bioRxiv preprint doi: https://doi.org/10.1101/2020.01.13.904771; this version posted January 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Integrative analysis identifies candidate tumor microenvironment and intracellular signaling pathways that define tumor heterogeneity in NF1 Jineta Banerjee1#, Robert J Allaway1#, Jaclyn N Taroni2, Aaron Baker1,4, Xiaochun Zhang5, Chang In Moon5, Jaishri O Blakeley6, Justin Guinney1, Angela Hirbe5, Casey S Greene2,3, Sara JC Gosline1* 1 Computational Oncology, Sage Bionetworks, Seattle, WA, 98121 2 Childhood Cancer Data LaB, Alex's Lemonade Stand Foundation, Philadelphia, PA, 19102 3 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 4 University of Wisconsin-Madison, Madison, WI, 53715 5 Division of Oncology, Washington University Medical School, St. Louis, MO 63110 6 Neurology, Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21287 # Equal ContriBution * Correspondence:
[email protected] Abstract: NeurofiBromatosis type 1 is a monogenic syndrome that gives rise to numerous symptoms including cognitive impairment, skeletal aBnormalities, and growth of Benign nerve sheath tumors. Nearly all NF1 patients develop cutaneous neurofiBromas (cNFs), which occur on the skin surface, while 40-60% of patients develop plexiform neurofibromas (pNFs) which are deeply embedded in the peripheral nerves. Patients with pNFs have a ~10% lifetime chance of these tumors Becoming malignant peripheral nerve sheath tumors (MPNSTs). These tumors have a severe prognosis and few treatment options other than surgery.