Last Glacial Maximum and Younger Dryas Piedmont Glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina) Çiner, Attila; Stepišnik, Uroš; Sarkaya, M

Total Page:16

File Type:pdf, Size:1020Kb

Last Glacial Maximum and Younger Dryas Piedmont Glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina) Çiner, Attila; Stepišnik, Uroš; Sarkaya, M Aberystwyth University Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina) Çiner, Attila; Stepišnik, Uroš; Sarkaya, M. Akif; Zebre, Manja; Yldrm, Cengiz Published in: Mediterranean Geoscience Reviews DOI: 10.1007/s42990-019-0003-4 Publication date: 2019 Citation for published version (APA): Çiner, A., Stepišnik, U., Sarkaya, M. A., Zebre, M., & Yldrm, C. (2019). Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina): insights from 36Cl cosmogenic dating. Mediterranean Geoscience Reviews. https://doi.org/10.1007/s42990-019-0003-4 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 03. Oct. 2021 Mediterranean Geoscience Reviews Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina); insights from 36Cl cosmogenic dating --Manuscript Draft-- Manuscript Number: MEGR-D-19-00003R1 Full Title: Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric Mountains (Bosnia and Herzegovina); insights from 36Cl cosmogenic dating Article Type: Original Paper Funding Information: TUBİTAK Dr Mehmet Akif Sarıkaya (118Y052) Bilimsel Araştirma Projeleri Birimi, Istanbul Dr Mehmet Akif Sarıkaya Üniversitesi (MGA-2017-40540) Slovenian Research Agency Dr Manja Žebre (No. P1-0011, No. P6-0229(A) and P1- 0025) University of Ljubljana Dr Uros Stepišnik Abstract: The highest parts of the Dinaric Mountains along the eastern Adriatic coast of the southern Europe, known for their typical Mediterranean karst–dominated landscape and very humid climate, were glaciated during the Late Pleistocene. Palaeo–piedmont type glaciers that originated from Čvrsnica Mountain (2226 m a.s.l.; above sea level) in Bosnia and Herzegovina deposited hummocky, lateral and terminal moraines into the Blidinje Polje. Twelve boulder samples collected from these moraines were dated by cosmogenic 36Cl surface exposure dating method. Using 40 mm ka–1 bedrock erosion rate due to high precipitation rates, we obtained 36Cl ages of Last Glacial Maximum (LGM; 22.7 ± 3.8 ka) from the hummocky moraines, and Younger Dryas (13.2 ± 1.8 ka) from the lateral moraine in Svinjača area. The amphitheater shaped terminal moraine in Glavice area also yielded a Younger Dryas (13.5 ± 1.8 ka) age within the error margins. Because our boulder ages reflect complex exhumation and denudation histories, future work is needed to better understand these processes and their influence on the cosmogenic exposure dating approach in a karstic landscape. Our results provide a new dataset, and present a relevant contribution towards a better understanding of the glacial chronologies of the Dinaric Mountains. Corresponding Author: Attila Çiner, PhD Istanbul Teknik Universitesi Istanbul, TURKEY Corresponding Author Secondary Information: Corresponding Author's Institution: Istanbul Teknik Universitesi Corresponding Author's Secondary Institution: First Author: Attila Çiner, PhD First Author Secondary Information: Order of Authors: Attila Çiner, PhD Uros Stepišnik, Dr Mehmet Akif Sarıkaya, Professor Manja Žebre, Dr Cengiz Yıldırım, Dr Order of Authors Secondary Information: Author Comments: I have made all requested chages that were pointed out by the reviewers. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Response to Reviewers: I have made all changes that were pointed out by the referees. As they were minor changes I do not include a rebuttal to reviewers letter here. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation Highlights Click here to access/download;Manuscript;Blidinje Higlights.docx Click here to view linked References Highlights 1 2 3 Extents of piedmont palaeoglaciers were reconstructed in Bosnia and 4 5 Herzegovina 6 7 8 Last Glacial Maximum (LGM) moraine age reported from the Dinaric Mountains 9 10 5 boulders from hummocky moraines yielded 36Cl ages of 22.7 ± 3.8 ka (LGM) 11 12 36 13 3 boulders from a lateral moraine gave Cl ages of 13.2 ± 1.8 ka (Younger 14 15 Dryas) 16 17 36 18 4 boulders from a terminal moraine gave Cl ages of 13.5 ± 1.8 ka (Younger 19 20 Dryas) 21 22 23 Boulder ages reflect complex exhumation and denudation histories 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Manuscript Click here to access/download;Manuscript;Blidinje glaciation (BIH) Paper corrected final.docx Click here to view linked References Last Glacial Maximum and Younger Dryas piedmont glaciations in Blidinje, the Dinaric 1 2 Mountains (Bosnia and Herzegovina); insights from 36Cl cosmogenic dating 3 4 5 6 7 8 aAttila ÇİNER, bUroš STEPIŠNIK, aM. Akif SARIKAYA, cManja ŽEBRE, aCengiz 9 10 YILDIRIM 11 12 13 14 15 16 aEurasia Institute of Earth Sciences, Istanbul Technical University, Maslak–Istanbul 34469, Turkey 17 18 bDepartment of Geography, Faculty of Arts, University of Ljubljana, Aškerčeva 2, 1000 Ljubljana, Slovenia 19 20 21 cDepartment of Geography and Earth Sciences, Aberystwyth University, United Kingdom 22 23 24 25 26 Corresponding author: Attila Çiner; [email protected] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 1 63 64 65 Abstract 1 2 3 The highest parts of the Dinaric Mountains along the eastern Adriatic coast of the southern 4 5 Europe, known for their typical Mediterranean karst–dominated landscape and very humid 6 7 8 climate, were glaciated during the Late Pleistocene. Palaeo–piedmont type glaciers that 9 10 originated from Čvrsnica Mountain (2226 m a.s.l.; above sea level) in Bosnia and 11 12 Herzegovina deposited hummocky, lateral and terminal moraines into the Blidinje Polje. 13 14 36 15 Twelve boulder samples collected from these moraines were dated by cosmogenic Cl 16 17 surface exposure dating method. Using 40 mm ka–1 bedrock erosion rate due to high 18 19 36 20 precipitation rates, we obtained Cl ages of Last Glacial Maximum (LGM; 22.7 ± 3.8 ka) 21 22 from the hummocky moraines, and Younger Dryas (13.2 ± 1.8 ka) from the lateral moraine in 23 24 25 Svinjača area. The amphitheater shaped terminal moraine in Glavice area also yielded a 26 27 Younger Dryas (13.5 ± 1.8 ka) age within the error margins. Because our boulder ages reflect 28 29 complex exhumation and denudation histories, future work is needed to better understand 30 31 32 these processes and their influence on the cosmogenic exposure dating approach in a karstic 33 34 landscape. Our results provide a new dataset, and present a relevant contribution towards a 35 36 37 better understanding of the glacial chronologies of the Dinaric Mountains. 38 39 40 Keywords: Dinaric Karst; Cosmogenic Surface Exposure Dating; Piedmont Glaciation; 41 42 Bosnia and Herzegovina; Balkans; Last Glacial Maximum, Younger Dryas 43 44 45 46 47 48 1. Introduction 49 50 51 The Dinaric Mountains extend along the eastern Adriatic coast for about 650 km along the 52 53 western Balkan Peninsula, from the Alps in Slovenia to the Korab Mountains in Albania and 54 55 56 is highly influenced by the Mediterranean climate. Western part of the mountain range is a 57 58 karst landscape with high–elevated plateaux, which characterise highest segments of the 59 60 61 62 2 63 64 65 Dinaric Mountains with elevations reaching 2522 m a.s.l. (above sea level) in Durmitor and 1 2 2694 m a.s.l. in Prokletije mountains, where small glaciers still exist (Gachev et al., 2016). 3 4 5 The Dinaric Mountains were also glaciated in the past. First studies related to the glaciations 6 7 of the Dinaric Mountains were carried out in Bosnia and Herzegovina and Montenegro (e.g. 8 9 10 Cvijić, 1899; Grund, 1902, 1910; Penck, 1900; Liedtke, 1962; Riđanović, 1966). Pleistocene 11 12 glaciers were reported from the coastal Dinaric Mountains bordering the Adriatic Sea (Cvijić, 13 14 1899, 1900). Because of likely high moisture supply during cold periods (e.g. Hughes et al., 15 16 17 2010), moraines were encountered below 1000 m a.s.l., and glacial deposits were described 18 19 even at sea level in northern Dalmatia (Croatia) (Marjanac and Marjanac, 2004). Sawicki 20 21 22 (1911) reported moraines on Mount Orjen (1894 m) in Montenegro, ~500 m a.s.l., 23 24 overlooking present level of the Adriatic Sea. Although wars and political instabilities during 25 26 27 the last century prevented further research in the countries surrounding the Dinaric 28 29 Mountains, there is now an increasing interest in the description and understanding of past 30 31 glacial deposits and events (e.g. Hughes et al., 2010, 2011; Petrović, 2014; Krklec et al., 32 33 34 2015). For instance, the Late Pleistocene glacial landforms and glaciokarst of Mount Orjen 35 36 were described in detail (Marković, 1973; Stepišnik et al., 2009).
Recommended publications
  • The Last Maximum Ice Extent and Subsequent Deglaciation of the Pyrenees: an Overview of Recent Research
    Cuadernos de Investigación Geográfica 2015 Nº 41 (2) pp. 359-387 ISSN 0211-6820 DOI: 10.18172/cig.2708 © Universidad de La Rioja THE LAST MAXIMUM ICE EXTENT AND SUBSEQUENT DEGLACIATION OF THE PYRENEES: AN OVERVIEW OF RECENT RESEARCH M. DELMAS Université de Perpignan-Via Domitia, UMR 7194 CNRS, Histoire Naturelle de l’Homme Préhistorique, 52 avenue Paul Alduy 66860 Perpignan, France. ABSTRACT. This paper reviews data currently available on the glacial fluctuations that occurred in the Pyrenees between the Würmian Maximum Ice Extent (MIE) and the beginning of the Holocene. It puts the studies published since the end of the 19th century in a historical perspective and focuses on how the methods of investigation used by successive generations of authors led them to paleogeographic and chronologic conclusions that for a time were antagonistic and later became complementary. The inventory and mapping of the ice-marginal deposits has allowed several glacial stades to be identified, and the successive ice boundaries to be outlined. Meanwhile, the weathering grade of moraines and glaciofluvial deposits has allowed Würmian glacial deposits to be distinguished from pre-Würmian ones, and has thus allowed the Würmian Maximum Ice Extent (MIE) –i.e. the starting point of the last deglaciation– to be clearly located. During the 1980s, 14C dating of glaciolacustrine sequences began to indirectly document the timing of the glacial stades responsible for the adjacent frontal or lateral moraines. Over the last decade, in situ-produced cosmogenic nuclides (10Be and 36Cl) have been documenting the deglaciation process more directly because the data are obtained from glacial landforms or deposits such as boulders embedded in frontal or lateral moraines, or ice- polished rock surfaces.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • The Climate of the Last Glacial Maximum: Results from a Coupled Atmosphere-Ocean General Circulation Model Andrew B
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D20, PAGES 24,509–24,525, OCTOBER 27, 1999 The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model Andrew B. G. Bush Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada S. George H. Philander Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton University Princeton, New Jersey Abstract. Results from a coupled atmosphere-ocean general circulation model simulation of the Last Glacial Maximum reveal annual mean continental cooling between 4Њ and 7ЊC over tropical landmasses, up to 26Њ of cooling over the Laurentide ice sheet, and a global mean temperature depression of 4.3ЊC. The simulation incorporates glacial ice sheets, glacial land surface, reduced sea level, 21 ka orbital parameters, and decreased atmospheric CO2. Glacial winds, in addition to exhibiting anticyclonic circulations over the ice sheets themselves, show a strong cyclonic circulation over the northwest Atlantic basin, enhanced easterly flow over the tropical Pacific, and enhanced westerly flow over the Indian Ocean. Changes in equatorial winds are congruous with a westward shift in tropical convection, which leaves the western Pacific much drier than today but the Indonesian archipelago much wetter. Global mean specific humidity in the glacial climate is 10% less than today. Stronger Pacific easterlies increase the tilt of the tropical thermocline, increase the speed of the Equatorial Undercurrent, and increase the westward extent of the cold tongue, thereby depressing glacial sea surface temperatures in the western tropical Pacific by ϳ5Њ–6ЊC. 1. Introduction and Broccoli, 1985a, b; Broccoli and Manabe, 1987; Broccoli and Marciniak, 1996].
    [Show full text]
  • A Possible Late Pleistocene Impact Crater in Central North America and Its Relation to the Younger Dryas Stadial
    A POSSIBLE LATE PLEISTOCENE IMPACT CRATER IN CENTRAL NORTH AMERICA AND ITS RELATION TO THE YOUNGER DRYAS STADIAL SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY David Tovar Rodriguez IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Howard Mooers, Advisor August 2020 2020 David Tovar All Rights Reserved ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Howard Mooers for his permanent support, my family, and my friends. i Abstract The causes that started the Younger Dryas (YD) event remain hotly debated. Studies indicate that the drainage of Lake Agassiz into the North Atlantic Ocean and south through the Mississippi River caused a considerable change in oceanic thermal currents, thus producing a decrease in global temperature. Other studies indicate that perhaps the impact of an extraterrestrial body (asteroid fragment) could have impacted the Earth 12.9 ky BP ago, triggering a series of events that caused global temperature drop. The presence of high concentrations of iridium, charcoal, fullerenes, and molten glass, considered by-products of extraterrestrial impacts, have been reported in sediments of the same age; however, there is no impact structure identified so far. In this work, the Roseau structure's geomorphological features are analyzed in detail to determine if impacted layers with plastic deformation located between hard rocks and a thin layer of water might explain the particular shape of the studied structure. Geophysical data of the study area do not show gravimetric anomalies related to a possible impact structure. One hypothesis developed on this works is related to the structure's shape might be explained by atmospheric explosions dynamics due to the disintegration of material when it comes into contact with the atmosphere.
    [Show full text]
  • Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest During the Late Quaternary Period
    Western Washington University Western CEDAR Scholars Week 2017 - Poster Presentations May 17th, 9:00 AM - 12:00 PM Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period Henry Haro Western Washington University Follow this and additional works at: https://cedar.wwu.edu/scholwk Part of the Environmental Studies Commons, and the Higher Education Commons Haro, Henry, "Animating the Temporal Progression of Cordilleran Deglaciation and Vegetation Succession in the Pacific Northwest during the late Quaternary Period" (2017). Scholars Week. 20. https://cedar.wwu.edu/scholwk/2017/Day_one/20 This Event is brought to you for free and open access by the Conferences and Events at Western CEDAR. It has been accepted for inclusion in Scholars Week by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Animating the Temporal Progression of Cordilleran Deglaciation in the Pacific Northwest during the late Quaternary Period Henry Haro – 2017 The Cordilleran Ice Sheet Sequential Progression of Cordilleran Retreat The topography of the Pacific Northwest, its fjords, inland waterways and islands, are a result of an extended period of glaciation and glacial retreat. This retreat influenced the physical features and the resulting succession of vegetation that led to the landscape we see today. Despite this importance of the Cordilleran ice sheet and the large volume of research on the topic, there lacks a good detailed animation of the movement of the entire ice sheet from the last glacial maximum to the present day. In this study, I used spatial data of the glacial extent at different periods of time during the Quaternary period to model and animate the movement of the Cordilleran ice sheet as it retreated from 18,000 BCE to 10,000 BCE.
    [Show full text]
  • Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 2010 Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation Sean David Birkel Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Glaciology Commons Recommended Citation Birkel, Sean David, "Climate Investigations Using Ice Sheet and Mass Balance Models with Emphasis on North American Glaciation" (2010). Electronic Theses and Dissertations. 97. http://digitalcommons.library.umaine.edu/etd/97 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean David Birkel B.S. University of Maine, 2002 M.S. University of Maine, 2004 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) The Graduate School The University of Maine December, 2010 Advisory Committee: Peter O. Koons, Professor of Earth Sciences, Advisor George H. Denton, Libra Professor of Earth Sciences, Co-advisor Fei Chai, Professor of Oceanography James L. Fastook, Professor of Computer Science Brenda L. Hall, Professor of Earth Science Terrence J. Hughes, Professor Emeritus of Earth Science ©2010 Sean David Birkel All Rights Reserved iii CLIMATE INVESTIGATIONS USING ICE SHEET AND MASS BALANCE MODELS WITH EMPHASIS ON NORTH AMERICAN GLACIATION By Sean D. Birkel Thesis Advisor: Dr. Peter O. Koons An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Earth Sciences) December, 2010 This dissertation describes the application of the University of Maine Ice Sheet Model (UM-ISM) and Environmental Change Model (UM-ECM) to understanding mechanisms of ice-sheet/climate integration during ice ages.
    [Show full text]
  • Glacial/Interglacial Variations in Atmospheric Carbon Dioxide
    review article Glacial/interglacial variations in atmospheric carbon dioxide Daniel M. Sigman* & Edward A. Boyle² * Department of Geosciences, Guyot Hall, Princeton University, Princeton, New Jersey 08544, USA ² Department of Earth, Atmospheric, and Planetary Sciences, Room E34-258, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Massachusetts 02139, USA ............................................................................................................................................................................................................................................................................ Twenty years ago, measurements on ice cores showed that the concentration of carbon dioxide in the atmosphere was lower during ice ages than it is today. As yet, there is no broadly accepted explanation for this difference. Current investigations focus on the ocean's `biological pump', the sequestration of carbon in the ocean interior by the rain of organic carbon out of the surface ocean, and its effect on the burial of calcium carbonate in marine sediments. Some researchers surmise that the whole-ocean reservoir of algal nutrients was larger during glacial times, strengthening the biological pump at low latitudes, where these nutrients are currently limiting. Others propose that the biological pump was more ef®cient during glacial times because of more complete utilization of nutrients at high latitudes, where much of the nutrient supply currently goes unused. We present a version of the latter hypothesis that focuses on the open ocean surrounding Antarctica, involving both the biology and physics of that region. he past two million years have been characterized by of these mechanisms with data from the recent geological and large cyclic variations in climate and glaciation. During glaciological record has been a challenging and controversial task, cold `ice age' periods, large continental ice sheets cover leading as yet to no consensus on a fundamental mechanism.
    [Show full text]
  • How Did Marine Isotope Stage 3 and Last Glacial Maximum Climates Differ? – Perspectives from Equilibrium Simulations
    Clim. Past, 5, 33–51, 2009 www.clim-past.net/5/33/2009/ Climate © Author(s) 2009. This work is distributed under of the Past the Creative Commons Attribution 3.0 License. How did Marine Isotope Stage 3 and Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations C. J. Van Meerbeeck1, H. Renssen1, and D. M. Roche1,2 1Department of Earth Sciences - Section Climate Change and Landscape Dynamics, Faculty of Earth and Life Sciences, VU University Amsterdam, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands 2Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Laboratoire CEA/INSU-CNRS/UVSQ, C.E. de Saclay, Orme des Merisiers Bat. 701, 91190 Gif sur Yvette Cedex, France Received: 15 August 2008 – Published in Clim. Past Discuss.: 6 October 2008 Revised: 14 January 2009 – Accepted: 20 February 2009 – Published: 5 March 2009 Abstract. Dansgaard-Oeschger events occurred frequently mimics stadials over the North Atlantic better than both con- during Marine Isotope Stage 3 (MIS3), as opposed to the fol- trol experiments, which might crudely estimate interstadial lowing MIS2 period, which included the Last Glacial Max- climate. These results suggest that freshwater forcing is nec- imum (LGM). Transient climate model simulations suggest essary to return climate from warm interstadials to cold sta- that these abrupt warming events in Greenland and the North dials during MIS3. This changes our perspective, making the Atlantic region are associated with a resumption of the Ther- stadial climate a perturbed climate state rather than a typical, mohaline Circulation (THC) from a weak state during sta- near-equilibrium MIS3 climate.
    [Show full text]
  • A New Greenland Ice Core Chronology for the Last Glacial Termination ———————————————————————— S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/2005JD006079, A new Greenland ice core chronology for the last glacial termination ———————————————————————— S. O. Rasmussen1, K. K. Andersen1, A. M. Svensson1, J. P. Steffensen1, B. M. Vinther1, H. B. Clausen1, M.-L. Siggaard-Andersen1,2, S. J. Johnsen1, L. B. Larsen1, D. Dahl-Jensen1, M. Bigler1,3, R. R¨othlisberger3,4, H. Fischer2, K. Goto-Azuma5, M. E. Hansson6, and U. Ruth2 Abstract. We present a new common stratigraphic time scale for the NGRIP and GRIP ice cores. The time scale covers the period 7.9–14.8 ka before present, and includes the Bølling, Allerød, Younger Dryas, and Early Holocene periods. We use a combination of new and previously published data, the most prominent being new high resolution Con- tinuous Flow Analysis (CFA) impurity records from the NGRIP ice core. Several inves- tigators have identified and counted annual layers using a multi-parameter approach, and the maximum counting error is estimated to be up to 2% in the Holocene part and about 3% for the older parts. These counting error estimates reflect the number of annual lay- ers that were hard to interpret, but not a possible bias in the set of rules used for an- nual layer identification. As the GRIP and NGRIP ice cores are not optimal for annual layer counting in the middle and late Holocene, the time scale is tied to a prominent vol- canic event inside the 8.2 ka cold event, recently dated in the DYE-3 ice core to 8236 years before A.D.
    [Show full text]
  • Gabriola's Glacial Drift—An Icecap?
    Context: Gabriola ice-age geology Citation: Doe, N.A., Gabriola’s glacial drift—10. An icecap? SILT 8-10, 2014. <www.nickdoe.ca/pdfs/Webp530.pdf>. Accessed 2014 Jan 30. NOTE: Adjust the accessed date as needed. Copyright restrictions: Copyright © 2014. Not for commercial use without permission. Date posted: January 30, 2014. Author: Nick Doe, 1787 El Verano Drive, Gabriola, BC, Canada V0R 1X6 Phone: 250-247-7858 E-mail: [email protected] This is Version 3.7, the final version. Notes added on June 9, 2021: There is an error in the caption to the graph on page 15. The yellow dot on the left is for plant material, the older one on the right is for a log. It has been left uncorrected in this copy. Additional radiocarbon dates have been obtained since this article was published and these are recorded in detail in Addendum 2021 to SILT 8-13 <https://nickdoe.ca/pdfs/Webp533.pdf>. The new information affects some of the detail in this Version 3.7, particularly on page 15, but not significantly enough to justify an extensive rewrite and republishing of the article. Version 3.7 therefore remains unchanged. Version:3.7 Gabriola’s glacial drift—an icecap? Nick Doe Carlson, A. E. (2011) Ice Sheets and Sea Level in Earth’s Past. Nature Education Knowledge 3(10):3 The deglaciation of Gabriola what ways did the events of that time shape the landscape we see today? One snowy winter’s day, around the year 14 The two approaches adopted are radiocarbon 16000 BC (14.50 ka C BP), give or take a dating of sites that mark the transition from century or two, the ice under which Gabriola the late-Pleistocene to the early-Holocene was buried at that time, reached its 1 (ice age to post-ice age); and computer maximum thickness.
    [Show full text]
  • Article Is Available Online USA, 2004
    The Cryosphere, 10, 639–664, 2016 www.the-cryosphere.net/10/639/2016/ doi:10.5194/tc-10-639-2016 © Author(s) 2016. CC Attribution 3.0 License. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle Julien Seguinot1,2,3, Irina Rogozhina3,4, Arjen P. Stroeven2, Martin Margold2, and Johan Kleman2 1Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zürich, Switzerland 2Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 3Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany 4Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany Correspondence to: Julien Seguinot ([email protected]) Received: 21 June 2015 – Published in The Cryosphere Discuss.: 7 August 2015 Revised: 2 February 2016 – Accepted: 19 February 2016 – Published: 16 March 2016 Abstract. After more than a century of geological research, 1 Introduction the Cordilleran ice sheet of North America remains among the least understood in terms of its former extent, volume, and dynamics. Because of the mountainous topography on During the last glacial cycle, glaciers and ice caps of the which the ice sheet formed, geological studies have often had North American Cordillera have been more extensive than only local or regional relevance and shown such a complexity today. At the Last Glacial Maximum (LGM), a continuous that ice-sheet-wide spatial reconstructions of advance and re- blanket of ice, the Cordilleran ice sheet (Dawson, 1888), treat patterns are lacking. Here we use a numerical ice sheet stretched from the Alaska Range in the north to the North model calibrated against field-based evidence to attempt a Cascades in the south (Fig.1).
    [Show full text]