAIs are estimated to cost the United States $35 to 45 billion per year and are common in crit- ical care. The clinical impact of HAIs is also enormous, since HAIs are associated with approximately 6% mortality and 17 extra days of hospitalization.20 Improvement must include the integration of innovative tactics to mitigate the risk of HAI (eg, bioburden reduction through ultraviolet light and copper-impregnated composites).21 Axiomati- cally, multiple investigations corroborate the strong correlation between poor quality and increased cost.22,23 HIGH-VALUE CARDIOTHORACIC CRITICAL CARE High-value cardiothoracic critical care (CCC) must measure and manage the domains of quality (Q), safety (S), value (V), and the resources (R) applied to these efforts (V a [Q 1 S]/R). Global waste in health care is estimated to be approximately $4.3 trillion Cardiothoracic Critical Care 813 annually.24 In the United States, health care consumes approximately 18% of the gross domestic product and 32% of health care expenditures are associated with hospitals.25,26 Recently, in order to improve value and sustainability, the Center for Medicare and Medicaid Services (CMS) has proposed bundled payment models for CAB where the hospital would be accountable for the cost and quality of care during the inpatient stay and for 90 days after discharge.27 This value-oriented payment scheme is significant, since the current reimbursement system may actually benefit hospitals with increased rate of complications. Patient-reported outcome measures are increasing and must be incorporated into the assessment of quality and value. Quality and the High-Performance Organization High-performance organizations (HPOs) are marked by common aspirational goals, alignment, adaptability, and accountability.28,29 The HPO has an action bias and a strong focus on what it intends to achieve. Safety and the High-Reliability Organization High-reliability organizations (HROs) are characterized by their reluctance to simplify, a sensitivity to operations, a commitment to resilience, and their deference to expertise.30,31 HROs have a firm focus on failure—and what they do not want to happen—which requires leadership commitment, a culture of safety, and effective utilization of performance improvement tools. Patient safety and the associated culture of safety are built on a foun- dation of trust,32,33 transparency, and continuous improvement. The Joint Commission popularized “robust process improvement” (RPI), which is comprised of lean methodol- ogies (which focus on elimination of waste), six-sigma (also focused on eliminating waste, but includes statistical methodology to reduce defects to nearly zero), and change management.30 CARDIOTHORACIC CRITICAL CARE STRUCTURE AND PROCESSES Multidisciplinary Team Care The focus factory approach can improve the core competencies and value proposition of a cardiovascular and thoracic service line.34 CCC has been delivered successfully with many different models. The traditional model of cardiothoracic surgeon and/or cardiothoracic surgery residents leading CCC has been challenged by many factors, which include the limitation of resident work hours, complexity of care, and credential- ing.35–38 Currently, many high-performing cardiovascular efforts, including CCC, are multidisciplinary and include various combinations of surgeon, cardiologist, anesthe- siologist, intensivist, advanced care practitioners (nurse practitioners and physician assistants), nurses, respiratory therapists, pharmacists, nutritionists, physical thera- pists, clinical care managers, among others.39,40 These high-performance CCC teams must be proactive, interactive, precise, expert, and provide continuity.41–43 Teaming is increasingly utilized in other industries and vital to the delivery of complex, high-value CCC.44 Additionally, efforts such as TeamSTEPPS highlight the importance of effec- tive team leadership and team training.45,46 Activity-based staffing has been studied for decades, and the concept of optimizing staffing for complexity is central to high-value CCC.47,48 The authors utilize a complexity scoring methodology to quantify demands and match with resources (limiting their advanced care practitioner’s (ACP’s) workload to a total of 15 points) (Table 1).
Recommended publications
  • Speakers and Topics
    SPEAKERS AND TOPICS SALZBURG WEILL CORNELL SEMINAR ANESTHESIOLOGY AND INTENSIVE CARE Sunday, October 18 – Saturday, October 24, 2020 Schloss Arenberg, Salzburg, Austria Course Director: Hugh C. Hemmings Jr., MD, PhD, FRCA Co-Course Director: Klaus Markstaller, MD Co-Course Director: Kane O. Pryor, MD Co-Course Director: Peter Marhofer, MD SPEAKERS AND TOPICS: Meghann M. Fitzgerald, MD Assistant Professor of Clinical Anesthesiology Weill Cornell Medical College Assistant Attending Anesthesiologist NewYork-Presbyterian Hospital Weill Cornell Medicine Anesthesiology New York, NY USA • Robotic Cardiac Surgery • Blood Management in Cardiac Surgery • TAAA Repair Lukas Kirchmair, MD, PD, DESA, EDRA Department of Anesthesiology and Intensive Care District Hospital Schwaz Schwaz Austria • Polytrauma Management Rudolf Likar, MD, MSc Professor Head, Department of Anesthesiology and Intensive Care General Hospital Klagenfurt Klagenfurt am Woerthersee Austria • Invasive Methods in Cancer Pain • Invasive Methods in Low Back Pain © Open Medical Institute 2020 SPEAKERS AND TOPICS Peter Marhofer, MD Professor of Anesthesia and Intensive Care Medicine Department of Anesthesia and Intensive Care Medicine Medical University of Vienna Vienna Austria • Principles of Regional Anaesthesia I • Principles of Regional Anaesthesia II • Ultrasound in Anaesthesia and Intensive Care Medicine I • Ultrasound in Anaesthesia and Intensive Care Medicine II Rohan Panchamia, MD Assistant Professor of Clinical Anesthesiology Weill Cornell Medical College Assistant Attending
    [Show full text]
  • COVID-19 Pneumonia: Different Respiratory Treatment for Different Phenotypes? L
    Intensive Care Medicine EDITORIAL Un-edited accepted proof COVID-19 pneumonia: different respiratory treatment for different phenotypes? L. Gattinoni1, D. Chiumello2, P. Caironi3, M. Busana1, F. Romitti1, L. Brazzi4, L. Camporota5 Affiliations: 1Department of Anesthesiology and Intensive Care, Medical University of GöttinGen 4Department of Anesthesia, Intensive Care and Emergency - 'Città della Salute e della Scienza’ Hospital - Turin 5Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences - London Corresponding author: Luciano Gattinoni Department of Anesthesiology and Intensive Care, Medical University of Göttingen, Robert-Koch Straße 40, 37075, Göttingen, Germany Conflict of interests: The authors have no conflict of interest to disclose NOTE: This article is the pre-proof author’s accepted version. The final edited version will appear soon on the website of the journal Intensive Care Medicine with the following DOI number: DOI 10.1007/s00134-020-06033-2 1 Gattinoni L. et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes? (2020) Intensive Care Medicine; DOI: 10.1007/s00134-020-06033-2 Intensive Care Medicine EDITORIAL Un-edited accepted proof The Surviving Sepsis CampaiGn panel (ahead of print, DOI: 10.1007/s00134-020-06022-5) recently recommended that “mechanically ventilated patients with COVID-19 should be managed similarly to other patients with acute respiratory failure in the ICU.” Yet, COVID-19 pneumonia [1], despite falling in most of the circumstances under the Berlin definition of ARDS [2], is a specific disease, whose distinctive features are severe hypoxemia often associated with near normal respiratory system compliance (more than 50% of the 150 patients measured by the authors and further confirmed by several colleagues in Northern Italy).
    [Show full text]
  • Intensive Care Medicine in 10 Years
    BOOKS,FILMS,TAPES &SOFTWARE are difficult to read, the editing is inconsis- tory for critical care medicine. The book is initiate a planning process for leaders who tent, and the content that was omitted indi- divided into sections entitled “Setting the recognize the imperative for change and ad- cates that “efforts to bring this work from Stage,” “Diagnostic, Therapeutic, and In- aptation in critical care. Accordingly, I rec- conception to fruition in less than one year” formation Technologies 10 Years From ommend this book to individuals and groups (as stated in the book’s acknowledgments Now,” “How Might Critical Care Medicine engaged in all aspects of critical care man- section) prevented this book from being a Be Organized and Regulated?” “Training,” agement, now and in the future. “gold standard” text. and “The Critical Care Agenda.” Each sec- J Christopher Farmer MD tion consists of a series of essays/chapters Marie E Steiner MD MSc Department of Medicine that discuss various aspects of the topic, and Department of Pediatrics Mayo Clinic all the sections have solid scientific support Divisions of Pulmonary/ Rochester, Minnesota and bibliographies. The individual topics Critical Care and Hematology/ span the entire range of critical-care clinical Oncology/Blood and Marrow The author reports no conflict of interest related practice, administration, quality and safety, Transplantation to the content of this book review. and so forth. The contributors are acknowl- University Children’s Hospital, Fairview edged senior clinical and scientific leaders University of Minnesota Mechanical Ventilation: Physiological in critical care medicine from around the Minneapolis, Minnesota and Clinical Applications, 4th edition.
    [Show full text]
  • Intravenous Immunoglobulin Fails to Improve ARDS in Patients
    Prohaska et al. Journal of Intensive Care (2018) 6:11 DOI 10.1186/s40560-018-0278-8 RESEARCH Open Access Intravenous immunoglobulin fails to improve ARDS in patients undergoing ECMO therapy Stefanie Prohaska1, Andrea Schirner1, Albina Bashota1, Andreas Körner1, Gunnar Blumenstock2 and Helene A. Haeberle1* Abstract Background: Acute respiratory distress syndrome (ARDS) is associated with high mortality rates. ARDS patients suffer from severe hypoxemia, and extracorporeal membrane oxygenation (ECMO) therapy may be necessary to ensure oxygenation. ARDS has various etiologies, including trauma, ischemia-reperfusion injury or infections of various origins, and the associated immunological responses may vary. To support the immunological response in this patient collective, we used intravenous IgM immunoglobulin therapy to enhance the likelihood of pulmonary recovery. Methods: ARDS patients admitted to the intensive care unit (ICU) who were placed on ECMO and treated with (IVIG group; n = 29) or without (control group; n = 28) intravenous IgM-enriched immunoglobulins for 3 days in the initial stages of ARDS were analyzed retrospectively. Results: The baseline characteristics did not differ between the groups, although the IVIG group showed a significantly reduced oxygenation index compared to the control group. We found no differences in the length of ICU stay or ventilation parameters. We did not find a significant difference between the groups for the extent of inflammation or for overall survival. Conclusion: We conclude that administration
    [Show full text]
  • Characteristics and Risk Factors for Intensive Care Unit Cardiac Arrest in Critically Ill Patients with COVID-19—A Retrospective Study
    Journal of Clinical Medicine Article Characteristics and Risk Factors for Intensive Care Unit Cardiac Arrest in Critically Ill Patients with COVID-19—A Retrospective Study Kevin Roedl 1,* , Gerold Söffker 1, Dominic Wichmann 1 , Olaf Boenisch 1, Geraldine de Heer 1 , Christoph Burdelski 1, Daniel Frings 1, Barbara Sensen 1, Axel Nierhaus 1 , Dirk Westermann 2, Stefan Kluge 1 and Dominik Jarczak 1 1 Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (G.S.); [email protected] (D.W.); [email protected] (O.B.); [email protected] (G.d.H.); [email protected] (C.B.); [email protected] (D.F.); [email protected] (B.S.); [email protected] (A.N.); [email protected] (S.K.); [email protected] (D.J.) 2 Department of Interventional and General Cardiology, University Heart Centre Hamburg, 20246 Hamburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-40-7410-57020 Abstract: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing the coron- avirus disease 2019 (COVID-19) led to an ongoing pandemic with a surge of critically ill patients. Very little is known about the occurrence and characteristic of cardiac arrest in critically ill patients Citation: Roedl, K.; Söffker, G.; with COVID-19 treated at the intensive care unit (ICU). The aim was to investigate the incidence Wichmann, D.; Boenisch, O.; de Heer, and outcome of intensive care unit cardiac arrest (ICU-CA) in critically ill patients with COVID-19. G.; Burdelski, C.; Frings, D.; Sensen, This was a retrospective analysis of prospectively recorded data of all consecutive adult patients B.; Nierhaus, A.; Westermann, D.; with COVID-19 admitted (27 February 2020–14 January 2021) at the University Medical Centre et al.
    [Show full text]
  • Rapid Evidence Review
    Rapid Evidence Review Clinical evidence for the use of intravenous immunoglobulin in the treatment of COVID- 19 Version 2, 14th May 2020 1 Prepared by the COVID-19 Evidence Review Group with clinical contribution from Dr. Niall Conlon, Consultant Immunologist, St. James Hospital, Dr. Mary Keogan, Clinical Lead National Clinical Programme for Pathology & Consultant Immunologist, Beaumont Hospital. Key changes between version 1 and version 2 (14th May 2020) A number of case reports describing the use of IVIG are included in this version and 2 additional studies which focused specifically on the use of IVIG in patients with COVID-19 – one case series and one retrospective cohort study (available as a pre-print). A number of guidelines have included a reference to IVIG, but the general consensus is not to use IVIG. The recent reports of Kawasaki Disease in children with COVID-19 highlight the role of IVIG and aspirin to treat this condition and supporting evidence of its benefit are available from 2 case reports and one case series. The COVID-19 Evidence Review Group for Medicines was established to support the HSE in managing the significant amount of information on treatments for COVID-19. This COVID-19 Evidence Review Group is comprised of evidence synthesis practitioners from across the National Centre for Pharmacoeconomics (NCPE), Medicines Management Programme (MMP) and the National Medicines Information Centre (NMIC). The group respond to queries raised via the Office of the CCO, National Clinical Programmes and the Department of Health and respond in a timely way with the evidence review supporting the query.
    [Show full text]
  • Surviving Sepsis Campaign Guidelines for COVID-19
    DISCLAIMER. The information contained herein is subject to change. The final version of the article will be published as soon as approved on ccmjournal.org. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19) Waleed Alhazzani1,2, Morten Hylander Møller3,4, Yaseen M. Arabi5, Mark Loeb1,2, Michelle Ng Gong6, Eddy Fan7, Simon Oczkowski1,2, Mitchell M. Levy8,9, Lennie Derde10,11, Amy Dzierba12, Bin Du13, Michael Aboodi6, Hannah Wunsch14,15, Maurizio Cecconi16,17, Younsuck Koh18, Daniel S. Chertow19, Kathryn Maitland20, Fayez Alshamsi21, Emilie Belley-Cote1,22, Massimiliano Greco16,17, Matthew Laundy23, Jill S. Morgan24, Jozef Kesecioglu10, Allison McGeer25, Leonard Mermel8, Manoj J. Mammen26, Paul E. Alexander2,27, Amy Arrington28, John Centofanti29, Giuseppe Citerio30,31, Bandar Baw1,32, Ziad A. Memish33, Naomi Hammond34,35, Frederick G. Hayden36, Laura Evans37, Andrew Rhodes38 Affiliations 1 Department of Medicine, McMaster University, Hamilton, Canada 2 Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada 3 Copenhagen University Hospital Rigshospitalet, Department of Intensive Care, Copenhagen, Denmark 4 Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI) 5 Intensive Care Department, Ministry of National Guard Health Affairs, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia 6 Department of Medicine, Montefiore Healthcare
    [Show full text]
  • Best-Practice Igm- and Iga-Enriched Immunoglobulin Use in Patients with Sepsis
    Nierhaus et al. Ann. Intensive Care (2020) 10:132 https://doi.org/10.1186/s13613-020-00740-1 REVIEW Open Access Best-practice IgM- and IgA-enriched immunoglobulin use in patients with sepsis Axel Nierhaus1,2* , Giorgio Berlot3, Detlef Kindgen‑Milles4, Eckhard Müller5 and Massimo Girardis6 Abstract Background: Sepsis is a life‑threatening organ dysfunction caused by a dysregulated host response to infection. Despite treatment being in line with current guidelines, mortality remains high in those with septic shock. Intrave‑ nous immunoglobulins represent a promising therapy to modulate both the pro‑ and anti‑infammatory processes and can contribute to the elimination of pathogens. In this context, there is evidence of the benefts of immuno‑ globulin M (IgM)‑ and immunoglobulin A (IgA)‑enriched immunoglobulin therapy for sepsis. This manuscript aims to summarize current relevant data to provide expert opinions on best practice for the use of an IgM‑ and IgA‑enriched immunoglobulin (Pentaglobin) in adult patients with sepsis. Main text: Sepsis patients with hyperinfammation and patients with immunosuppression may beneft most from treatment with IgM‑ and IgA‑enriched immunoglobulin (Pentaglobin). Patients with hyperinfammation present with phenotypes that manifest throughout the body, whilst the clinical characteristics of immunosuppression are less clear. Potential biomarkers for hyperinfammation include elevated procalcitonin, interleukin‑6, endotoxin activity and C‑reactive protein, although thresholds for these are not well‑defned. Convenient biomarkers for identifying patients in a stage of immune‑paralysis are still matter of debate, though human leukocyte antigen–antigen D related expression on monocytes, lymphocyte count and viral reactivation have been proposed. The timing of treatment is potentially more critical for treatment efcacy in patients with hyperinfammation compared with patients who are in an immunosuppressed stage.
    [Show full text]
  • Recommendations for End-Of-Life Care in the Intensive Care Unit: a Consensus Statement by the American College of Critical Care Medicine
    Special Articles Recommendations for end-of-life care in the intensive care unit: A consensus statement by the American College of Critical Care Medicine Robert D. Truog, MD, MA; Margaret L. Campbell, PhD, RN, FAAN; J. Randall Curtis, MD, MPH; Curtis E. Haas, PharmD, FCCP; John M. Luce, MD; Gordon D. Rubenfeld, MD, MSc; Cynda Hylton Rushton, PhD, RN, FAAN; David C. Kaufman, MD Background: These recommendations have been developed to to die, and between consequences that are intended vs. those that improve the care of intensive care unit (ICU) patients during the are merely foreseen (the doctrine of double effect). Improved dying process. The recommendations build on those published in communication with the family has been shown to improve pa- 2003 and highlight recent developments in the field from a U.S. tient care and family outcomes. Other knowledge unique to end- perspective. They do not use an evidence grading system because of-life care includes principles for notifying families of a patient’s most of the recommendations are based on ethical and legal death and compassionate approaches to discussing options for principles that are not derived from empirically based evidence. organ donation. End-of-life care continues even after the death of Principal Findings: Family-centered care, which emphasizes the patient, and ICUs should consider developing comprehensive the importance of the social structure within which patients are bereavement programs to support both families and the needs of embedded, has emerged as a comprehensive ideal for managing the clinical staff. Finally, a comprehensive agenda for improving end-of-life care in the ICU.
    [Show full text]
  • Download Download
    This article has been retracted: please see INNOVATIONS in pharmacy retraction policy (https://pubs.lib.umn.edu/index.php/innovations/policies). This article has been retracted by the Editor and Publisher due to the inappropriate use of previously published work. Commentary PHARMACY PRACTICE Pharmacists in Critical Care AK Mohiuddin, Assistant Professor Department of Pharmacy, World University of Bangladesh, Bangladesh Abstract The beginnings of caring for critically ill patients date back to Florence Nightingale’s work during the Crimean War in 1854, but the subspecialty of critical care medicine is relatively young. The first US multidisciplinary intensive care unit (ICU) was established in 1958, and the American Board of Medical Subspecialties first recognized the subspecialty of critical care medicine in 1986. Critical care pharmacy services began around the 1970s, growing in the intervening 40 years to become one of the largest practice areas for clinical pharmacists, with its own section in the SCCM, the largest international professional organization in the field. During the next decade, pharmacy services expanded to various ICU settings (both adult and pediatric), the operating room, and the emergency department. In these settings, pharmacists established clinical practices consisting of therapeutic drug monitoring, nutrition support, and participation in patient care rounds. Pharmacists also developed efficient and safe drug delivery systems with the evolution of critical care pharmacy satellites and other innovative programs. In the 1980s, critical care pharmacists designed specialized training programs and increased participation in critical care organizations. The number of critical care residencies and fellowships doubled between the early 1980s and the late 1990s. Standards for critical care residency were developed, and directories of residencies and fellowships were published.
    [Show full text]
  • Chronic Critical Illness: Are We Saving Patients Or Creating Victims?
    REVIEW ARTICLE Sergio Henrique Loss1,2, Diego Silva Leite Nunes1, Oellen Stuani Franzosi1,3, Gabriela Soranço Chronic critical illness: are we saving patients or Salazar4, Cassiano Teixeira5, Silvia Regina Rios Vieira1,2,6 creating victims? Doença crítica crônica: estamos salvando ou criando vítimas? 1. Postgraduate Program in Medical Sciences, ABSTRACT metabolism, show immunodeficiency, Faculdade de Medicina, Universidade Federal do consume substantial health resources, Rio Grande do Sul - Porto Alegre (RS), Brazil. The technological advancements have reduced functional and cognitive 2. Intensive Care Unit, Hospital de Clínicas de that allow support for organ dysfunction Porto Alegre - Porto Alegre (RS), Brazil. capacity after discharge, create a sizable 3. Department of Nutrition, Hospital de Clínicas have led to an increase in survival rates workload for caregivers, and present high de Porto Alegre - Porto Alegre (RS), Brazil. for the most critically ill patients. Some long-term mortality rates. The aim of this 4. Department of Nutrition, Hospital Mãe de of these patients survive the initial acute review is to report on the most current Deus - Porto Alegre (RS), Brazil. critical condition but continue to suffer evidence in terms of the definition, 5. Faculdade de Medicina, Universidade Federal from organ dysfunction and remain in de Ciências da Saúde de Porto Alegre - Porto pathophysiology, clinical manifestations, Alegre (RS), Brazil. an inflammatory state for long periods of treatment, and prognosis of persistent 6. Department of Internal Medicine, Universidade time. This group of critically ill patients critical illness. Federal do Rio Grande do Sul - Porto Alegre (RS), has been described since the 1980s and Brazil. has had different diagnostic criteria over Keywords: Critical illness; the years.
    [Show full text]
  • Preoperative Anaesthesiologic
    Psychiatria Danubina, 2019; Vol. 31, Suppl. 5, pp S745-S749 Medicina Academica Mostariensia, 2019; Vol. 7, No. 1-2, pp 23-27 Review © Medicinska naklada - Zagreb, Croatia PREOPERATIVE ANAESTHESIOLOGIC EVALUATION OF PATIENT WITH KNOWN ALLERGY Željko ýolak1, Mario Pavlek1, Mirabel Mažar1, Sanja Konosiü1, Višnja Ivanþan & Milenko Bevanda2 1University of Zagreb, School of Medicine, Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Hospital Zagreb, Zagreb, Croatia 2University of Mostar, School of Medicine, Mostar, Bosnia and Herzegovina received: 13.9.2019; revised: 23.10.2019; accepted: 28.11.2019 SUMMARY Anaphylaxis is an unanticipated systemic hypersensitivity reaction which can produce deleterious effects, even death, if not treated promptly. Preventive approach implies taking a thorough anamnesis with the emphasis on previously diagnosed allergies. If an allergic reaction occurred during previous surgery, a detailed documentation of administered anaesthetic agents and drugs would be crucial for the following anaesthesiologic management. Preoperative planning and avoiding cross-reactivity with drugs commonly used during anaesthesia are the key points to prevent an anaphylaxis. In case of emergency surgery when the exact identification of allergens is not possible, premedication prophylaxis should be considered. General measures for prevention of anaphylaxis could be undertaken as well, such as the choice of anaesthesiologic drugs and techniques in the operating theatre adequately equipped for the management
    [Show full text]