Structural Basis for the Multi-Activity Factor Rad5 in Replication Stress Tolerance

Total Page:16

File Type:pdf, Size:1020Kb

Structural Basis for the Multi-Activity Factor Rad5 in Replication Stress Tolerance ARTICLE https://doi.org/10.1038/s41467-020-20538-w OPEN Structural basis for the multi-activity factor Rad5 in replication stress tolerance Miaomiao Shen 1,2,3, Nalini Dhingra4, Quan Wang 5, Chen Cheng6, Songbiao Zhu7, Xiaolin Tian7, Jun Yu8, Xiaoxin Gong1,2,3, Xuzhichao Li1,2,3, Hongwei Zhang8, Xin Xu 1,2,3, Liting Zhai8, Min Xie8, Ying Gao8, ✉ Haiteng Deng7, Yongning He6, Hengyao Niu5, Xiaolan Zhao 4 & Song Xiang 1,2,3 The yeast protein Rad5 and its orthologs in other eukaryotes promote replication stress 1234567890():,; tolerance and cell survival using their multiple activities, including ubiquitin ligase, replication fork remodeling and DNA lesion targeting activities. Here, we present the crystal structure of a nearly full-length Rad5 protein. The structure shows three distinct, but well-connected, domains required for Rad5’s activities. The spatial arrangement of these domains suggest that different domains can have autonomous activities but also undergo intrinsic coordina- tion. Moreover, our structural, biochemical and cellular studies demonstrate that Rad5’s HIRAN domain mediates interactions with the DNA metabolism maestro factor PCNA and contributes to its poly-ubiquitination, binds to DNA and contributes to the Rad5-catalyzed replication fork regression, defining a new type of HIRAN domains with multiple activities. Our work provides a framework to understand how Rad5 integrates its various activities in replication stress tolerance. 1 Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070 Tianjin, P. R. China. 2 Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070 Tianjin, P. R. China. 3 The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070 Tianjin, P. R. China. 4 Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 5 Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN 47405, USA. 6 State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201210 Shanghai, P. R. China. 7 MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, P. R. China. 8 CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and ✉ Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, P. R. China. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:321 | https://doi.org/10.1038/s41467-020-20538-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20538-w any types of genome lesions can impair the progression data indicate that distinct from the recently characterized HIRAN Mof DNA replication fork and hamper accurate genome domain in HLTF13–15, Rad5’s HIRAN domain possesses multiple duplication and cell survival. The multiple activities of activities that are critical for the Rad5-mediated processes. the budding yeast Rad5 protein help cells to cope with these disruptive events, which greatly increase during replication stress. Results Rad5 possesses a ubiquitin ligase activity and catalyzes the Lys63- The overall structure of the K. lactis Rad5. We screened through linked ubiquitin-chain modification of the proliferating cell a number of fungal species and were able to purify a nearly full- nuclear antigen (PCNA). This modification can trigger the error- length fragment of Rad5 from the yeast K. lactis (KlRad5, con- free branch of DNA damage tolerance (DDT), allowing DNA – taining residues 163–1114, Supplementary Fig. 2a, b) and crys- synthesis via template switch1 4. Rad5 also possesses ATP tallize it in the absence of DNA. KlRad5 shares 46.7% sequence hydrolysis-driven DNA translocase activity, through which it identity with ScRad5. The structure was determined using mer- catalyzes the regression of replication forks5. Replication fork cury anomalous diffraction signals from mercury-derivatized regression is a universal and regulated response to replication crystals. Structures of the mercury-derivatized and native crystals stresses in eukaryotes, which can lead to multiple consequences were refined to resolutions of 3.3 Å and 3.6 Å, respectively such as stabilizing the stalled replication fork and allowing lesion (Table 1). Minimal differences were observed between these bypass6,7. In addition, Rad5 recognizes stressed replication forks structures. In the remainder of the paper, we discuss the structure or DNA damage sites and recruits the translesion DNA poly- – of the mercury-derivatized crystal because of its higher resolution. merase Rev1 to these locations to promote DNA synthesis8 10. The structure revealed an elongated shape of KlRad5 spanning Orthologs of Rad5 have been identified in many eukaryotes. In 140 Å in the longest dimension (Fig. 1b). The monomeric crystal line with their critical roles in replication stress tolerance, the structure docks well into the density determined by negative human Rad5 orthologs, HLTF/HIP116 and SHPRH, are impli- staining electron microscopy (EM, Supplementary Fig. 3a–c) and cated in many types of cancer11,12. is consistent with a molecular weight of 120 kDa determined by A hallmark of the Rad5 family of proteins is the presence of dynamic light scattering, suggesting that KlRad5 adopts a multiple activity domains. The budding yeast S. cerevisiae Rad5 monomeric structure in a solution similar to the crystal and (ScRad5), a model for studying the Rad5 family of proteins, EM structures. The HIRAN, Snf2, and RING domains are well interacts with Rev1 through its N-terminal 30 residues8. The resolved in the structure. Each individual domain generally remaining part of ScRad5 contains three distinct domains, resembles previously reported homologous structures (Supple- including a HIP116 and Rad5 N-terminal (HIRAN) domain, a mentary Fig. 4a–d), but with important differences (detailed superfamily 2 (SF2) DNA translocase motor domain of the Snf2 below). The HIRAN domain and the two lobes in the Snf2 sub-family (Snf2 domain), and a ubiquitin ligase RING domain domain are nearly aligned in a line, the RING domain is located embedded in the Snf2 domain (Fig. 1a and Supplementary Fig. 1). on the side. Extensive interactions are observed between the Snf2 These distinct domains endow Rad5 with DNA damage site and HIRAN domains (Fig. 1c), and between the two lobes of the recognition9, replication fork remodeling5, and ubiquitin ligase1 Snf2 domain (Fig. 2a). In contrast, the RING domain has little activities. The assembly of multiple activity domains in contact with either the Snf2 or the HIRAN domain. Its active site Rad5 suggests complex functional mechanisms. Due to the cur- for ubiquitin transfer superimposes well with equivalent regions rent lack of structural information on the full-length proteins of in reported RING domain structures16 (Supplementary Fig. 4d–e) Rad5 or its orthologs, how they deploy distinct activities to fulfill and is fully solvent-exposed (Supplementary Fig. 4f). their multi-faceted role in replication stress tolerance is poorly understood. We present here a crystal structure of a nearly full-length Rad5 Structural basis for the Snf2 domain activation by DNA. SF2 protein. The structure and structure-guided functional studies enzymes hydrolyze ATP to drive nucleic acid translocation. They provide insights into the coordination of Rad5’s activities. Our contain seven conserved motifs distributed in two lobes. Fig. 1 Structure of KlRad5. a Domain organization of Rad5. The HIRAN and RING domains, the Snf2 domain lobes 1 and 2, and the mediator helix are indicated with different colors. The coloring scheme is used throughout the manuscript unless otherwise indicated. Domain boundaries for the K. latics Rad5 are indicated. b Crystal structure of KlRad5. Structural figures were prepared with PyMOL (http://pymol.org). c The mediator helix mediates interactions between the Snf2 and HIRAN domains. The β1–β3 insertion in the Snf2 domain lobe 1 is highlighted in red. Dashed lines indicate disordered regions in our structure. 2 NATURE COMMUNICATIONS | (2021) 12:321 | https://doi.org/10.1038/s41467-020-20538-w | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20538-w ARTICLE Table 1 Data collection and structure refinement statistics. DNA-binding cleft (Fig. 2c) and found that they caused strong reductions in KlRad5’saffinity to dsDNA (Fig. 2d) and its dsDNA-stimulated ATPase activity (Fig. 2e). The substituted Native crystal Mercury-derivatized crystal proteins behave similarly as the wild-type KlRad5 on a size- exclusion column (Supplementary Fig. 2a), suggesting that the Data collection substitutions did not affect the overall protein structure. Fourth, Space group P6222 P6222 Cell dimensions we introduced the E628A and Q1051D substitutions in KlRad5 a, b, c (Å) 188.54, 187.63, that are expected to disrupt the binding of the attacking water 17 188.54, 198.23 187.63, 197.54 molecule for ATP hydrolysis (Supplementary Fig. 5e), and α, β, γ (°) 90, 90, 120 90, 90, 120 found that they did not affect the overall protein folding Resolution (Å) 50.0–3.60 50.0–3.30 (Supplementary Fig. 2a) but severely inhibited the dsDNA- (3.66–3.60)* (3.36–3.30) stimulated ATPase activity (Fig. 2e). Fifth, the ATPase-inactive Rmerge 0.076 (1.406) 0.132 (3.566) conformation observed in our structure is stabilized by a I/σI 30.89 (1.53) 39.75 (1.80) hydrogen bond between Ser553 in the Snf2 domain lobe 1 and CC1/2 0.997 (0.524) 1.001 (0.548) the Glu953 side chain in lobe 2 (Fig. 2b), which is not expected to Completeness (%) 99.8 (99.0) 100.0 (100.0) interact with lobe 1 in the ATPase-active form (Supplementary Redundancy 6.9 (7.2) 56.1 (50.7) Fig. 5c). We removed this hydrogen bond by the E953A Refinement substitution and found that it did not affect the overall protein Resolution (Å) 50.0–3.60 50–3.30 (3.35–3.30) folding (Supplementary Fig.
Recommended publications
  • UBE2N Antibody (N-Term) Blocking Peptide Synthetic Peptide Catalog # Bp13846a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 UBE2N Antibody (N-term) Blocking peptide Synthetic peptide Catalog # BP13846a Specification UBE2N Antibody (N-term) Blocking UBE2N Antibody (N-term) Blocking peptide - peptide - Background Product Information The modification of proteins with ubiquitin is Primary Accession P61088 animportant cellular mechanism for targeting abnormal or short-livedproteins for degradation. Ubiquitination involves at least UBE2N Antibody (N-term) Blocking peptide - Additional Information threeclasses of enzymes: ubiquitin-activating enzymes, or E1s,ubiquitin-conjugating enzymes, or E2s, and ubiquitin-proteinligases, Gene ID 7334 or E3s. This gene encodes a member of the E2ubiquitin-conjugating enzyme family. Other Names Studies in mouse suggest thatthis protein plays Ubiquitin-conjugating enzyme E2 N, a role in DNA postreplication repair. Bendless-like ubiquitin-conjugating enzyme, [providedby RefSeq]. Ubc13, UbcH13, Ubiquitin carrier protein N, Ubiquitin-protein ligase N, UBE2N, BLU UBE2N Antibody (N-term) Blocking Target/Specificity peptide - References The synthetic peptide sequence used to generate the antibody AP13846a was Zhao, J., et al. BMC Med. Genet. 11, 96 (2010) selected from the N-term region of UBE2N. :Markson, G., et al. Genome Res. A 10 to 100 fold molar excess to antibody is 19(10):1905-1911(2009)Topisirovic, I., et al. recommended. Precise conditions should be Proc. Natl. Acad. Sci. U.S.A. optimized for a particular assay. 106(31):12676-12681(2009)Yin, Q., et al. Nat. Struct. Mol. Biol. 16(6):658-666(2009)van Wijk, Format S.J., et al. Mol. Syst. Biol. 5, 295 (2009) : Peptides are lyophilized in a solid powder format.
    [Show full text]
  • Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass
    cancers Review Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass Nicole A. Wilkinson y, Katherine S. Mnuskin y, Nicholas W. Ashton * and Roger Woodgate * Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA; [email protected] (N.A.W.); [email protected] (K.S.M.) * Correspondence: [email protected] (N.W.A.); [email protected] (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.) Co-first authors. y Received: 29 August 2020; Accepted: 29 September 2020; Published: 2 October 2020 Simple Summary: Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract: Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs).
    [Show full text]
  • Identification and Characterisation of Human Cytomegalovirus-Mediated Degradation of Helicase-Like Transcription Factor
    Identification and Characterisation of Human Cytomegalovirus-Mediated Degradation of Helicase-Like Transcription Factor Kai-Min Lin Department of Medicine Cambridge Institute for Medical Research University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Fitzwilliam College September 2020 Declaration I hereby declare, that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree of qualification in this, or any other university. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as where specified in the text and acknowledgments. This dissertation does not exceed the specified word limit of 60,000 words as defined by the Degree Committee, excluding figures, photographs, tables, appendices and bibliography. Kai-Min Lin September, 2020 I Summary Identification and characterisation of human cytomegalovirus-mediated degradation of helicase-like transcription factor Kai-Min Lin Viruses are known to degrade host factors that are important in innate antiviral immunity in order to infect successfully. To systematically identify host proteins targeted for early degradation by human cytomegalovirus (HCMV), the lab developed orthogonal screens using high resolution multiplexed mass spectrometry. Taking advantage of broad and selective proteasome and lysosome inhibitors, proteasomal degradation was found to be heavily exploited by HCMV. Several known antiviral restriction factors, including components of cellular promyelocytic leukemia (PML) were enriched in a shortlist of proteasomally degraded proteins during infection. A particularly robust novel ‘hit’ was helicase-like transcription factor (HLTF), a DNA repair protein that participates in error-free repair of stalled replication forks.
    [Show full text]
  • Loss of HLTF Function Promotes Intestinal Carcinogenesis Sumit Sandhu1, Xiaoli Wu1, Zinnatun Nabi1, Mojgan Rastegar1,3,4, Sam Kung3, Sabine Mai1,2 and Hao Ding1*
    Sandhu et al. Molecular Cancer 2012, 11:18 http://www.molecular-cancer.com/content/11/1/18 RESEARCH Open Access Loss of HLTF function promotes intestinal carcinogenesis Sumit Sandhu1, Xiaoli Wu1, Zinnatun Nabi1, Mojgan Rastegar1,3,4, Sam Kung3, Sabine Mai1,2 and Hao Ding1* Abstract Background: HLTF (Helicase-like Transcription Factor) is a DNA helicase protein homologous to the SWI/SNF family involved in the maintenance of genomic stability and the regulation of gene expression. HLTF has also been found to be frequently inactivated by promoter hypermethylation in human colon cancers. Whether this epigenetic event is required for intestinal carcinogenesis is unknown. Results: To address the role of loss of HLTF function in the development of intestinal cancer, we generated Hltf deficient mice. These mutant mice showed normal development, and did not develop intestinal tumors, indicating that loss of Hltf function by itself is insufficient to induce the formation of intestinal cancer. On the Apcmin/+ mutant background, Hltf- deficiency was found to significantly increase the formation of intestinal adenocarcinoma and colon cancers. Cytogenetic analysis of colon tumor cells from Hltf -/-/Apcmin/+ mice revealed a high incidence of gross chromosomal instabilities, including Robertsonian fusions, chromosomal fragments and aneuploidy. None of these genetic alterations were observed in the colon tumor cells derived from Apcmin/+ mice. Increased tumor growth and genomic instability was also demonstrated in HCT116 human colon cancer cells in which HLTF expression was significantly decreased. Conclusion: Taken together, our results demonstrate that loss of HLTF function promotes the malignant transformation of intestinal or colonic adenomas to carcinomas by inducing genomic instability.
    [Show full text]
  • Lymph Node Metastasis Is Infrequent in Patients with Highly-Methylated Colorectal Cancer
    ANTICANCER RESEARCH 26: 55-58 (2006) Lymph Node Metastasis is Infrequent in Patients with Highly-methylated Colorectal Cancer KENJI HIBI1 and AKIMASA NAKAO2 1Department of Surgery, Seirei Hospital, 56 Kawanayama-machi, Showa-ku, Nagoya 466-8633; 2Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan Abstract. In this study, the combined methylation status of p16, was found to harbor promoter hypermethylation p16, p14, HLTF, CDH13 and RUNX3 was examined in 59 associated with the loss of protein expression in cancer cells resected primary colorectal cancers using methylation-specific (7). Though homozygous deletions of the p16 locus were not PCR and the methylation status was correlated with the present (8), p16 promoter methylation was detected in clinicopathological features of the affected patients. A colorectal cancer (9). Subsequently, it has been found that significant difference was found in lymph node metastasis human p14 was also silenced by promoter hypermethylation (p=0.0359) on comparing the methylation status in in colorectal cancer (10). p14 interacts with the MDM2 colorectal cancers with lymph node metastasis to those protein and neutralizes the MDM2-mediated degradation without. There was also a significant gender difference of p53. Thus, p14 acts as a tumor suppressor gene via (p=0.0248) when the methylation status was compared. inhibition of p53 degradation. These studies indicated that Colorectal cancer without lymph node metastasis frequently p16 and p14 inactivation due to promoter methylation was exhibited aberrant methylation of the p16, p14, HLTF, important for colorectal tumorigenesis. We previously CDH13 and RUNX3 genes. examined the methylation status of these genes in 86 primary colorectal cancers using methylation-specific PCR There is now strong evidence that a series of genetic (MSP) (11).
    [Show full text]
  • Fission Yeast Rad8/HLTF Facilitates Rad52-Dependent Chromosomal
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425428; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Fission yeast Rad8/HLTF facilitates Rad52-dependent 2 chromosomal rearrangements through PCNA lysine 107 3 ubiquitination 4 5 Jie Su, Naoko Toyofuku, Takuro Nakagawa * 6 Department of Biological Sciences, Graduate School of Science, Osaka University, Japan 7 *For correspondence: [email protected] 8 9 10 Abstract 11 Rad52 recombinase can cause gross chromosomal rearrangements (GCRs). However, the 12 mechanism of Rad52-dependent GCRs remains unclear. Here, we show that fission yeast 13 Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) 14 of PCNA, a DNA sliding clamp. Loss of Rad8 reduced isochromosomes resulting from 15 centromere inverted repeat recombination. Rad8 HIRAN and RING finger mutations reduced 16 GCRs, suggesting that Rad8 facilitates GCRs through 3' DNA-end binding and ubiquitin ligase 17 activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating proteins were required for GCRs. 18 Consistent with this, PCNA K107R but not K164R mutation greatly reduced GCRs. Rad8- 19 dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, 20 rad8, and rad52 mutations epistatically reduced GCRs. Remarkably, K107 is located at the 21 interface between PCNA subunits, and an interface mutation D150E bypassed the requirement 22 of PCNA K107 ubiquitination for GCRs.
    [Show full text]
  • UBE2N Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD8193 UBE2N Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: The UBE2V1-UBE2N and UBE2V2-UBE2N heterodimers catalyze the synthesis of non- canonical 'Lys-63'-linked polyubiquitin chains. This type of polyubiquitination does not lead to protein degradation by the proteasome. Mediates transcriptional activation of target genes. Plays a role in the control of progress through the cell cycle and differentiation. Plays a role in the error-free DNA repair pathway and contributes to the survival of cells after DNA damage. Acts together with the E3 ligases, HLTF and SHPRH, in the 'Lys-63'- linked poly-ubiquitination of PCNA upon genotoxic stress, which is required for DNA repair. Appears to act together with E3 ligase RNF5 in the 'Lys-63'-linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD. Promotes TRIM5 capsid-specific restriction activity and the UBE2V1-UBE2N heterodimer acts in concert with TRIM5 to generate 'Lys-63'-linked polyubiquitin chains which activate the MAP3K7/TAK1 complex which in turn results in the induction and expression of NF-kappa-B and MAPK-responsive inflammatory genes. Together with RNF135 and UB2V1, catalyzes the viral RNA-dependent 'Lys-63'-linked polyubiquitination of RIG-I/DDX58 to activate the downstream signaling pathway that leads to interferon beta production. Uniprot:P61088 Alternative Names: Bendless like ubiquitin conjugating enzyme;
    [Show full text]
  • Highly-Methylated Colorectal Cancers Show Poorly-Differentiated Phenotype
    ANTICANCER RESEARCH 26: 4263-4266 (2006) Highly-methylated Colorectal Cancers Show Poorly-differentiated Phenotype KENJI HIBI1,2 and AKIMASA NAKAO2 1Department of Surgery, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501; 2Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan Abstract. The combined methylation status of p16, p14, HLTF, human p14 was also silenced by promoter hypermethylation SOCS-1, CDH13, RUNX3 and CHFR was examined in 58 in colorectal cancer (10). p14 interacts with the MDM2 resected primary colorectal cancers using methylation-specific protein and neutralizes the MDM2-mediated degradation of PCR, and the methylation status was correlated with the p53. Thus, p14 acts as a tumor suppressor gene via inhibition clinicopathological features of the affected patients. A significant of p53 degradation. These studies indicated that p16 and p14 difference in histology (p=0.0041) was observed when the number inactivation due to promoter methylation was important for of methylated genes of poorly-differentiated colorectal cancers was colorectal tumorigenesis. We previously examined the compared to that of other differentiated ones. Poorly-differentiated methylation status of these genes in 86 primary colorectal colorectal cancers preferentially exhibited gene methylation. cancers using methylation-specific PCR (MSP) (11). Aberrant promoter methylation of p16 and p14 genes was detected in There is now strong evidence that a series of genetic 43 out of 86 (50 %) and 25 out of 86 (29%) colorectal cancer alterations in both dominant oncogenes and tumor suppressor specimens, respectively. genes are involved in the pathogenesis of human colorectal The loss of expression of a helicase-like transcription factor cancer.
    [Show full text]
  • Temporal Epigenomic Profiling Identifies AHR As a Dynamic Super-Enhancer Controlled Regulator of Mesenchymal Multipotency
    bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Gerard et al.: Time-series epigenomic profiles of mesenchymal differentiation 1 Temporal epigenomic profiling identifies AHR as a 2 dynamic super-enhancer controlled regulator of 3 mesenchymal multipotency 4 Deborah Gérard1, Florian Schmidt2,3, Aurélien Ginolhac1, Martine Schmitz1, 5 Rashi Halder4, Peter Ebert3, Marcel H. Schulz2,3, Thomas Sauter1 and Lasse 6 Sinkkonen1* 7 1Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, 8 Luxembourg 9 2Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics 10 Campus, Germany 11 3Computational Biology & Applied Algorithmics, Max Planck Institute for 12 Informatics, Saarland Informatics Campus, Germany 13 4Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur- 14 Alzette, L-4362, Luxembourg 15 16 [email protected]; [email protected]; [email protected]; 17 [email protected]; [email protected]; [email protected]; 18 [email protected]; [email protected]; [email protected] 19 20 *Corresponding author: Dr. Lasse Sinkkonen 21 Life Sciences Research Unit, University of Luxembourg 22 6, Avenue du Swing, L-4367 Belvaux, Luxembourg 23 Tel.: +352-4666446839 24 E-mail: [email protected] 25 1 bioRxiv preprint doi: https://doi.org/10.1101/183988; this version posted November 17, 2017.
    [Show full text]
  • The Role of SMARCAD1 During Replication Stress Sarah Joseph
    The role of SMARCAD1 during replication stress Sarah Joseph Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Sarah Joseph All Rights Reserved Abstract The role of SMARCAD1 during replication stress Sarah Joseph Heterozygous mutations in BRCA1 or BRCA2 predispose carriers to an increased risk for breast or ovarian cancer. Both BRCA1 and BRCA2 (BRCA1/2) play an integral role in promoting genomic stability through their respective actions during homologous recombination (HR) mediated repair and stalled replication fork protection from nucleolytic degradation. SMARCAD1 (SD1) is a SWI/SNF chromatin remodeler that has been implicated in promoting long-range end resection and contributes to HR. Using human cell lines, we show that SMARCAD1 promotes nucleolytic degradation in BRCA1/2-deficient cells dependent on its chromatin remodeling activity. Moreover, SMARCAD1 prevents DNA break formation and promotes fork restart at stalled replication forks. These studies identify a new role for SMARCAD1 at the replication fork. In addition to the work presented here, I discuss a method for introducing stop codons (nonsense mutations) into genes using CRISPR-mediated base editing, called iSTOP, and provide an online resource for accessing the sequence of iSTOP sgRNASs (sgSTOPs) for five base editor variants (VQR-BE3, EQR-BE3, VRER-BE3, SaBE3, and SaKKH-BE3) in humans and over 3 million targetable gene coordinates for eight eukaryotic species. Ultimately, with improvements to CRISPR base editors this method can help model and study nonsense mutations in human disease. Table of Contents List of Figures .................................................................................................................
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL INIST-CNRS Gene Section Review HLTF (helicase-like transcription factor) Ludovic Dhont, Alexandra Belayew Molecular Biology, Health Institute, University of Mons, Mons, Belgium. [email protected] Published in Atlas Database: November 2016 Online updated version : http://AtlasGeneticsOncology.org/Genes/HLTFID42332ch3q24.html Printable original version : http://documents.irevues.inist.fr/bitstream/handle/2042/68527/11-2016-HLTFID42332ch3q24.pdf DOI: 10.4267/2042/68527 This article is an update of : HLTF (helicase-like transcription factor). Atlas Genet Cytogenet Oncol Haematol Dimitrova J, Belayew A. HLTF (helicase-like transcription factor). Atlas Genet Cytogenet Oncol Haematol 2010;14(10) This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2017 Atlas of Genetics and Cytogenetics in Oncology and Haematology Abstract domains involved in DNA repair. HLTF is a transcription factor - The Helicase-Like These data support a role of tumor suppressor gene Transcription Factor (HLTF/SMARCA3) belongs to for HLTF. the family of SWI/SNF proteins that use the energy The first association between HLTF inactivation and of ATP hydrolysis to remodel chromatin in a variety tumorigenesis was shown when hypermethylation of of cellular processes. the HLTF promoter was detected in 43% of primary Several groups independently isolated HLTF colon tumors and 22-55% of gastric cancers. through its capacity to selectively interact with a Moreover, HLTF deficiency in Apc-/+ mice induced DNA cis-element in the promoter or enhancer of the transition from colon adenocarcinoma to a different genes involved in cardiac development carcinoma with high chromosomal instability.
    [Show full text]
  • Methylation of Serum DNA Is an Independent Prognostic Marker In
    Imaging, Diagnosis, Prognosis Methylation of Serum DNA Is an Independent Prognostic Marker in Colorectal Cancer Maike Wallner,1Andreas Herbst,1Andrea Behrens,1Alexander Crispin,2 Petra Stieber,3 Burkhard Go« ke,1RolfLamerz, 1and Frank T. Kolligs1 Abstract Purpose: Aberrant CpG island hypermethylation is a feature of a subgroup of colorectal cancers, which can be detected in the serum ofaffected patients. This study was designed to identify methylation targets with prognostic significance in the serum of patients with colorectal cancer. Experimental Design: In a gene evaluation set consisting ofsera from 24 patients with local colorectal cancers, 14 with metastasized disease, and 20 healthy controls, the genes HPP1/TPEF, HLTF,andhMLH1were identified as potential serum DNA methylation markers.These genes were further analyzed in a test set of sera of 104 patients with colorectal cancer. Results: Methylation of HLTF, HPP1/TPEF,andhMLH1 was found to be significantly correlated with tumor size, and methylation of HLTF and HPP1/TPEF was significantly associated with metastatic disease and tumor stage. Moreover, methylation of HPP1/TPEF was also associated with serum carcinoembryonic antigen. The prognostic relevance ofmethylation ofthese genes was tested in pretherapeutic sera of77 patients with known follow-up. Patients with methylation of HPP1/TPEF or HLTF were found to have unfavorable prognosis (P = 0.001 and 0.008). In contrast, serum methylation of hMLH1was not associated with a higher risk ofdeath. Multivariate analysis showed methylated HPP1 and/or HLTF serum DNA to be independently associated with poor outcome and a relative risk ofdeath of3.4 (95% confidence interval, 1.4-8.1; P = 0.007).
    [Show full text]