The Relationship Between Quaternary Volcanism in Central Mexico and the Seismicity and Structure of Subducted Ocean Lithosphere

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Quaternary Volcanism in Central Mexico and the Seismicity and Structure of Subducted Ocean Lithosphere The relationship between Quaternary volcanism in central Mexico and the seismicity and structure of subducted ocean lithosphere GRAHAM T. NIXON Department of Geological Sciences, University of British Columbia, Vancouver, British Columbia V6TI W5, Canada ABSTRACT Several aspects of this study have a bearing on the segmented nature of converging margins in general: Late Quaternary volcanism in central Mexico is related to the 1. The tectonic evolution of the ocean floor may determine the subduction of young ocean lithosphere at the Middle America. nature of segmentation at the site of subduction. Trench. Along-arc variations in seismicity, volcano structure, and 2. The complete record of volcanism in the TMVB over the composition of volcanic products bear a remarkable correlation past million years can be related to the present plate configuration. with the age and structural framework of the downgoing slab. 3. Alkaline and calc-alkaline volcanism have developed con- Morphological and pétrographie characteristics of major temporaneously at a converging plate margin. volcanoes within the Trans-Mexican Volcanic Belt (TMVB) serve 4. Lineaments in volcanic arcs may reflect the structural com- to distinguish two calc-alkaline subprovinces: plexity of the crust rather than segment boundaries in the sub- 1. A western arc, averaging 60 km in width, associated with ducted slab. aseismic subduction of the Rivera plate. The main cones of this region are dominated by two-pyroxene andesites, comprise volumes INTRODUCTION «S70 km3, and stand less than 3,000 m above sea level. 2. A broad central and eastern arc related to subduction of a Studies of convergent plate margins during the past decade gently inclined segment of the Cocos plate bounded by the Rivera have assembled a wealth of geological and geophysical evidence transform and the Tehuantepec Ridge. Major volcanic edifices pos- that permits a tectonic subdivision of subduction zones (Stoiber sess summit elevations in the range 4,000 to 6,000 m, have appro- and Carr, 1973; Carrand others, 1974; Stauder, 1973, 1975; Bara- priately larger volumes (typically >200 km3) and are constructed zangi and Isacks, 1976). According to models developed by Stoiber with a high proportion of amphibole-bearing lavas. and Carr (1973), the descending lithosphere is broken by tear faults, The boundary between these subprovinces is marked by a propagated at the trench, that divide the slab into discrete segments, north-south-oriented structural depression, the Colima Graben, typically less than 300 km across. Each segment of oceanic litho- and it coincides with a 100-km offset in the "volcanic front." Exten- sphere descends into the mantle with a different strike and dip, sional tectonism in the Colima Graben, accompanied by mixed producing offsets in features such as the inclined seismic zone, calc-alkaline and alkaline volcanism of potassic affinity, is likely trench axis, and alignment of cones along the "volcanic front." The related to a hinge-type transform fault which marks the Cocos- boundaries between segments are recognized by transverse features Rivera plate juncture in the downgoing slab. such as mapped fault zones (commonly with strike-slip displace- A third segment of ocean floor is presently interacting with ment), elongate clusters of cinder cones or loci of large volcanic continental lithosphere south of the Gulf of Tehuantepec, where eruptions, and concentrations of shallow earthquakes. Where all Quaternary volcanism is weakly developed within a tectonically these criteria are used in combination, the weight of evidence gener- complex region that marks the diffuse Cocos-NOAM-Caribbean ally favors segmentation, although the actual number of segments triple junction. The northern limit of this triple junction is defined in any particular arc may be disputed. As the model is extended into by the seismically active Isthmus fault, which may be related to areas of more complex plate interaction—for example, near the alkaline volcanic activity at San Andrés Tuxtla. triple junction of the Cocos, Caribbean, and North American A tectonic reconstruction based on the evolution of oceanic (NOAM) plates (Carr, 1976—or if it is applied to arcs where only a crust reveals that the distribution of intermediate-depth earth- limited number of the criteria that purport to distinguish segments quakes along the arc is directly dependent upon the age of the are present—as in the Cascade volcanic chain (Hughes and others, subducted slab. Ocean lithosphere younger than approximately 20 1980)—the relationships between the subducted slab and tectonic m.y. is subducted aseismically at convergence rates approaching 9 fabric of the overriding plate become more questionable. cm/yr. The length of the inclined seismic zone indicates that the Regional lineaments in the TMVB formed by Holocene cinder time constant for thermal relaxation in the slab is approximately 4 cones and sites of historic eruptions served as the basis for a seg- m.y. The TMVB overlies the aseismic extension of this young ocean mentation model for the Mexican arc (Stoiber and Carr, 1973; Carr lithosphere. and others, 1974). The arc was subdivided into six segments, about This article is included in a set of papers presented at a symposium on "Subduction of oceanic plates," held in November 1979. Geological Society of America Bulletin, v. 93, p. 514-523, 5 figs., June 1982. 514 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/6/514/3434432/i0016-7606-93-6-514.pdf by guest on 25 September 2021 Figure 1. Generalized tectonic map of Mexico modified from de Cserna (1961). Trans-Mexican Volcanic Belt: vertical ruling = western arc; stipple = calc-alkaline- alkaline province of the Colima Graben; V-pattern = central and eastern arc. Filled triangles denote major calc-alkaline cones of the "volcanic front"; open triangles repre- sent selected smaller cones; filled circles indicate caldera complexes. 1 = San Juan; 2 = Sanganguey; 3 = Ceboruco; 4 = Tequila; 5 = Sierra La Primavera; 6 = Nevado de Colima; 7 = Volcan Colima; 8 = Paricutin; 9 = Nevado de Toluca; 10 = Popocatépetl; 11 = Iztacc'ihuatl; 12 = La Malinche; 13 = Los Humeros; 14 = Pico de Orizaba; 15 = San Andrés Tuxtla; 16 = El Chichón; 17 = Tacana. Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/93/6/514/3434432/i0016-7606-93-6-514.pdf by guest on 25 September 2021 516 G. T. NIXON 150 to 200 km in width, whose boundaries were assumed to lie volcanism in the TMVB began about 30 m.y. ago, but that volcanic parallel to the northeasterly direction of underthrusting at the activity was not widespread until mid-Miocene time. An Oligocene trench. Study of earthquake focal mechanisms of the Central Amer- to Holocene age was accepted in later studies of the same region ican arc by Dean and Drake (1978) did not substantiate the pro- (Negendank, 1972, 1973; Bloomfield, 1975; Bloomfield and Valas- posed segmented nature of the Mexican continental margin. tro, 1977; Richter and Negendank, 1976). At the eastern extremity I will review the general structure and compositional variabil- of the volcanic belt, Robin (1976) recognized a "primitive" TMVB, ity of volcanism in central Mexico and relate these features to the comprising Miocene andesites, and a later phase of "Neovolcanic" seismicity and structure of the young ocean lithosphere presently activity, commencing approximately 2.5 m.y. B.P. (Robin and Nic- being consumed at the Middle America Trench. It will be shown olas, 1978; Caritagrel and Robin, 1978). In fact, Cantagrel and that the tectonic evolution and age of the ocean lithosphere may Robin (1978) state that the east-west trend of contemporary play an important role in determining both the nature of segmenta- calc-alkaline volcanism has changed little since the mid-Miocene. tion and the seismic signature of the subducted slab. Although this claim may indeed be correct, it certainly requires substantiating by further K-Ar geochronometry in central and western Mexico. New K-Ar dates obtained on andesitic lavas asso- THE TRANS-MEXICAN VOLCANIC BELT ciated with the earliest stages of cone-building at Iztacc'ihuatl, near Mexico City, and at Volcán Tequila, in the western part of the arc, The locus of andesitic volcanism in central Mexico extends in a yield ages of approximately 1 m.y. (G. T. Nixon, J. E. Harakel, R. west-east direction for more than 1,000 km, from the Pacific Coast L. Armstrong, and A. Demant, unpub. data). This study, there- to the margins of the High Mexican Plateau overlooking the Gulf fore, is concerned specifically with volcanic rocks of the TMVB of Mexico. Inspection of the Tectonic Map of Mexico (Fig. 1; de younger than ~ 1 m.y. old. Cserna, 1961) reveals the complex nature and extreme diversity of Chemical and petrographic data show that the TMVB may be "basement" terranes underlying the volcanic belt as it transects the divided into two distinct calc-alkaline provinces (Fig. 1): (1) a structural grain of the Mexican continent (de Cserna, 1965, 1976; western arc, averaging 60 km in width and extending from the Demant and Robin, 1975). In the west, the TMVB is underlain by Pacific coast to the Colima Graben, and (2) a central and east- the ignimbrite province of the Sierra Madre Occidental which ern arc, stretching from the Colima volcanoes through the extends northward along the western Cordillera of Mexico to the areally extensive cinder cones and lava flows of Michoacan to United States border. Where the two provinces intersect, gently the locally more restricted volcanism associated with major dipping volcanic formations of the Sierra Madre Occidental are cut volcanic lineaments oriented north-south in the Sierra Ne- by longitudinal graben structures associated with Quaternary vol- vada (Iztacciihuatl-Popocatépetl) and Orizaba-Cofre de Perote canic activity within thé TMVB. High-angle faults and tensional regions. fractures extend from Volcan Sanganguey, near Tepic, to the Major cones of the western TMVB are built predominantly of Chapala region, 50 km south of Guadalajara (Demant and others.
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Shape of the Subducted Rivera and Cocos Plates in Southern Mexico
    JOURNALOF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 12,357-12,373, JULY 10, 1995 Shapeof the subductedRivera and Cocosplates in southern Mexico: Seismic and tectonicimplications Mario Pardo and Germdo Sufirez Insfitutode Geoffsica,Universidad Nacional Aut6noma de M6xico Abstract.The geometry of thesubducted Rivera and Cocos plates beneath the North American platein southernMexico was determined based on the accurately located hypocenters oflocal and te!eseismicearthquakes. The hypocenters ofthe teleseisms were relocated, and the focal depths of 21 eventswere constrainedusing a bodywave inversion scheme. The suductionin southern Mexicomay be approximated asa subhorizontalslabbounded atthe edges by the steep subduction geometryof theCocos plate beneath the Caribbean plate to the east and of theRivera plate beneath NorthAmerica to thewest. The dip of theinterplate contact geometry is constantto a depthof 30 kin,and lateral changes in thedip of thesubducted plate are only observed once it isdecoupled fromthe overriding plate. On thebasis of theseismicity, the focal mechanisms, and the geometry ofthe downgoing slab, southern Mexico may be segmented into four regions ß(1) theJalisco regionto thewest, where the Rivera plate subducts at a steepangle that resembles the geometry of theCocos plate beneath the Caribbean plate in CentralAmerica; (2) theMichoacan region, where thedip angleof theCocos plate decreases gradually toward the southeast, (3) theGuerrero-Oaxac.a region,bounded approximately by theonshore projection of theOrozco and O'Gorman
    [Show full text]
  • SUMMARIES of TECHNICAL REPORTS, VOLUME X Prepared by Participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM June 1980
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Office of Earthquake Studies SUMMARIES OF TECHNICAL REPORTS, VOLUME X Prepared by participants in NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM June 1980 OPEN-FILE REPORT 80-842 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature Menlo Park, California 1980 CONTENTS Earthquake Hazards Reduction Program I. Earthquake Hazards Studies (H) Page Objective 1, Establish an accurate and reliable national earthquake data base.——————————————————• Objective 2. Delineate and evaluate earthquake hazards and risk in the United States on a national scale. ——————————————————————————• 66 Objective 3. Delineate and evaluate earthquake hazards and risk in earthquake-prone urbanized regions in the western United States.——————————————• 77 Objective 4, Delineate and evaluate earthquake hazards and risk in earthquake-prone regions in the eastern United States. ————— —————————— — ———— 139 Objective 5. Improve capability to evaluate earthquake potential and predict character of surface faulting.———————————————— ————————— 171 Objective 6. Improve capability to predict character of damaging ground shaking.———————————————— 245 Objective 7. Improve capability to predict incidence, nature and extent of earthquake-induced ground failures, particularly landsliding and liquefaction.--——— 293 Objective 8. Improve capability to predict earthquake losses.— 310 II. Earthquake Prediction Studies (P) Objective 1. Observe at a reconnaissance
    [Show full text]
  • Morphotectonic Zones Along the Coast of the Pacific Continental Margin, Southern Mexico
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223022792 Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico Article in Geomorphology · July 1999 DOI: 10.1016/S0169-555X(99)00016-1 CITATIONS READS 37 76 2 authors, including: J. Urrutia Fucugauchi Universidad Nacional Autónoma de México 542 PUBLICATIONS 18,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: CHICAGO View project Arco magmático Pérmico relacionado con la zona de sutura Ouachita en Chihuahua, México View project All content following this page was uploaded by J. Urrutia Fucugauchi on 31 January 2014. The user has requested enhancement of the downloaded file. Geomorphology 28 Ž1999. 237–250 Morphotectonic zones along the coast of the Pacific continental margin, southern Mexico Marıa-Teresa´ Ramırez-Herrera´ a,), Jaime Urrutia-Fucugauchi b,1 a Instituto de Geografıa,´ Departamento de Geografıa´ Fısica,´ UNAM, Ciudad UniÕersitaria, C.P. 04510, Mexico, D.F., Mexico b Instituto de Geofısica,´ Laboratorio de Paleomagnetismo y Geofısica´ Nuclear, UNAM, Ciudad UniÕersitaria, C.P. 04510 Mexico, D.F., Mexico Received 15 December 1997; received in revised form 20 August 1998; accepted 22 November 1998 Abstract Geomorphic analysis, employing topographic, morphologic, geologic, and bathymetric maps, and field studies show that the morphology of the southern coast of Mexico can be linked to lateral variations in the geometry and tectonism of the subduction zone. A reconnaissance study, based on the regional morphological characteristics and correlation with seismotectonic segments, regional tectonics and major bathymetric features, allows identification of several morphotectonic zones along the coast of southern Mexico: Ž1.
    [Show full text]
  • 1. Introduction1
    Kimura, G., Silver, E.A., Blum, P., et al., 1997 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 170 1. INTRODUCTION1 Shipboard Scientific Party2 The planet is profoundly affected by the distributions and rates of al., 1990), which extends from the Caribbean coast of Colombia to materials that enter subduction zones. The material that is accreted to Limon, Costa Rica. In Costa Rica, the boundary consists of a diffuse the upper plate results in growth of the continental mass, and fluids left lateral shear zone from Limon to the Middle America Trench squeezed out of this accreted mass have significance for biologic and (Ponce and Case, 1987; Jacob and Pacheco, 1991; Guendel and geochemical processes occurring on the margins. Material that is not Pacheco, 1992; Goes et al., 1993; Fan et al., 1993; Marshall et al., accreted or underplated to the margin bypasses surface residency and 1993; Fisher et al., 1994; Protti and Schwartz, 1994). The north- descends into the mantle, chemically affecting both the mantle and trending boundary between the Cocos and Nazca Plates is the right- magmas generated therefrom. Subduction of the igneous ocean crust lateral Panama fracture zone. West of this fracture zone is the Cocos returns rocks to the mantle that earlier had been fractionated from it Ridge, a trace of the Galapagos Hotspot, which subducts beneath the in spreading centers, along with products of chemical alteration that Costa Rican segment of the Panama Block. occur on the seafloor. Sediments that are subducted include biogenic, The Nicoya Peninsula is composed of Late Jurassic to Late Creta- volcanogenic, authigenic, and terrigenous debris.
    [Show full text]
  • Geometry and Seismic Properties of the Subducting Cocos Plate in Central Mexico Y
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, B06310, doi:10.1029/2009JB006942, 2010 Click Here for Full Article Geometry and seismic properties of the subducting Cocos plate in central Mexico Y. Kim,1 R. W. Clayton,1 and J. M. Jackson1 Received 31 August 2009; revised 22 December 2009; accepted 25 January 2010; published 17 June 2010. [1] The geometry and properties of the interface of the Cocos plate beneath central Mexico are determined from the receiver functions (RFs) utilizing data from the Meso America Subduction Experiment (MASE). The RF image shows that the subducting oceanic crust is shallowly dipping to the north at 15° for 80 km from Acapulco and then horizontally underplates the continental crust for approximately 200 km to the Trans‐ Mexican Volcanic Belt (TMVB). The crustal image also shows that there is no continental root associated with the TMVB. The migrated image of the RFs shows that the slab is steeply dipping into the mantle at about 75° beneath the TMVB. Both the continental and oceanic Moho are clearly seen in both images, and modeling of the RF conversion amplitudes and timings of the underplated features reveals a thin low‐velocity zone between the plate and the continental crust that appears to absorb nearly all of the strain between the upper plate and the slab. By inverting RF amplitudes of the converted phases and their time separations, we produce detailed maps of the seismic properties of the upper and lower oceanic crust of the subducting Cocos plate and its thickness. High Poisson’s and Vp/Vs ratios due to anomalously low S wave velocity at the upper oceanic crust in the flat slab region may indicate the presence of water and hydrous minerals or high pore pressure.
    [Show full text]
  • Structure of Central and Southern Mexico from Velocity and Attenuation Tomography Ting Chen1 and Robert W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B09302, doi:10.1029/2012JB009233, 2012 Structure of central and southern Mexico from velocity and attenuation tomography Ting Chen1 and Robert W. Clayton1 Received 13 February 2012; revised 18 June 2012; accepted 20 July 2012; published 5 September 2012. [1] The 3D Vp, Vp/Vs, P- and S-wave attenuation structure of the Cocos subduction zone in Mexico is imaged using earthquakes recorded by two temporary seismic arrays and local stations. Direct P wave arrivals on vertical components and direct S wave arrivals on transverse components from local earthquakes are used for velocity imaging. Relative delay times for P and PKP phases from teleseismic events are also used to obtain a deeper velocity structure beneath the southern seismic array. Using a spectral-decay method, we calculate a path attenuation operator t* for each P and S waveform from local events, À1 À1 and then invert for 3D spatial variations in attenuation (Qp and Qs ). Inversion results reveal a low-attenuation and high-velocity Cocos slab. The slab dip angle increases from almost flat in central Mexico near Mexico City to about 30 in southern Mexico near the Isthmus of Tehuantepec. High attenuation and low velocity in the crust beneath the Trans-Mexico Volcanic Belt correlate with low resistivity, and are probably related to dehydration of the slab and melting processes. The most pronounced high-attenuation, low-Vp and high-Vp/Vs anomaly is found in the crust beneath the Veracruz Basin. A high-velocity structure dipping into the mantle from the side of Gulf of Mexico coincides with a discontinuity from a receiver functions study, and provides an evidence for the collision between the Yucatán Block and Mexico in the Miocene.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Seismic scattering in the subduction zone of the Middle America region Permalink https://escholarship.org/uc/item/2xz844wg Author Dominguez, Luis Antonio Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles Seismic scattering in the subduction zone of the Middle America region A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Luis Antonio Dominguez-Ramirez 2012 c Copyright by Luis Antonio Dominguez-Ramirez 2012 Abstract of the Dissertation Seismic scattering in the subduction zone of the Middle America region by Luis Antonio Dominguez-Ramirez Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2012 Professor Paul M. Davis, Chair Seismic scattering is the direct consequence of the changes in the elastic properties of the medium. These so-call heterogeneities play a fundamental role for the understanding of the propagation of seismic waves and their possible effect on the analysis of seismic risk. This dissertation examines the scattering properties of Middle America region at continental scale, and provides a discussion of the current methods aimed to model the effect of small-scale heterogeneities in the crust. Using data from a portable array deployed in Mexico perpendicular to the trench, we iden- tified and modeled trapped crustal waves that were previously undocumented. When low frequency (f < 1Hz) body phases from teleseismic events reach the trench from the ocean side, the lateral discontinuity between the continental and oceanic crust behaves as a line source that generates surface waves.
    [Show full text]
  • Geophysical Modelling of the Middle America Trench Using Gmt
    Annals of Valahia University of Targoviste. Geographical Series (2019), 19(2): 73-94 DOI: 10.2478/avutgs-2019-0008 ISSN (Print): 2393-1485, ISSN (Online): 2393-1493 © Copyright by Department of Geography. Valahia University of Targoviste GEOPHYSICAL MODELLING OF THE MIDDLE AMERICA TRENCH USING GMT Polina LEMENKOVA Ocean University of China, College of Marine Geo-sciences. 238 Songling Rd. Laoshan, 266100, Qingdao, Shandong, PRC. Tel.: +86-1768-554-1605. email: [email protected] Abstract The study is focused on the geomorphological analysis of the Guatemala Trench, East Pacific Ocean. Research goal is to find geometric variations in western and eastern flanks of the trench and correlation of the submarine geomorphology with geologic settings and seismicity through numerical and graphical modelling. Methods include GMT based analysis of the bathymetry, geomorphic shape and surface trends in topography and gravity grids. Dataset contains raster grids on bathymetry, gravity, geoid and geological layers. Technical workflow is following: 1) Bathymetric mapping by modules ('grdcut', 'grdimage'); 2) Datasets visualizing and analysis, 3) Topographic and gravimetric surface modelling by ASCII data; 4) Cartographic mapping ('psbasemap', 'psxy', 'grdcontour') 4) 3D-mesh modelling; 5) Automatically digitized orthogonal cross-stacked profiles (‘grdtrack’); 6) Visualizing curvature trends (‘trend1d’); 7) statistical histograms. Results reveal unevenness in the structure of the submarine landforms. Modelling cross-section profiles highlighted depth variation at different parts of the transects and seafloor segments. Geomorphic structure has straight shape form of the slopes with steep oceanward forearc. Its geometry has steep and strait shape which correlates with seismicity. Depth samples vary: -3000 to -6200 m, seafloor is 3-5 km wide.
    [Show full text]
  • Shear Wave Splitting and Mantle Flow in Mexico: What Have We Learned?
    GEOFÍSICA INTERNACIONAL (2017) 56-2: 187-217 ORIGINAL PAPER Shear Wave Splitting and Mantle Flow in Mexico: What Have we Learned? Raúl W. Valenzuela* and Gerardo León Soto Received: November 15, 2016; accepted: December 08, 2016; published on line: April 01, 2017 Resumen con un énfasis en las zonas de subducción. Una justificación importante para el estudio de la El presente artículo es un resumen y análisis anisotropía sísmica es que permite conocer las de los estudios de partición de ondas características del flujo en el manto superior transversales (shear wave splitting) para así como su relación con procesos tectónicos. el manto superior que se han realizado en México tiene muchos y diversos ambientes México durante la última década. Cuando una tectónicos. Algunos de ellos se encuentran onda sísmica entra en un medio anisótropo actualmente activos y otros lo fueron en el se parte (o se separa), esto quiere decir que pasado, pero en cualquier caso han dejado se producen una onda rápida y otra lenta. Se su marca en la forma de anisotropía sísmica. necesitan dos parámetros para cuantificar la Esto ha dado lugar a una gran variedad anisotropía. Dichos parámetros son la dirección de mecanismos para producir el flujo del de polarización rápida y el tiempo de retardo manto. De manera general la presentación entre la onda rápida y la lenta. Se presenta se ha organizado en las siguientes regiones: un ejemplo de la aplicación de la técnica península de Baja California, la región Mexicana empleando la fase SKS ya que la mayoría de Occidental de Cuencas y Sierras, el norte y las observaciones usan datos telesísmicos.
    [Show full text]
  • Redacted for Privacy Richd J
    AN ABSTRACT OF THE THESIS OF Walter Stanley Lynn for the degree of Master of Science in Geophysics presented on August 6,1975 Title: A GEOPHYSICAL ANALYSIS OF THE OROZCO FRACTURE ZONE AND THE TECTONIC EVOLUTION OF THE NORTHERN COCOS LATE Abstract approved Redacted for Privacy Richd J. B)Akely In April of 1974, Oregon State University conducted a geophysi- cal survey of the Orozco fracture zone, a Left-lateral transform fault which offsets the East Pacific Rise off the coast of Mexico near 15°N, 105°W. Magnetic, gravity, bathymetric, and seismic reflection data were collected during a four day period.This survey is corn- bined with previous surveys by Oregon State University and other institutions to provide a geophysical interpretation of the Orozco frac- ture zone and the surrounding area and to develop a tectonic history of the northern Cocos plate. The Orozco fracture zone is characterized by a typical zone of seismicity and an offset in the magnetic anomaly patternThere is, however, a conspicuous absence of a well defined topographic trough, This appears to be a result of the small age offset of the ridge crest, a reorientation of the fracture zone trend, and a possible southward migration of the fracture zone down the ridge axis. Three crustal and subcrustal cross sections over the Orozco fracture zone are constructed from the gravity data.One, across the active portion between the ridge offset, shows the active troughs to be underlain by a broad, low-density root extending two kilometers into the mantle, Two gravity cross sections across the East Pacific Rise show a thinning of oceanic layer 3 of nearly 2 kilometers at the rise crest and a corresponding 0,5 kilometer thickening of layer 2.
    [Show full text]
  • Redalyc.Elastic Thickness of the Oceanic Lithosphere Beneath
    Geofísica Internacional ISSN: 0016-7169 [email protected] Universidad Nacional Autónoma de México México Manea, Marina; Manea, Vlad C.; Kostoglodov, Vladimir; Guzmán Speziale, Marco Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge Geofísica Internacional, vol. 44, núm. 2, april-june, 2005, pp. 157-168 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=56844203 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geofísica Internacional (2005), Vol. 44, Num. 2, pp. 157-168 Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge Marina Manea1,2, Vlad C. Manea1,2, Vladimir Kostoglodov1 and Marco Guzmán-Speziale3 1 Instituto de Geofísica, UNAM, México, D.F. México 2 Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA 3 Centro de Geociencias, UNAM, Querétaro, Qro. México Received: March 23, 2004; accepted: October 14, 2004 RESUMEN La relación entre la batimetría y la anomalía de gravedad de aire libre se analizó por medio del método de la admitancia para 7 perfiles que cruzan la cordillera de Tehuantepec. La evaluación de la edad de la litosfera para el tiempo cuando se formó la cordillera de Tehuantepec se calculó a través de los análisis de la admitancia experimental y del espesor elástico. Se calculó la admitancia, interpretada en términos del espesor elástico isótropo de la placa de Cocos debajo de la cordillera de Tehuantepec. El modelo de compensación isostática más apropiado para ajustar los datos observados es el de una litosfera oceánica que se comporta como una placa elástica con un espesor de 10±5 km.
    [Show full text]