Neonatal and Adult CD4 CD3 Cells Share Similar Gene Expression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Angiogenin Fused to Human CD30 Ligand (Ang-CD30L) Exhibits Specific Cytotoxicity Against CD30-Positive Lymphoma1
[CANCER RESEARCH 61, 8737–8742, December 15, 2001] Human Angiogenin Fused to Human CD30 Ligand (Ang-CD30L) Exhibits Specific Cytotoxicity against CD30-positive Lymphoma1 Michael Huhn, Stephanie Sasse, Mehmet K. Tur, Ba¨rbel Matthey, Timo Schinko¨the, Susanna M. Rybak, Stefan Barth,2 and Andreas Engert Fraunhofer IME, Department of Pharmaceutical Product Development, 52074 Aachen, Germany [M. K. T., M. H., S. B.]; Laboratory of Immunotherapy, Department I of Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany [S. S., B. M., T. S., A. E.]; Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702 [S. M. R.] ABSTRACT first and then to administer ITs to kill residual H-RS cells. One of the most promising target antigens for immunotherapy of malignant lym- A number of different immunotoxins composed of cell-specific target- phoma such as Hodgkin’s lymphoma or anaplastic large cell lym- ing structures coupled to plant or bacterial toxins have increasingly been phoma is the CD30 receptor. This antigen was originally discovered evaluated for immunotherapy. Because these foreign proteins are highly immunogenic in humans, we have developed a new CD30 ligand-based on cultured H-RS cells using the moab Ki-1 (1). The gene encoding fusion toxin (Ang-CD30L) using the human RNase angiogenin. The com- the CD30 receptor molecule (2) is located on chromosome 1p36. The pletely human fusion gene was inserted into a pET-based expression naturally occurring CD30 ligand has also been identified and cloned plasmid. Transformed Escherichia coli BL21(DE3) were grown under (3). -
The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology
Cell, Vol. 104, 487±501, February 23, 2001, Copyright 2001 by Cell Press The TNF and TNF Receptor Review Superfamilies: Integrating Mammalian Biology Richard M. Locksley,*²³k Nigel Killeen,²k The receptors and ligands in this superfamily have and Michael J. Lenardo§k unique structural attributes that couple them directly to *Department of Medicine signaling pathways for cell proliferation, survival, and ² Department of Microbiology and Immunology differentiation. Thus, they have assumed prominent ³ Howard Hughes Medical Institute roles in the generation of tissues and transient microen- University of California, San Francisco vironments. Most TNF/TNFR SFPs are expressed in the San Francisco, California 94143 immune system, where their rapid and potent signaling § Laboratory of Immunology capabilities are crucial in coordinating the proliferation National Institute of Allergy and Infectious Diseases and protective functions of pathogen-reactive cells. National Institutes of Health Here, we review the organization of the TNF/TNFR SF Bethesda, Maryland 20892 and how these proteins have been adapted for pro- cesses as seemingly disparate as host defense and or- ganogenesis. In interpreting this large and highly active Introduction area of research, we have focused on common themes that unite the actions of these genes in different tissues. Three decades ago, lymphotoxin (LT) and tumor necro- We also discuss the evolutionary success of this super- sis factor (TNF) were identified as products of lympho- familyÐsuccess that we infer from its expansion across cytes and macrophages that caused the lysis of certain the mammalian genome and from its many indispens- types of cells, especially tumor cells (Granger et al., able roles in mammalian biology. -
Tools for Cell Therapy and Immunoregulation
RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion. -
Autologous T Cells Expressing CD30 Chimeric Antigen Receptors For
Published OnlineFirst August 31, 2016; DOI: 10.1158/1078-0432.CCR-16-1365 Cancer Therapy: Clinical Clinical Cancer Research Autologous T Cells Expressing CD30 Chimeric Antigen Receptors for Relapsed or Refractory Hodgkin Lymphoma: An Open-Label Phase I Trial Chun-Meng Wang1, Zhi-Qiang Wu2,YaoWang3, Ye-Lei Guo3,Han-RenDai3, Xiao-Hui Wang2, Xiang Li2, Ya-Jing Zhang1,Wen-YingZhang1, Mei-Xia Chen1, Yan Zhang1, Kai-Chao Feng1,YangLiu4,Su-XiaLi4, Qing-Ming Yang1, and Wei-Dong Han3 Abstract Purpose: Relapsed or refractory Hodgkin lymphoma is a chal- tolerated, with grade 3 toxicities occurring only in two of 18 lenge for medical oncologists because of poor overall survival. We patients. Of 18 patients, seven achieved partial remission and six aimed to assess the feasibility, safety, and efficacy of CD30- achieved stable disease. An inconsistent response of lymphoma targeting CAR T cells in patients with progressive relapsed or was observed: lymph nodes presented a better response than refractory Hodgkin lymphoma. extranodal lesions and the response of lung lesions seemed to Experimental Design: Patients with relapsed or refractory be relatively poor. Lymphocyte recovery accompanied by an Hodgkin lymphoma received a conditioning chemotherapy fol- increase of circulating CAR T cells (peaking between 3 and 9 days lowed by the CART-30 cell infusion. The level of CAR transgenes after infusion) is a probable indictor of clinical response. Analysis in peripheral blood and biopsied tumor tissues was measured of biopsied tissues by qPCR and immunohistochemistry revealed periodically according to an assigned protocol by quantitative the trafficking of CAR T cells into the targeted sites and reduction PCR (qPCR). -
Human TNFRSF18 ELISA Kit (ARG81453)
Product datasheet [email protected] ARG81453 Package: 96 wells Human TNFRSF18 ELISA Kit Store at: 4°C Component Cat. No. Component Name Package Temp ARG81453-001 Antibody-coated 8 X 12 strips 4°C. Unused strips microplate should be sealed tightly in the air-tight pouch. ARG81453-002 Standard 2 X 10 ng/vial 4°C ARG81453-003 Standard/Sample 30 ml (Ready to use) 4°C diluent ARG81453-004 Antibody conjugate 1 vial (100 µl) 4°C concentrate (100X) ARG81453-005 Antibody diluent 12 ml (Ready to use) 4°C buffer ARG81453-006 HRP-Streptavidin 1 vial (100 µl) 4°C concentrate (100X) ARG81453-007 HRP-Streptavidin 12 ml (Ready to use) 4°C diluent buffer ARG81453-008 25X Wash buffer 20 ml 4°C ARG81453-009 TMB substrate 10 ml (Ready to use) 4°C (Protect from light) ARG81453-010 STOP solution 10 ml (Ready to use) 4°C ARG81453-011 Plate sealer 4 strips Room temperature Summary Product Description ARG81453 Human TNFRSF18 ELISA Kit is an Enzyme Immunoassay kit for the quantification of Human TNFRSF18 in serum, plasma (heparin, EDTA) and cell culture supernatants. Tested Reactivity Hu Tested Application ELISA Specificity There is no detectable cross-reactivity with other relevant proteins. Target Name TNFRSF18 Conjugation HRP Conjugation Note Substrate: TMB and read at 450 nm. Sensitivity 31.25 pg/ml Sample Type Serum, plasma (heparin, EDTA) and cell culture supernatants. Standard Range 62.5 - 4000 pg/ml Sample Volume 100 µl www.arigobio.com 1/3 Precision Intra-Assay CV: 6.3% Inter-Assay CV: 7.0% Alternate Names Tumor necrosis factor receptor superfamily member 18; AITR; CD357; CD antigen CD357; Activation- inducible TNFR family receptor; GITR-D; GITR; Glucocorticoid-induced TNFR-related protein Application Instructions Assay Time ~ 5 hours Properties Form 96 well Storage instruction Store the kit at 2-8°C. -
Clinical Trials of CAR-T Cells in China Bingshan Liu1,2, Yongping Song2* and Delong Liu2*
Liu et al. Journal of Hematology & Oncology (2017) 10:166 DOI 10.1186/s13045-017-0535-7 RAPID COMMUNICATION Open Access Clinical trials of CAR-T cells in China Bingshan Liu1,2, Yongping Song2* and Delong Liu2* Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China. Background “third generation chimeric,” and “fourth generation chimeric”; Novel immunotherapeutic agents targeting CTLA-4, country: China. All relevant trials registered at the Clinical- programmed cell death-1 protein receptor (PD-1), and the Trials.gov prior to July 18, 2017, were included in the analysis. ligand PD-L1 are revolutionizing cancer therapy [1–7]. One trial was excluded (NCT03121625) because the target Cancer immunotherapy by re-igniting T cells through antigen was not disclosed. A search of the PubMed blocking PD-1 and PD-L1 is highly potent in a variety of databasewasalsodonetoincludethosetrialsand malignancies [8–12]. -
CD134/OX40 Code No
D125-3 For Research Use Only. Page 1 of 2 Not for use in diagnostic procedures. MONOCLONAL ANTIBODY CD134/OX40 Code No. Clone Subclass Quantity Concentration D125-3 W4-3 Rat IgG2a 100 L 1 mg/mL BACKGROUND: OX40 (CD134/TNFRSF4/ACT35) is SPECIES CROSS REACTIVITY: a 50 kDa of cell surface glycoprotein. OX40, a member of Species Human Mouse Rat the tumor necrosis factor (TNF) superfamily, is expressed primarily on activated CD4+ T cells. OX40 interacts with Cells MT2, HPB-MLT Not Tested Not Tested OX40 ligand antigen (OX40L, also known as CD252/gp34/CD134L) expressed on activated B cells and Reactivity on FCM + antigen presenting cells results in enhanced T cell proliferation and induction of IL-2 production. REFERENCES: OX40/OX40L interaction provides a costimulatory signal, 1) Kawamata, S., et al., J. Biol. Chem. 273, 5808-5814 (1998) resulting in enhanced T cell proliferation and cytokine 2) Latza, U., et al., Europ. J. Immun. 24, 677-683 (1994) production. Then, cell proliferation and immunoglobulin secretion in activated B cells are enhanced. OX40/OX40L system mediates the adhesion of activated or HTLV-I-transformed T cells to vascular endothelial cells. TRAF2 and TRAF5 binding to OX40 led to NF-B activation, and TRAF3 binding appeared to inhibit NF-B activation SOURCE: This antibody was purified from C.B-17 SCID mice ascites fluid using protein A agarose. This hybridoma (clone W4-3) was established by fusion of mouse myeloma cell SP2/0 with WKA/H rat splenocyte immunized with the human OX40 transfectant. Flow cytometric analysis of CD134 expression on HPB-MLT (left) and PM1 FORMULATION: 100 g IgG in 100 L volume of (right). -
TNFRSF18 (Human) ELISA Kit
TNFRSF18 (Human) ELISA Kit Catalog Number KA1720 96 assays Version: 01 Intended for research use only www.abnova.com I. INTRODUCTION GITR (glucocorticoid induced tumor necrosis factor receptor family related gene) is a type-1 transmembrane protein of 228 amino acids belonging to the TNF and NGF receptor family of proteins. GITR is expressed in normal T-lymphocytes from thymus, spleen. Constitutive expression of a transfected GITR gene induces resistance to apoptosis induced by anti CD3 monoclonal antibodies. The human homolog of GITR is expressed in lymph node and peripheral blood leukocytes. Its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with antibodies against CD3 and CD28. TNFRSF18 (Human) ELISA Kit is an in vitro enzyme-linked immunosorbent assay for the quantitative measurement of human GITR in cell lysate and tissue lysate. This assay employs an antibody specific for human GITR coated on a 96-well plate. Standards and samples are pipetted into the wells and GITR present in a sample is bound to the wells by the immobilized antibody. The wells are washed and biotinylated anti-human GITR antibody is added. After washing away unbound biotinylated antibody, HRP-conjugated streptavidin is pipetted to the wells. The wells are again washed, a TMB substrate solution is added to the wells and color develops in proportion to the amount of GITR bound. The Stop Solution changes the color from blue to yellow, and the intensity of the color is measured at 450 nm. II. REAGENTS 1. GITR Microplate (Item A): 96 wells (12 strips x 8 wells) coated with anti-human GITR. -
Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy
cells Review Engineering Strategies to Enhance TCR-Based Adoptive T Cell Therapy Jan A. Rath and Caroline Arber * Department of oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, 1015 Lausanne, Switzerland * Correspondence: [email protected] Received: 18 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: T cell receptor (TCR)-based adoptive T cell therapies (ACT) hold great promise for the treatment of cancer, as TCRs can cover a broad range of target antigens. Here we summarize basic, translational and clinical results that provide insight into the challenges and opportunities of TCR-based ACT. We review the characteristics of target antigens and conventional αβ-TCRs, and provide a summary of published clinical trials with TCR-transgenic T cell therapies. We discuss how synthetic biology and innovative engineering strategies are poised to provide solutions for overcoming current limitations, that include functional avidity, MHC restriction, and most importantly, the tumor microenvironment. We also highlight the impact of precision genome editing on the next iteration of TCR-transgenic T cell therapies, and the discovery of novel immune engineering targets. We are convinced that some of these innovations will enable the field to move TCR gene therapy to the next level. Keywords: adoptive T cell therapy; transgenic TCR; engineered T cells; avidity; chimeric receptors; chimeric antigen receptor; cancer immunotherapy; CRISPR; gene editing; tumor microenvironment 1. Introduction Adoptive T cell therapy (ACT) with T cells expressing native or transgenic αβ-T cell receptors (TCRs) is a promising treatment for cancer, as TCRs cover a wide range of potential target antigens [1]. -
CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30 And
Published OnlineFirst August 7, 2018; DOI: 10.1158/2326-6066.CIR-18-0065 Research Article Cancer Immunology Research CD30-Redirected Chimeric Antigen Receptor T Cells Target CD30þ and CD30– Embryonal Carcinoma via Antigen-Dependent and Fas/FasL Interactions Lee K. Hong1, Yuhui Chen2, Christof C. Smith1, Stephanie A. Montgomery3, Benjamin G. Vincent2, Gianpietro Dotti1,2, and Barbara Savoldo2,4 Abstract Tumor antigen heterogeneity limits success of chimeric (NSG) mouse model of metastatic EC. We observed that CD30. þ antigen receptor (CAR) T-cell therapies. Embryonal carcino- CAR T cells, while targeting CD30 EC tumor cells through mas (EC) and mixed testicular germ cell tumors (TGCT) the CAR (i.e., antigen-dependent targeting), also eliminated – containing EC, which are the most aggressive TGCT subtypes, surrounding CD30 EC cells in an antigen-independent man- are useful for dissecting this issue as ECs express the CD30 ner, via a cell–cell contact-dependent Fas/FasL interaction. In – þ – antigen but also contain CD30 /dim cells. We found that CD30- addition, ectopic Fas (CD95) expression in CD30 Fas EC was redirected CAR T cells (CD30.CAR T cells) exhibit antitumor sufficient to improve CD30.CAR T-cell antitumor activity. activity in vitro against the human EC cell lines Tera-1, Tera-2, Overall, these data suggest that CD30.CAR T cells might be and NCCIT and putative EC stem cells identified by Hoechst useful as an immunotherapy for ECs. Additionally, Fas/FasL dye staining. Cytolytic activity of CD30.CAR T cells was com- interaction between tumor cells and CAR T cells can be plemented by their sustained proliferation and proinflamma- exploited to reduce tumor escape due to heterogeneous antigen tory cytokine production. -
Supplementary Tables
Supplementary Table 1 Lymphocyte activation Activation of immune response Cell adhesion Rank Gene p-value Fold change Rank Gene p-value Fold change Rank Gene p-value Fold change 1 BATF 0.00001 6.31564 1 DUSP6 0.00002 6.39359 1 IL21 0.00014 8.20000 2 MIF 0.00007 2.68925 2 TANK 0.00020 1.69235 2 IL2RA 0.00037 7.70668 3 NFATC2 0.00008 0.40405 3 IRAK1 0.00057 1.63217 3 C1QBP 0.00039 3.79258 4 INPP5D 0.00028 0.31780 4 CHUK 0.00080 1.59486 4 CCL28 0.00010 2.43756 5 TNFSF12 0.00002 0.30456 5 HRAS 0.00004 1.58111 5 BCL10 0.00036 0.62896 6 CASP8 0.00001 0.23611 6 CREB1 0.00037 0.58528 6 IRF1 0.00027 0.62762 7 SMAD3 0.00002 0.23043 7 CD3E 0.00023 0.49823 7 CD46 0.00033 0.52342 8 RORA 0.00001 0.14902 8 ZAP70 0.00068 0.46392 8 SPN 0.00022 0.48806 9 CTSS 0.00024 0.30270 9 JAK2 0.00086 0.45576 10 PLA2G6 0.00002 0.22338 10 TGFB1 0.00006 0.44888 11 TLR3 0.00045 0.13067 11 IL12RB1 0.00021 0.39881 12 ITGA4 0.00098 0.37128 13 ITGAL 0.00013 0.32985 14 CCR2 0.00049 0.29760 15 CD44 0.00097 0.21387 Supplementary Table 1. Differentially expressed genes (p<0.05) in CAR compared to delta CAR T cells. The table displays the p-values and fold changes of genes that are differentially regulated in CAR T cells compared to the truncated CAR (ΔCAR) control T cells collected 24 hours post-stimulation with PSCA. -
Tumor Necrosis Factor Receptor Superfamily 12 May Destabilize Atherosclerotic Plaques by Inducing Matrix Metalloproteinases
RAPID COMMUNICATION Jpn Circ J 2001; 65: 136–138 Tumor Necrosis Factor Receptor Superfamily 12 may Destabilize Atherosclerotic Plaques by Inducing Matrix Metalloproteinases Se-Hwa Kim, BS; Won-Ha Lee, PhD; Byoung S. Kwon, PhD*; Goo Taeg Oh, PhD**; Yoon-Ho Choi, MD; Jeong-Euy Park, MD, PhD Immunohistochemical staining of human atherosclerotic plaques revealed expression of the tumor necrosis factor receptor superfamily (TNFRSF) 12 in regions rich in macrophage/foam cells. The role of TNFRSF12 in the functioning of monocytes in relation to atherogenesis was investigated by analysis of cellular events after stimulation of TNFRSF12 in a human macrophage-like cell line, THP-1. Activation of the THP-1 cells on plates coated with monoclonal antibody against TNFRSF12 induced the expression of matrix metalloproteinases (MMPs) -1, -9, and -13. Furthermore, the expression patterns of TNFRSF12 and the MMPs overlapped in atherosclerotic plaques. Signaling of TNFRSF12 may thus contribute to the induction of extracellular matrix degrading enzymes in macrophages. (Jpn Circ J 2001; 65: 136–138) Key Words: Atherosclerosis; Matrix metalloproteinase; Tumor necrosis factor receptor superfamily he stability of atherosclerotic plaques depends greatly sion in atherosclerotic plaques. Subsequently, we looked on the integrity of the fibrous cap, which in turn into the expression of MMPs in THP-1 cells (American T depends on its extracellular matrix protein content. Type Culture Collection, Rockville, MD, USA) after stim- Dysregulation of the interplay between matrix degrading ulation of the TNFRSF12. enzymes, such as matrix metalloproteinases (MMPs), and The immunohistochemical analysis of human athero- their inhibitors, such as tissue inhibitor of metalloproteinases sclerotic plaques obtained from carotid endoarterectomies (TIMPs), is believed to be responsible for the rupture of was approved by an institutional review committee and the atherosclerotic plaques.1 MMP-1 and MMP-13, which subjects gave their informed consent.