Ulipristal Acetate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stanford Chem-H Presentation (PDF)
KiNativ® In situ kinase profiling Stanford University ChEM-H confidential @KiNativPlatform Principle of the KiNativ platform • ATP (or ADP) acyl phosphate binds to, and covalently modifies Lysine residues in the active site • Thus, ATP acyl phosphate with a desthiobiotin tag can be used capture and quantitate kinases in a complex lysate Acyl phosphate Desthiobiotin tag ATP 2 ATP acyl phosphate probe covalently modifies kinase in the active site Lysine 2 Lysine 1 3 ATP acyl phosphate probe covalently modifies kinase in the active site Lysine 2 Lysine 1 4 Samples trypsinized, probe-labeled peptides captured with streptavidin, and analyzed by targeted LC-MS2 Identification Quantitation Explicit determination of peptide Integration of signal from MS2 sequence and probe modification site fragment ions from MS2 spectrum 5 Comprehensive Coverage of Protein and Lipid Kinases Protein kinases Atypical kinases Green: Kinases detected on KiNativ Red: Kinases not detected on KiNativ ~80% of known protein and atypical kinases identified on the platform http://www.kinativ.com/coverage/protein-lipid.html 6 Profiling compound(s) on the KiNativ platform Control sample – add probe Sample: Lysate derived from any cell line or tissue from ANY species Treated sample – add inhibitor followed by probe Inhibited kinase Green: Kinases Blue: Probe Gray: Non-kinases Red: Inhibitor 7 Profiling compound(s) on the KiNativ platform Control sample – add probe MS signalMS Sample: Lysate derived from any cell line or tissue from ANY species Treated sample – add inhibitor -
Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level?
International Journal of Molecular Sciences Review Metabolic Factors Affecting Tumor Immunogenicity: What Is Happening at the Cellular Level? Rola El Sayed 1 , Yolla Haibe 2, Ghid Amhaz 2, Youssef Bouferraa 2 and Ali Shamseddine 2,* 1 Global Health Institute, American University of Beirut, Beirut 11-0236, Lebanon; [email protected] 2 Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 11-0236, Lebanon; [email protected] (Y.H.); [email protected] (G.A.); [email protected] (Y.B.) * Correspondence: [email protected]; Tel.: +961-1-350-000 (ext. 5390) Abstract: Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors de- veloping innate or acquired resistance to checkpoint inhibition. Certain “hot” or “immune-sensitive” tumors become “cold” or “immune-resistant”, with resultant tumor growth and disease progres- sion. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. -
The Evolution of Antibodies Into Versatile Tumor-Targeting Agents
Vol. 11, 129–138, January 1, 2005 Clinical Cancer Research 129 The Evolution of Antibodies into Versatile Tumor-Targeting Agents Michael Z. Lin,1 Michael A. Teitell,2 cancer is an old idea, often credited to Paul Ehrlich and William 1 Coley over 100 years ago, a time that predates our understanding and Gary J. Schiller of the cellular and molecular components of the immune system. 1 2 Departments of Medicine and Pathology and Laboratory Medicine, It was the elucidation of mechanisms of immunity and the David Geffen School of Medicine at University of California at introduction of a theory of cancer immunosurveillance by Lewis Los Angeles, Los Angeles, California Thomas and MacFarlane Burnet in the 1960s, however, that gave rise to the modern concept of using the adaptive immune system ABSTRACT to recognize and eliminate tumor cells whereas sparing normal In recent years, monoclonal antibodies have become tissue. After decades of waxing and waning interest, the idea of important weapons in the arsenal of anticancer drugs, and in immunotherapy has recently achieved widespread acceptance select cases are now the drugs of choice due to their favor- (1), in large part owing to the successful introduction within the able toxicity profiles. Originally developed to confer passive last decade of antibody-based cancer therapies into the clinic. immunity against tumor-specific antigens, clinical uses of Having accumulated several years of experience with anticancer monoclonal antibodies are expanding to include growth fac- antibodies, researchers are now in a position evaluate these first tor sequestration, signal transduction modulation, and tumor- examples of immunotherapeutic drugs, looking back to relate specific drug delivery. -
Peripheral Kappa Opioid Receptor Activation Drives Cold Hypersensitivity in Mice
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325118; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Peripheral kappa opioid receptor activation drives cold hypersensitivity in mice Manish K. Madasu1,2,3, Loc V. Thang1,2,3, Priyanka Chilukuri1,3, Sree Palanisamy1,2, Joel S. Arackal1,2, Tayler D. Sheahan3,4, Audra M. Foshage3, Richard A. Houghten6, Jay P. McLaughlin5.6, Jordan G. McCall1,2,3, Ream Al-Hasani1,2,3 1Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA. 2Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA 3Department of Anesthesiology, Pain Center, Washington University. St. Louis, MO, USA. 4 Division of Biology and Biomedical Science, Washington University in St. Louis, MO, USA 5Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA 6Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA Corresponding Author: Dr. Ream Al-Hasani Center for Clinical Pharmacology St. Louis College of Pharmacy Washington University School of Medicine 660 South Euclid Campus Box 8054 St. Louis MO, 63110 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325118; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
United States Atopic Dermatitis (AD) Market Report 2021
Source: Research and Markets July 28, 2021 04:08 ET United States Atopic Dermatitis (AD) Market Report 2021 Dublin, July 28, 2021 (GLOBE NEWSWIRE) -- The "Atopic Dermatitis (AD) - US Market Insight, Epidemiology and Market Forecast - 2030" report has been added to ResearchAndMarkets.com's offering. This 'Atopic Dermatitis (AD) - Market Insights, Epidemiology and Market Forecast- 2030' report delivers an in- depth understanding of the Atopic Dermatitis (AD), historical and forecasted epidemiology as well as the Atopic Dermatitis (AD) market trends in the United States. Key Findings The total prevalent population of AD in the United States was estimated to be 32,197,083 in 2020. The total diagnosed prevalent population of AD in the United States was estimated to be 25,091,967 in 2020. The prevalent population of AD in the United States is expected to increase at a CAGR of 0.58% during the study period 2018-2030. In the United States, the total number of adult cases of AD comprised of 5,684,566 males and 9,421,907 females in 2020. The total number of cases of mild AD were 9,065,394 in the United States, in 2020, as compared to the cases of moderate and severe AD with 4,365,771 and 1,661,712 cases respectively, in adults. In children, the total number of cases of mild AD were 6,690,281, in 2020, as compared to the cases of moderate and severe AD with 2,596,228 and 698,985 cases respectively, in the United States. Report Highlights In the coming years, Atopic Dermatitis (AD) market is set to change due to the rising awareness of the disease, and incremental healthcare spending across the world; which would expand the size of the market to enable the drug manufacturers to penetrate more into the market. -
Summary Analgesics Dec2019
Status as of December 31, 2019 UPDATE STATUS: N = New, A = Advanced, C = Changed, S = Same (No Change), D = Discontinued Update Emerging treatments for acute and chronic pain Development Status, Route, Contact information Status Agent Description / Mechanism of Opioid Function / Target Indication / Other Comments Sponsor / Originator Status Route URL Action (Y/No) 2019 UPDATES / CONTINUING PRODUCTS FROM 2018 Small molecule, inhibition of 1% diacerein TWi Biotechnology / caspase-1, block activation of 1 (AC-203 / caspase-1 inhibitor Inherited Epidermolysis Bullosa Castle Creek Phase 2 No Topical www.twibiotech.com NLRP3 inflamasomes; reduced CCP-020) Pharmaceuticals IL-1beta and IL-18 Small molecule; topical NSAID Frontier 2 AB001 NSAID formulation (nondisclosed active Chronic low back pain Phase 2 No Topical www.frontierbiotech.com/en/products/1.html Biotechnologies ingredient) Small molecule; oral uricosuric / anti-inflammatory agent + febuxostat (xanthine oxidase Gout in patients taking urate- Uricosuric + 3 AC-201 CR inhibitor); inhibition of NLRP3 lowering therapy; Gout; TWi Biotechnology Phase 2 No Oral www.twibiotech.com/rAndD_11 xanthine oxidase inflammasome assembly, reduced Epidermolysis Bullosa Simplex (EBS) production of caspase-1 and cytokine IL-1Beta www.arraybiopharma.com/our-science/our-pipeline AK-1830 Small molecule; tropomyosin Array BioPharma / 4 TrkA Pain, inflammation Phase 1 No Oral www.asahi- A (ARRY-954) receptor kinase A (TrkA) inhibitor Asahi Kasei Pharma kasei.co.jp/asahi/en/news/2016/e160401_2.html www.neurosmedical.com/clinical-research; -
Download Product Insert (PDF)
PRODUCT INFORMATION Pacritinib Item No. 16709 CAS Registry No.: 937272-79-2 Formal Name: 11-[2-(1-pyrrolidinyl)ethoxy]-14,19-dioxa- 5,7,27-triazatetracyclo[19.3.1.12,6.18,12] O heptacosa-1(25),2,4,6(27),8,10,12(26), 16E,21,23-decaene Synonym: SB1518 N N H MF: C28H32N4O3 FW: 472.6 N Purity: ≥98% O Stability: ≥2 years at -20°C Supplied as: A crystalline solid N O UV/Vis.: λmax: 285 nm Laboratory Procedures For long term storage, we suggest that pacritinib be stored as supplied at -20°C. It should be stable for at least two years. Pacritinib is supplied as a crystalline solid. A stock solution may be made by dissolving the pacritinib in the solvent of choice. Pacritinib is soluble in the organic solvent DMSO, which should be purged with an inert gas, at a concentration of approximately 0.5 mg/ml (slightly warmed). Pacritinib is sparingly soluble in aqueous solutions. To enhance aqueous solubility, dilute the organic solvent solution into aqueous buffers or isotonic saline. If performing biological experiments, ensure the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. We do not recommend storing the aqueous solution for more than one day. Description FMS-like tyrosine kinase 3 (FLT3) and Janus kinase 2 (JAK2) are tyrosine kinases that mediate cytokine signaling and are frequently mutated in cancers, particularly acute myeloid leukemia.1,2 Pacritinib is an 1 inhibitor of both FLT3 and JAK2 (IC50s = 22 and 23 nM, respectively). -
JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors
Drugs https://doi.org/10.1007/s40265-020-01261-8 CURRENT OPINION JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors Miguel Nogueira1 · Luis Puig2 · Tiago Torres1,3 © Springer Nature Switzerland AG 2020 Abstract Despite advances in the treatment of psoriasis, there is an unmet need for efective and safe oral treatments. The Janus Kinase– Signal Transducer and Activator of Transcription (JAK–STAT) pathway plays a signifcant role in intracellular signalling of cytokines of numerous cellular processes, important in both normal and pathological states of immune-mediated infamma- tory diseases. Particularly in psoriasis, where the interleukin (IL)-23/IL-17 axis is currently considered the crucial pathogenic pathway, blocking the JAK–STAT pathway with small molecules would be expected to be clinically efective. However, relative non-specifcity and low therapeutic index of the available JAK inhibitors have delayed their integration into the therapeutic armamentarium of psoriasis. Current research appears to be focused on Tyrosine kinase 2 (TYK2), the frst described member of the JAK family. Data from the Phase II trial of BMS-986165—a selective TYK2 inhibitor—in psoriasis have been published and clinical results are encouraging, with a large Phase III programme ongoing. Further, the selective TYK2 inhibitor PF-06826647 is being tested in moderate-to-severe psoriasis in a Phase II clinical trial. Brepocitinib, a potent TYK2/JAK1 inhibitor, is also being evaluated, as both oral and topical treatment. Results of studies with TYK2 inhibitors will be important in assessing the clinical efcacy and safety of these drugs and their place in the therapeutic armamentarium of psoriasis. -
Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11)
Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11) PRINCIPLE: L-Methionine Gamma-Lyase L-Methionine > Methanethiol + 2-Ketobutyrate + NH3 2-Ketobutyrate + MBTH > Azine Derivative Abbreviation used: MBTH = 3-Methyl-2-Benzothiazolinone CONDITIONS: T = 37°C, pH = 8.0, A320nm, Light path = 1 cm METHOD: Stopped Spectrophotometric Rate Determination REAGENTS: A. 100 mM Potassium Phosphate Buffer with 25 mM L-Methionine and 0.01 mM Pyridoxal 5-Phosphate, pH 8.0 at 37°C1 (Prepare 100 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379, L-Methionine, Sigma Prod. No. M-9625, and Pyridoxal 5-Phosphate, Sigma Prod. No. P-9255. Adjust to pH 8.0 at 37°C with 5 M KOH.) B. 50% (w/v) Trichloroacetic Acid Solution (TCA) (Prepare 5 ml in deionized water using Trichloroacetic Acid, 6.1 N Solution, approximately 100% (w/v), Sigma Stock No. 490-10.) C. 1 M Sodium Acetate Buffer, pH 5.0 at 37°C (NaOAC) (Prepare 100 ml in deionized water using Sodium Acetate, Trihydrate, Sigma Prod. No. S-8625. Adjust to pH 5.0 at 37°C with 5 M HCl.) D. 0.1% (w/v) 3-Methyl-2-Benzothiazolinone Hydrazone (MBTH) (Prepare 10 ml in deionized water using 3-Methyl-2-Benzothiazolinone Hydrazone, Hydrochloride Hydrate, Sigma Prod. No. M-8006.) SSMETH01 Page 1 of 4 07/29/98 Enzymatic Assay of L-METHIONINE GAMMA-LYASE (EC 4.4.1.11) REAGENTS: E. 100 mM Potassium Phosphate Buffer with 1 mM Ethylenediaminetetraacetic Acid, 0.01% (v/v) 2-Mercaptoethanol and 0.02 mM Pyridoxal 5-Phosphate, pH 7.2 at 37°C (Enzyme Diluent)1 (Prepare 10 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. -
Cancer Drug Pharmacology Table
CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor) -
Modulating the Immune System Through Nanotechnology
Modulating the immune system through nanotechnology Tamara G. Dacobaa,b*, Ana Oliveraa,b*, Dolores Torresb, José Crecente- Campoa,b#, María José Alonsoa,b## aCenter for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain. bDepartment of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain. *These authors contributed equally to this work. #Corresponding author e-mail address: [email protected] ##Corresponding author e-mail address: [email protected] 1 Abstract Nowadays, nanotechnology-based modulation of the immune system is presented as a cutting-edge strategy, which may lead to significant improvements in the treatment of severe diseases. In particular, efforts have been focused on the development of nanotechnology- based vaccines, which could be used for immunization or generation of tolerance. In this review, we highlight how different immune responses can be elicited by tuning nanosystems properties. In addition, we discuss specific formulation approaches designed for the development of anti-infectious and anti-autoimmune vaccines, as well as those intended to prevent the formation of antibodies against biologicals. Graphical abstract Keywords: nanotechnology; immune system; tolerance; stimulation; autoimmune disease; vaccine Highlights - Nanocarriers can be designed to target specific immune cells - Nanovaccines may help fighting diseases that are elusive to traditional vaccines - Nanocarriers can bias the immune response from humoral to cellular - Autoimmune disease treatments can be improved with nanotechnology-based approaches - The use of nanocarriers may help to avoid ADAs formation against biotherapeutics 2 1. Introduction The modulation of the immune system is the base of new and promising therapies for some of the most prevalent and/or severe diseases of our time, such as cancer, HIV, and diabetes. -
Stem Cell/Wnt
Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Stem Cell/Wnt Stem cells are required for continuous tissue maintenance within diverse organs, stem cell activity is often externally dictated by the microenvironment (the niche) so that stem cell output is precisely shaped to meet homeostatic needs or regenerative demands. Several key signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the JAK/STAT, Hedgehog, Wnt, Notch, Smad, PI3K/phosphatase and tensin homolog, and NK-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Recent studies mainly focus on cancer stem cell, induced pluripotent stem cell, neural stem cell and maintenance of embryonic stem cell pluripotency. Cancer stem cells (CSCs) have been believed to be responsible for tumor initiation, growth, and recurrence. Numerous agents have been developed to specifically target CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2, and c-Myc and transcription of GLI. Induced pluripotent stem cells (iPSCs) have the capacity to differentiate into various types of cells, and a self-renewing resource, and scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. References: [1] Clevers H, et al. Science. 2014 Oct 3;346(6205):1248012. [2] Matsui WH. Medicine (Baltimore).