Proc-124-12-Print-Matter.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Proc-124-12-Print-Matter.Pdf Proceedings of the American Mathematical Society This journal is devoted entirely to research in pure and applied mathematics. Submission information. See Information for Authors at the end of this issue. Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval. Subscription information. Proceedings of the American Mathematical Society is published monthly. Beginning January 1996 Proceedings is accessible from e-MATH via the World Wide Web at the URL http : //www.ams.org/publications/. Subscription prices for Volume 124 (1996) are as follows: for paper delivery, $641 list, $513 institu- tional member, $577 corporate member, $385 individual member; for electronic delivery, $577 list, $462 institutional member, $519 corporate member, $347 individual member; for combination paper and electronic delivery, $737 list, $590 institutional member, $663 corporate member, $442 individual member. If ordering the paper version, add $15 for surface delivery outside the United States and India; $38 to India. Expedited delivery to destinations in North America is $38; elsewhere $91. For paper delivery a late charge of 10% of the subscription price will be imposed upon orders received from nonmembers after January 1 of the subscription year. Back number information. For back issues see the AMS Catalog of Publications. Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 5904, Boston, MA 02206-5904. All orders must be accompanied by payment. Other correspondence should be addressed to P.O. Box 6248, Providence, RI 02940-6248. Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copy- right. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) Proceedings of the American Mathematical Society is published monthly by the Amer- ican Mathematical Society at 201 Charles Street, Providence, RI 02904-2213. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Pro- ceedings, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. c 1996 by the American Mathematical Society. All rights reserved. This journal is indexed in Science Citation Index r, SciSearchr, Research Alert r, CompuMath Citation Index r, and Current Contentsr/Physical, Chemical & Earth Sciences. Printed in the United States of America. ∞ The paper used in this journal is acid-free and falls within the guidelines established to ensure permanence and durability. 10987654321 010099989796 INDEX TO VOLUME 124 (1996) Aberbach, Ian M., and Huneke, Craig. A theorem of Brian¸con-Skoda type for regular local rings containing a field, 707 Abhyankar, Shreeram S., and Sathaye, Avinash. Uniqueness of plane embeddings of special curves, 1061 Abhyankar, Shreeram S. Again nice equations for nice groups, 2967 . More nice equations for nice groups, 2977 Acedo, Genaro L´opez. See Benavides, Tom´asDom´ınguez Akbari Estahbanati, Gholamreza. On the spectral character of Toeplitz operators on planar re- gions, 2737 Akemann, Charles, and Weaver, Nik. Minimal upper bounds of commuting operators, 3469 Albrecht, U. F., and Goeters, H. P. A note on Fuchs’ Problem 34, 1319 Aldana, J. Ignacio Extremiana, Paricio, L. Javier Hern´andez,and Rodr´ıguez,M. Teresa Rivas. A closed model category for (n 1)-connected spaces, 3545 − Aldroubi, Akram. Oblique projections in atomic spaces, 2051 Allenby, R. B. J. T., and Doniz, David. A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable, 1003 Alperin, Roger C. Normal subgroups of P SL2(Z[√ 3]), 2935 − Ambrozie, C˘alin-Grigore. The Euler characteristic is stable under compact perturbations, 2041 del Amo, Alejandro Garc´ıa. See Carro, Mar´ıaJ. Anderson, D. D., and Mullins, Bernadette. Finite factorization domains, 389 Angelini, Flavio. An algebraic version of Demailly’s asymptotic Morse inequalities, 3265 Anghel, Nicolae. Generic vanishing for harmonic spinors of twisted Dirac operators, 3555 Anoussis, M., and Katsoulis, E. G. Compact operators and the geometric structure of C∗- algebras, 2115 Anuradha, V., Hai, D. D., and Shivaji, R. Existence results for superlinear semipositone BVP’s, 757 Ara, P., and Pardo, E. Refinement monoids with weak comparability and applications to regular rings and C∗-algebras, 715 Ara, Pere. Strongly π-regular rings have stable range one, 3293 Arhangelskii, A. V. On spread and condensations, 3519 Arias, Alvaro. Completely bounded isomorphisms of operator algebras, 1091 Asensio, Pedro A. Guil. See Pardo, Jos´eL. G´omez Athavale, Ameer. On completely hyperexpansive operators, 3745 Azoff, Edward A., Ding, Lifeng, and Wogen, Warren R. Separating versus strictly separating vectors, 3135 Baggett, Lawrence W., Medina, Herbert A., and Merrill, Kathy D. On functions that are trivial cocycles for a set of irrationals. II, 89 Ballico, E., and Keem, C. On linear series on general k-gonal projective curves, 7 Balogh, Zoltan T. A small Dowker space in ZFC, 2555 Barbanel, Julius B. On the possibilities for partitioning a cake, 3443 Barge, Marcy, Brucks, Karen, and Diamond, Beverly. Self-similarity in inverse limit spaces of the tent family, 3563 Baringhaus, Ludwig. Fibonacci numbers, Lucas numbers and integrals of certain Gaussian pro- cesses, 3875 Barr´ıa,Jos´e. On Hankel operators not in the Toeplitz algebra, 1507 Basit, Bolis, and Pryde, A. J. Differences of vector-valued functions on topological groups, 1969 Bastero, Jes´us,and Ruiz, Francisco J. Elementary reverse H¨oldertype inequalities with applica- tion to operator interpolation theory, 3183 Battaglia, Fiammetta. S1-quotients of quaternion-K¨ahlermanifolds, 2185 Bejancu, Aurel, and Deshmukh, Sharief. Real hypersurfaces of CP n with non-negative Ricci curvature, 269 Bekka, M. B., Kaniuth, E., Lau, A. T., and Schlichting, G. On C∗-algebras associated with locally compact groups, 3151 Bekkar, M. Sur les metriques admettant les plans comme surfaces minimales, 3077 Belegradek, Oleg V. Degrees of unsolvability of first order decision problems for finitely presented groups, 623 Bell, M., Shapiro, L., and Simon, P. Products of ω∗ images, 1593 INDEX TO VOLUME 124 (1996) Belshoff, Richard, Slattery, Susan Palmer, and Wickham, Cameron. The local cohomology mod- ules of Matlis reflexive modules are almost cofinite, 2649 Benavides, Tom´as Dom´ınguez,Acedo, Genaro L´opez, and Xu, Hong-Kun. Random fixed points of set-valued operators, 831 Ben-David, Shai, and Shelah, Saharon. The two-cardinals transfer property and resurrection of supercompactness, 2827 Bercovici, Hari, and Zucchi, Adele. Generalized interpolation in a multiply connected region, 2109 Berend, Daniel, and Bilu, Yuri. Polynomials with roots modulo every integer, 1663 Berger, C. A., and Coburn, L. A. On Voiculescu’s double commutant theorem, 3453 Bernau, S. J., and Wojciechowski, Piotr J. Images of bilinear mappings into R3, 3605 Bhatia, S. S., and Ram, Babu. The extensions of the Ferenc M´oricztheorems, 1821 Bhatt, S. J., and Dedania, H. V. Banach algebras with unique uniform norm, 579 Bilu, Yuri. See Berend, Daniel Bishop, Christopher J. Some characterizations of C( ), 2695 M . A counterexample concerning smooth approximation, 3131 Biswas, Indranil. On the mapping class group action on the cohomology of the representation space of a surface, 1959 de Blasi, F. S., and Myjak, J. On compact connected sets in Banach spaces, 2331 Boas, Harold P. The Lu Qi-Keng conjecture fails generically, 2021 Bobisud, L. E., and O’Regan, Donal. Existence of positive solutions for singular ordinary dif- ferential equations with nonlinear boundary conditions, 2081 Bohman, Tom. A sum packing problem of Erd˝osand the Conway–Guy sequence, 3627 Bojanov, B. D., and Varma, A. K. On a polynomial inequality of Kolmogoroff’s type, 491 Borwein, J. M., and Vanderwerff, J. D. Banach spaces that admit support sets, 751 Borwein, Peter, and Erd´elyi,Tam´as. The Lp version of Newman’s Inequality for lacunary poly- nomials, 101 Bourdon, Paul S. The second iterate of a map with dense orbit, 1577 Bouziad, Ahmed. Every Cech-analyticˇ Baire semitopological group is a topological group, 953 . The class of co-Namioka compact spaces is stable under product, 983 ∗Bowers, Philip L., and Ruane, Kim. Fixed points in boundaries of negatively curved groups, 1311 Brendle, J¨org. The additivity of porosity ideals, 285 . Nicely generated and chaotic ideals, 2533 Brucks, K. M., and Tresser, C. A Farey tree organization of locking regions for simple circle maps, 637 Brucks, Karen. See Barge, Marcy Brumatti, Paulo, Gimenez, Philippe, and Simis, Aron. Combinatorics of a certain ideal in the Segre coordinate ring, 3285 Bruna, Joaquim, Nicolau, Artur, and Øyma, Knut. A note on interpolation in the Hardy spaces of the unit disc, 1197 Bunce, L. J., and Wright, J. D. Maitland. A topological characterization of linearity for quasi- traces, 2377 Burger, Edward B. On Liouville decompositions in local fields, 3305 Burton, T. A. Integral equations, implicit functions, and fixed points, 2383 Buskes, Gerard, and van Rooij, Arnoud. Whales and the universal completion, 423 Cagliari, Francesca. Right adjoint for the smash product functor, 1265 Cahen, Paul-Jean, Houston, Evan G., and Lucas, Thomas G.
Recommended publications
  • On S-Topological Groups
    Mathematica Moravica Vol. 18-2 (2014), 35–44 On s-Topological Groups Muhammad Siddique Bosan, Moiz ud Din Khan and Ljubiša D.R. Kočinac∗) Abstract. In this paper we study the class of s-topological groups and a wider class of S-topological groups which are defined by us- ing semi-open sets and semi-continuity introduced by N. Levine. It is shown that these groups form a generalization of topological groups, and that they are different from several distinct notions of semitopolog- ical groups which appear in the literature. Counterexamples are given to strengthen these concepts. Some basic results and applications of s- and S-topological groups are presented. Similarities with and differ- ences from topological groups are investigated. 1. Introduction If a set is endowed with algebraic and topological structures, then it is natural to consider and investigate interplay between these two structures. The most natural way for such a study is to require algebraic operations to be continuous. It is the case in investigation of topological groups: the multi- plication mapping and the inverse mapping are continuous. Similar situation is with topological rings, topological vector spaces and so on. However, it is also natural to see what will happen if some of algebraic operations sat- isfy certain weaker forms of continuity. Such a study in connection with topological groups started in the 1930s and 1950s and led to investigation of semitopological groups (the multiplication mapping is separately con- tinuous), paratopological groups (the multiplication is jointly continuous), quasi-topological groups (which are semitopological groups with continu- ous inverse mapping).
    [Show full text]
  • Functorial Constructions in Paratopological Groups Reflecting Separation Axioms
    Functorial constructions in paratopological groups reflecting separation axioms Mikhail Tkachenko Universidad Aut´onomaMetropolitana, Mexico City [email protected] Brazilian Conference on General Topology and Set Theory S~aoSebasti~ao,Brazil, 2013 In honor of Ofelia T. Alas Contents: 1. Three known functorial constructions 2. Each axiom of separation has its functorial reflection 3. `Internal' description of the groups Tk (G) 4. Properties of the functors Tk 's 5. Products and functors 6. Some applications A paratopological group is a group G with topology such that multiplication in G is jointly continuous. `topological' =) `paratopological' =) `semitopological' Let (G; τ) be a paratopological group and τ −1 = fU−1 : U 2 τg be the conjugate topology of G. Then G 0 = (G; τ −1) is also a paratopological group and the inversion in G is a homeomorphism of (G; τ) onto (G; τ −1). Let τ ∗ = τ _ τ −1 be the least upper bound of τ and τ −1. Then G ∗ = (G; τ ∗) is a topological group associated to G. ∗ For the Sorgenfrey line S, the topological group S is discrete. Paratopological and semitopological groups A semitopological group is an abstract group G with topology τ such that the left and right translations in G are continuous or, equivalently, multiplication in G is separately continuous. `topological' =) `paratopological' =) `semitopological' Let (G; τ) be a paratopological group and τ −1 = fU−1 : U 2 τg be the conjugate topology of G. Then G 0 = (G; τ −1) is also a paratopological group and the inversion in G is a homeomorphism of (G; τ) onto (G; τ −1).
    [Show full text]
  • Syllabus for M.Phil
    Structure of Syllabus for M.Phil. in Mathematics Semester-I Full Full Full Full Course Course Code Course Name Marks Marks Marks Marks Credit Type (External) (Practical) (Internal) (Total) Research Methodology: MPHILMA-101 Theory Research Foundation 20 5 25 2 Research Methodology: Computer Application in MPHILMA-102 Practical 20 5 25 2 Research Elective: Any two papers to be chosen from Table-I, 40 10 50 4 based on research interest of MPHILMA-103 Theory + + + + the students and availability of suitable teachers/ 40 10 50 4 Supervisors. Total 120 30 150 12 Semester-II Full Full Full Full Course Course Code Course Name Marks Marks Marks Marks Credit Type (External) (Practical) (Internal) (Total) Elective: Any three papers to 40 10 50 4 be chosen from Table-II, + + + + MPHILMA-201 Theory based on research interest of 40 10 50 4 the students and availability of + + + + suitable teachers/Supervisors. 40 10 50 4 Total 120 30 150 12 Semester-III Full Full Full Full Course Course Code Course Name Marks Marks Marks Marks Credit Type (External) (Practical) (Internal) (Total) Preliminary MPHILMA-301 Theory 75 75 6 Dissertation MPHILMA-302 Theory Viva-voce 25 25 2 Total 100 100 8 Semester-IV Full Full Full Full Course Course Code Course Name Marks Marks Marks Marks Credit Type (External) (Practical) (Internal) (Total) MPHILMA-401 Theory Final Dissertation 75 75 6 MPHILMA-402 Theory Viva-voce 25 25 2 Total 100 100 8 Table: I Elective Papers for MPHILMA-103 (M1) to MPHILMA-103 (M18) Elective Paper Title of the Paper Sub-Code M1 Theory of Convergence
    [Show full text]
  • Publication List, Dated 2010
    References [1] V. A. Voevodski˘ı. Galois group Gal(Q¯ =Q) and Teihmuller modular groups. In Proc. Conf. Constr. Methods and Alg. Number Theory, Minsk, 1989. [2] V. A. Voevodski˘ıand G. B. Shabat. Equilateral triangulations of Riemann surfaces, and curves over algebraic number fields. Dokl. Akad. Nauk SSSR, 304(2):265{268, 1989. [3] G. B. Shabat and V. A. Voevodsky. Drawing curves over number fields. In The Grothendieck Festschrift, Vol. III, volume 88 of Progr. Math., pages 199{227. Birkh¨auser Boston, Boston, MA, 1990. [4] V. A. Voevodski˘ı. Etale´ topologies of schemes over fields of finite type over Q. Izv. Akad. Nauk SSSR Ser. Mat., 54(6):1155{1167, 1990. [5] V. A. Voevodski˘ı. Flags and Grothendieck cartographical group in higher dimensions. CSTARCI Math. Preprints, (05-90), 1990. [6] V. A. Voevodski˘ı.Triangulations of oriented manifolds and ramified coverings of sphere (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [7] V. A. Voevodski˘ı and M. M. Kapranov. 1-groupoids as a model for a homotopy category. Uspekhi Mat. Nauk, 45(5(275)):183{184, 1990. [8] V. A. Voevodski˘ıand M. M. Kapranov. Multidimensional categories (in Russian). In Proc. Conf. of Young Scientists. Moscow Univ. Press, 1990. [9] V. A. Voevodski˘ıand G. B. Shabat. Piece-wise euclidean approximation of Jacobians of algebraic curves. CSTARCI Math. Preprints, (01-90), 1990. [10] M. M. Kapranov and V. A. Voevodsky. Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). Cahiers Topologie G´eom.Diff´erentielle Cat´eg., 32(1):11{27, 1991.
    [Show full text]
  • Algebraic K-Theory (University of Washington, Seattle, 1997) 66 Robert S
    http://dx.doi.org/10.1090/pspum/067 Selected Titles in This Series 67 Wayne Raskind and Charles Weibel, Editors, Algebraic K-theory (University of Washington, Seattle, 1997) 66 Robert S. Doran, Ze-Li Dou, and George T. Gilbert, Editors, Automorphic forms, automorphic representations, and arithmetic (Texas Christian University, Fort Worth, 1996) 65 M. Giaquinta, J. Shatah, and S. R. S. Varadhan, Editors, Differential equations: La Pietra 1996 (Villa La Pietra, Florence, Italy, 1996) 64 G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, Editors, Differential geometry and control (University of Colorado, Boulder, 1997) 63 Alejandro Adem, Jon Carlson, Stewart Priddy, and Peter Webb, Editors, Group representations: Cohomology, group actions and topology (University of Washington, Seattle, 1996) 62 Janos Kollar, Robert Lazarsfeld, and David R. Morrison, Editors, Algebraic geometry—Santa Cruz 1995 (University of California, Santa Cruz, July 1995) 61 T. N. Bailey and A. W. Knapp, Editors, Representation theory and automorphic forms (International Centre for Mathematical Sciences, Edinburgh, Scotland, March 1996) 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J.
    [Show full text]
  • Extensions of Topological and Semitopological Groups and the Product Operation
    Commentationes Mathematicae Universitatis Carolinae Aleksander V. Arhangel'skii; Miroslav Hušek Extensions of topological and semitopological groups and the product operation Commentationes Mathematicae Universitatis Carolinae, Vol. 42 (2001), No. 1, 173--186 Persistent URL: http://dml.cz/dmlcz/119232 Terms of use: © Charles University in Prague, Faculty of Mathematics and Physics, 2001 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Comment.Math.Univ.Carolin. 42,1 (2001)173–186 173 Extensions of topological and semitopological groups and the product operation A.V. Arhangel’skii, M. Huˇsek Abstract. The main results concern commutativity of Hewitt-Nachbin realcompactifica- tion or Dieudonn´ecompletion with products of topological groups. It is shown that for every topological group G that is not Dieudonn´ecomplete one can find a Dieudonn´e complete group H such that the Dieudonn´ecompletion of G × H is not a topological group containing G×H as a subgroup. Using Korovin’s construction of Gδ-dense orbits, we present some examples showing that some results on topological groups are not valid for semitopological groups. Keywords: topological group, Dieudonn´ecompletion, PT-group, realcompactness, Moscow space, C-embedding, product Classification: 22A05, 54H11, 54D35, 54D60 §0. Introduction Although many of our general results are valid for more general spaces, we shall assume that all the spaces under consideration are Tychonoff.
    [Show full text]
  • Quillen's Work in Algebraic K-Theory
    J. K-Theory 11 (2013), 527–547 ©2013 ISOPP doi:10.1017/is012011011jkt203 Quillen’s work in algebraic K-theory by DANIEL R. GRAYSON Abstract We survey the genesis and development of higher algebraic K-theory by Daniel Quillen. Key Words: higher algebraic K-theory, Quillen. Mathematics Subject Classification 2010: 19D99. Introduction This paper1 is dedicated to the memory of Daniel Quillen. In it, we examine his brilliant discovery of higher algebraic K-theory, including its roots in and genesis from topological K-theory and ideas connected with the proof of the Adams conjecture, and his development of the field into a complete theory in just a few short years. We provide a few references to further developments, including motivic cohomology. Quillen’s main work on algebraic K-theory appears in the following papers: [65, 59, 62, 60, 61, 63, 55, 57, 64]. There are also the papers [34, 36], which are presentations of Quillen’s results based on hand-written notes of his and on communications with him, with perhaps one simplification and several inaccuracies added by the author. Further details of the plus-construction, presented briefly in [57], appear in [7, pp. 84–88] and in [77]. Quillen’s work on Adams operations in higher algebraic K-theory is exposed by Hiller in [45, sections 1-5]. Useful surveys of K-theory and related topics include [81, 46, 38, 39, 67] and any chapter in Handbook of K-theory [27]. I thank Dale Husemoller, Friedhelm Waldhausen, Chuck Weibel, and Lars Hesselholt for useful background information and advice. 1.
    [Show full text]
  • An Introduction to Topological Groups
    An Introduction to Topological Groups by Dylan Spivak A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honours Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2015) Dylan Spivak Abstract This project is a survey of topological groups. Specifically, our goal is to investigate properties and examples of locally compact topological groups. Our project is structured as follows. In Chapter 2, we review the basics of topology and group theory that will be needed to understand topological groups. This summary in- cludes definitions and examples of topologies and topological spaces, continuity, the prod- uct topology, homeomorphism, compactness and local compactness, normal subgroups and quotient groups. In Chapter 3, we discuss semitopological groups. This includes the left and right translations of a group G, the left and right embeddings of G, products of semitopological groups and compact semitopological groups. Chapter 4 is on topological groups, here we discuss subgroups, quotient groups, and products of topological groups. We end the project with locally compact topological groups; here we investigate compact- ness and local compactness in topological groups. An important class of locally compact topological groups are groups of matrices. These structures are important in physics, we go over some of their basic properties. i Acknowledgements I would like to thank my supervisor Dr. Monica Ilie for taking the time to meet with me every week, for carefully editing all of my proofs, and for working with me during the summer. Her kindness and experience made this project a pleasure to work on. I would also like to thank Dr.
    [Show full text]
  • Topological Games and Topological Groups ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 109 (2001) 157–165 Topological games and topological groups ✩ Petar S. Kenderov 1,IvayloS.Kortezov1,WarrenB.Moors∗ Department of Mathematics, The University of Waikato, Private Bag 3105, Hamilton, New Zealand Received 25 May 1998; received in revised form 29 June 1999 Abstract A semitopological group (topological group) is a group endowed with a topology for which multiplication is separately continuous (multiplication is jointly continuous and inversion is continuous). In this paper we give some topological conditions on a semitopological group that imply that it is a topological group. In particular, we show that every almost Cech-completeˇ semitopological group is a topological group. Thus we improve some recent results of A. Bouziad. 2001 Elsevier Science B.V. All rights reserved. Keywords: Semitopological group; Topological group; Separate continuity; Joint continuity; Topological games; Quasi-continuity AMS classification: 22A20; 54E18; 54H15; 57S25 1. Introduction The purpose of this note is to refine and improve upon some of the recent advances made by Bouziad on the question of when a semitopological group is in fact a topological group. Recall that a semitopological group (paratopological group) is a group endowed with a topology for which multiplication is separately (jointly) continuous. Research on this question possibly began in [13] when Montgomery showed that each completely metrizable semitopological group is a paratopological group. Later in 1957 Ellis showed that each locally compact semitopological group is in fact a topological group (see [5,6]).
    [Show full text]
  • Emissary | Spring 2021
    Spring 2021 EMISSARY M a t h e m a t i c a lSc i e n c e sRe s e a r c hIn s t i t u t e www.msri.org Mathematical Problems in Fluid Dynamics Mihaela Ifrim, Daniel Tataru, and Igor Kukavica The exploration of the mathematical foundations of fluid dynamics began early on in human history. The study of the behavior of fluids dates back to Archimedes, who discovered that any body immersed in a liquid receives a vertical upward thrust, which is equal to the weight of the displaced liquid. Later, Leonardo Da Vinci was fascinated by turbulence, another key feature of fluid flows. But the first advances in the analysis of fluids date from the beginning of the eighteenth century with the birth of differential calculus, which revolutionized the mathematical understanding of the movement of bodies, solids, and fluids. The discovery of the governing equations for the motion of fluids goes back to Euler in 1757; further progress in the nineteenth century was due to Navier and later Stokes, who explored the role of viscosity. In the middle of the twenti- eth century, Kolmogorov’s theory of tur- bulence was another turning point, as it set future directions in the exploration of fluids. More complex geophysical models incorporating temperature, salinity, and ro- tation appeared subsequently, and they play a role in weather prediction and climate modeling. Nowadays, the field of mathematical fluid dynamics is one of the key areas of partial differential equations and has been the fo- cus of extensive research over the years.
    [Show full text]
  • The Mathematics of Andrei Suslin
    B U L L E T I N ( N e w Series) O F T H E A M E R I C A N MATHEMATICAL SOCIETY Vo lume 57, N u mb e r 1, J a n u a r y 2020, P a g e s 1–22 https://doi.org/10.1090/bull/1680 Art icle electronically publis hed o n S e p t e mbe r 24, 2019 THE MATHEMATICS OF ANDREI SUSLIN ERIC M. FRIEDLANDER AND ALEXANDER S. MERKURJEV C o n t e n t s 1. Introduction 1 2. Projective modules 2 3. K 2 of fields and the Brauer group 3 4. Milnor K-theory versus algebraic K-theory 7 5. K-theory and cohomology theories 9 6. Motivic cohomology and K-theories 12 7. Modular representation theory 16 Acknowledgments 18 About the authors 18 References 18 0. Introduction Andrei Suslin (1950–2018) was both friend and mentor to us. This article dis- cusses some of his many mathematical achievements, focusing on the role he played in shaping aspects of algebra and algebraic geometry. We mention some of the many important results Andrei proved in his career, proceeding more or less chronolog- ically beginning with Serre’s Conjecture proved by Andrei in 1976 (and simul- taneously by Daniel Quillen). As the reader will quickly ascertain, this article does not do justice to the many mathematicians who contributed to algebraic K- theory and related subjects in recent decades. In particular, work of Hyman Bass, Alexander Be˘ılinson, Spencer Bloch, Alexander Grothendieck, Daniel Quillen, Jean- Pierre Serre, and Christophe Soul`e strongly influenced Andrei’s mathematics and the mathematical developments we discuss.
    [Show full text]
  • On Motivic Spherical Bundles
    ON MOTIVIC SPHERICAL BUNDLES FLORIAN STRUNK Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) des Fachbereichs Mathematik/Informatik an der Universit¨atOsnabr¨uck vorgelegt von Florian Strunk aus Lemgo Institut f¨urMathematik Universit¨atOsnabr¨uck Dezember 2012 Contents Introduction 1 1. Unstable motivic homotopy theory 3 1.1. The unstable motivic homotopy category . 5 1.2. Homotopy sheaves and fiber sequences . 15 1.3. Mather's cube theorem and some implications . 24 2. Stable motivic homotopy theory 31 2.1. The stable motivic homotopy category . 31 2.2. A consequence of the motivic Hurewicz theorem . 34 2.3. Motivic connectivity of morphisms . 39 3. The motivic J-homomorphism 44 3.1. Principal bundles and fiber bundles . 44 3.2. Fiber sequences from bundles . 52 3.3. Definition of a motivic J-homomorphism . 53 4. Vanishing results for the J-homomorphism 61 4.1. A relation with Thom classes . 61 4.2. Motivic Atiyah duality and the transfer . 65 4.3. A motivic version of Brown's trick . 67 4.4. Dualizability of GLn=NT ........................71 A. Appendix 74 A.1. Preliminaries on model categories . 74 A.2. Monoidal model categories . 80 A.3. Simplicial model categories . 82 A.4. Pointed model categories . 86 A.5. Stable model categories . 89 A.6. Fiber and cofiber sequences . 93 References . 96 ON MOTIVIC SPHERICAL BUNDLES 1 Introduction This thesis deals with a motivic version of the J-homomorphism from algebraic topology. The classical J-homomorphism was introduced under a different name in 1942 by Whitehead [Whi42] in order to study homotopy groups of the spheres.
    [Show full text]